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EXCURSION LAWS

AND EXCEPTIONAL POINTS ON BROWNIAN PATHS

KRZYSZTOF BURDZY

University of Washington .

The purpose of this note is to present an example of a family of "exceptional
points" on Brownian paths which cannot be constructed using an entrance law.

Watanabe (1984, 1987) proved that various families of exceptional points on
Brownian paths may be constructed using entrance laws. Special cases include
excursions of one-dimensional Brownian motion within square root boundaries

(see Watanabe (1984); the original construction was given by Davis (1983) and
Greenwood and Perkins (1983)) and "cone-points" on the outer boundary of the
2-dimensional Brownian path (Burdzy (1989) Theorem 2.4 (i)). Watanabe’s con-
struction consists of generating an infinite but countable number of excursions
(finite pieces of Brownian path) and then splicing them in a suitable way. The
excursions are generated by a Poisson Point Process and they come ordered in
a natural way corresponding to "local time." The excursions may be spliced to-
gether if the lifetimes of excursions corresponding to the local time interval [0,c]
are summable for each c. This condition is .satisfied when the expected lifetime of
an excursion under the excursion law is finite. Hence, one of the main conditions in
Watanabe’s theorem is that of finiteness of the expected lifetime of the excursion
under the excursion law.

One may ask whether there exists a converse to Watanabe’s theorem which would

say that exceptional points on Brownian paths corresponding to an excursion law
exist only when the expected lifetime of an excursion under the excursion law is
finite. This could settle an open problem of whether there exist excursions within

for the critical case c = 1 (they do for c > 1 and do not for c  1; see
Davis and Perkins (1985)). Our theorem shows that such a general result cannot
be proved. 

’

The reader may consult the books of Blumenthal (1992), Burdzy (1987) and
Sharpe (1988) regarding excursion theory and further references.

Let X denote the standard Brownian motion starting from 0. Suppose that
f [0,oo) -r [0,oo]. We will say that {X (s), s E (t, t + ~)} is an excursion within
f -boundaries if E > 0 and + u) - X(t)~  I(u) for all u E (0, E). The starting
point of an excursion within f -boundaries may be called an exceptional point if for
every fixed t > 0, the time t is not the starting point of an excursion within f -
boundaries a.s. Let C, (0, oo) denote the space of functions defined on (0, oo) which
take real values and are continuous on some interval [0, () and are equal to A (a
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point outside R) otherwise. The case ( = oo is not excluded. A a-finite measure
H on C*(0, oo) will be called an excursion law within f -boundaries if

(i) the canonical process under H is strong Markov with the transition probabilities
of Brownian motion killed upon hitting the graph of f or - f and

(ii) H is supported by paths starting from 0.
Theorem 1. There exists a continuous function f such that
(i) w.p.l there exist excursions within f-boundaries and their starting points are

exceptional points for Brownian paths, and
(ii) we have H( = oo where H is the Brownian excursion law within f -boundaries.
Remark. It is a part of our assertion that there exists only one (up to a multiplica-
tive constant) excursion law within f -boundaries. This seems to be true for any
function f but we will indicate how to prove it just for our special choice of f.

Our proof of Theorem 1 uses in an essential way the fact that our function f is
not monotone.

Problem 1. Does there exist a monotone function f which satisfies Theorem 1 ?

Proof of Theorem 1. First we will define a function g and prove the theorem for
g in place of f. . Choose a sequence of strictly positive numbers such that

Pt  1/2. We will also need ak bl: > 0 for k > 1 whose values will be specified
later. Let

g(t) = {ak for t = bk, k ~ 1,
~ otherwise.

It will be convenient to work with the time reversed process, i.e., Y(t) = X(I -
t) - X(I) for t E [0, Ij. The process Y is a Brownian motion.

The construction of g is based on the following observation. For every p  1
and cl, c2 > 0 there exists b E (o, cl ) such that with probability greater than p
there exists t E (b, cl ) such that Y(t) = Y(t - b) and  cz. ~ We can use
the continuity of Brownian paths to strengthen this statement as follows. Suppose
that p, cl, C2 and b are as above. Then for every a > 0 there exists d > 0 such that
with probability greater than p there exists t E (b, cl ) such that Y(t) = Y(t - b),
IY(t)1  C2 and IY(t - b) -  a for all s E [t - b, t - 6+ dj. .
We will define inductively sequences of strictly positive numbers 

and . The first constraint we impose on these sequences is that
 dl:  bk/2  2’~’1 for all k. Let ai = 1, do = 1/2 and let 61, di > 0 be so

small that with probability greater than 1-p1 there exists t ~ (6i,do/2) such that
Y(t) = Y(t - bi ) and IY(t - 61) - Y(s)1  al/4 for all s E ~t - bi t - bi + dl). Let
ql = do /4 A dl /4. Next choose b2 E (0, ql) so small that with probability greater
than 1- p2 there exists t E such that Y(t) = Y(t - b2) and IY(t)1  
Let Pz denote the distribution of Brownian motion starting from x. Choose a2 > 0
so small that for every real x and every t > b2 /2

 a2)  2 ’~/bi. .

Find d2 E (0,di/8) so small that with probability greater than 1- pZ there exists
t E (b~, 9i ) such that Y(t) .= Y(t -  al/8 and ~Y{t - b2) - Y(s)1  a2~4
for all s E [t - b2 t - 62 + d2].
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Now we proceed by induction. Suppose that 01,..., ,ai. and bi ... , have been
chosen. Let qk = minj~k 2-k-2dj. Let b’+1 E (0,qk) be so small that with proba-
bility greater than there exists t ~ such that K() = K( - 
and  2’~‘’za~ for every j  k. Find ax+1 > 0 so small that for every real z
and every t > bk+1 /2

 al:+l)  .

