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Some Remarks on A(t, Bt)
John B. Walsh

University of British Columbia

1 Introduction

Let : t > 0} be a standard Brownia.n motion, let L(t, x) be its local time and let
A(t, x) = L(t, y) dy. The process {A(t, B,), t > 0} comes up naturally in the study
of the local time sheet, and was studied in some detail in joint work with L. C. G. Rogers
[1, 2, 3]. It was shown there that it is a Dirichlet process but not a semimartingale,
at least relative to the Brownian filtration: it is the sum of a stochastic integral plus a
continuous process X; X has zero quadratic variation (so .~(t, Br) is a Dirichlet process)
but it has non-trivial 4 3-power variation [2] (and hence infinite variation, which is why
A(t, Bt) is not a semimartingale).

This note is a byproduct of [3], where the exact 3-variation of X was determined.
We will give a decomposition different from the one used there, one which puts things
in a rather different context and leads to some heuristic remarks on a formal connection

with distributions.

2 The Decomposition
Theorem 1 A(t, Br) has the decomposition

(1) ) A(t, Bt) = o L(s, B,) dBa + Xt
where

(2) Xt - 1 ‘ B’) - L(s, B’ - ~) ds

= t + r B’ + s) B’) 
.

The limits exist in probably, uniformly for t in compact sets.

PROOF. Let 03C6~ be an approximate identity and let

(3) _ / - z oo dy ~

Then

(4) .a(t,13r) - % ds

= lim / (Br - Bs ) d s .

~-~o+ ~o
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This holds for all t since {s : Bs = Bt} has Lebesgue measure zero. Let us write 03C6 and
~ in place of ~E respectively, and expand the integral in (4) by Ito’s lemma:

(5) /’ + /7’ /T ~(F~ - F.) jo 1/J(B, - ) ds = () $ 
03C6(Bu - ) u ds 2 Oa Y’( u 

- a) du ds .

Assuming that ~ is Lipschitz, it is a simple matter to interchange the order of
integration in the stochastic integral term on the right hand side of (5).
We would like to extend (5) to some discontinuous ~. Suppose that v is a finite

signed measure of zero total mass and compact support, and let ~(~) = Let

~" be a sequence of uniformly bounded Ch. functions such that the measures ~n (x) dx
converge weakly to v, and such that there exists C such that C for all
n. Let = Notice that we can choose the ~n to all be supported
in the same compact interval, so that the ~n will be uniformly bounded. For each n,
write the left hand side of (5) in the form

Since the are uniformly bounded and ~n (x) -~ ~(x) for all x, the left-hand side of
(5) converges to

.

On the right-hand side of (5), 03C8n(0) ~ 03C8(0), while the second term is

t0u003C6n(Bu-Bs)ds dBu = t0 [~-~03C6n(Bu-x)L(u,x)dx] dBu.

Using the uniform bound on the 03C6n and the fact that 03C6n ~ 03C6 at all continuity points,
and hence a.e., it is easy to see that this converges to

t0 [~-~L(u,x)03C6(