Choose dk+1 > 0 so small that with probability greater than 1- pk+i there exists
t E such that Y(t) = Y(t -  for every j  k and

IY(t - - Y(s)  Oi+l/4 for all s E (t - bk+1, t - bk+1 + dx+y. This completes
the inductive definition of and .

Next we will prove that there exist excursions within g-boundaries. Let T~ be
the smallest t > 61 such that Y(t) = Y(t - 61) and IY(t - 61) - Y(s)1  ai /4 for
all s - bi, t - bi + By our choice of b1, a1, d0 and dl, we have Ti  1/4
with probability greater than 1- Pl. . Let T2 be the smallest t E (Ti + bZ, Ti + 91 )
such that Y(t) = Y(t - 62), IY(t) - Y(Ti))  ai/8 and IY(t - 62) - Y(s)~  az/4
for all s e ~t - bZ, t - bz + d2]. If there is no such t, we let T2 = T3 = ~ ~ ~ = oo.

Note that Ti is a stopping time for Y. Using the strong Markov property for Y
at Ti and the definition of bz, a2, qi and d2 we see that T2 is finite (and, therefore,
T2  Ti + 9i) with probability exceeding 1 2014 p2 We continue by induction. Suppose
that Tl, ... have been chosen and are finite. Let be the smallest t e

+ Tk + qui) such that K() = JK() -  2-k-2aj for
every j ~ k and bk+1) - Y(s)(  Oi+l/4 for all s E [t - bk+i t - bk+1 + .

If such t does not exist then we let Tk+i = Tt+2 = y ~ ~ = oo. The strong Markov
property applied at Ti and the definitions of the constants ensure that is finite
and bounded by Tk + qk with probability greater than 1-pk+1. We see that all Tk’s
are finite with probability greater than 1- pk > 1/2. Let Too = limk~~ Tk.
Note that if Too is finite then

Too  1/4 + ~ qk  1/4 + ~ 2-~-’  1/2.
k>i ~>i

Suppose that Too  1 and let U = 1 - Too. We will show that U is the starting
point for an excursion of X within g-boundaries. Fix an arbitrary k > 1. . We have

(I) yeTi) = Y(Tk - bk)

and bk) - Y(s)1  a~/4 for all s 6 [Tk - bk T, - b, + dkJ. . Since Tj+l - T, 
q;  for all j ~ k, we have

T~ - Tx = - T~  d~.
~>t

Hence Too - bi E (Tk - bk, Tk - bk + and, therefore,

(2) I Y(Tk - bk ) - y(Too -  ax /4.
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It follows from the definition of TJ’s that - ~  2’~’za~ for all j >_ k.
This and the continuity .of Y implies that

~ E  

>>x

This, (1) and (2) imply that Y(Too -  ak/2 for all k. We may
express this in terms of X and U as - X (U +  ak/4. Now it follows
directly from the definition that U is the starting point of an excursion of X within
g-boundaries.
We have proved that an excursion within g-boundaries exists with probability

greater than 1/2. An easy modification of the argument shows that for each k > 1, ,
with probability greater than 1/2 there exists an excursion within g-boundaries
which has a starting point in (0,1/k~. A standard application of the 0-1 law then
shows that an excursion within g-boundaries exists with probability 1.

In order to prove that the starting points of excursions within g-boundaries are
exceptional points it will suffice to show that with P°-probability 1, > ak

for infinitely many k: This can be achieved by choosing each ak sufficiently small
so that > > 1- 2-*.

Let us prove that there exists only one excursion law within g-boundaries. Note
that ak’s may be chosen so small that

E b~) e dy) e (1/2,2)

for all E (-ak, ak) and Iyl  . Then an argument similar to that in the
proof of Theorem 2.2 (b) of Burdzy (1987) shows that for every j and e > 0 there
exists ko  oo such that for every k > ko

E bk) E dy) E (1- E~ 1 + c)

for all z, z E (-a~, ak) and  a~. Suppose that H and H are excursion laws
within g-boundaries. An application of the Markov property at time bk shows that

H(X(bj)~dy) H(X)(bj)~dy).H(X(bk)~(-ak,ak)) H(X(bk)~(-ak,ak))~(1-~, 1+ ~)

for all Iyl  OJ. Since 6 can be made arbitrarily small by choosing large k, we
conclude that the distributions of H and H at time bj are constant multiples of
each other. This is true for every j and clearly implies that H is a constant multiple
of H. ’

We will show that the excursion law H within g-boundaries has infinite expected
lifetime. Let H(( >- bi) = c > 0. Since a2)  2’~b2/bl, an applica-
tion of the Markov property for H at time 63 implies that

H(03B6 >_ b2) > 2cb1/b2.

Similarly  ak+1)  for all k ~ 1 and induction shows
that

H(03B6 > bk) > 2kcb1/bk
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for k ~ 1. For every k

H( > b~) > bi2icb1/bi = 2icb1. .

It follows that H( = oo.
This completes the proof of the theorem with function g playing the role of the

function f in the statement of the theorem. The function g is not continuous. We
will now sketch an argument explaining how to modify the function g in order to
obtain a continuous function f which also satisfies the theorem.

The modulus of continuity for Brownian paths is 6(t) = vi up to a logarithmic
correction, so with probability 1 we have IX(s + t) - X(s)1  for all s.and all

t  c(s) where c(s) > 0 is random. Let h(t) = g(t) A tl~’~. Then every starting
point of an excursion within g-boundaries is a starting point of an excursion within
h-boundaries. The proof that the excursion law within h-boundaries has infinite
expected lifetime does not need any essential changes. Note that h is finite and
continuous at 0. It is not hard to see that we can smooth h away from 0 (leaving
its values at bi’s) to obtain a continuous function f which has all the desired
properties. D
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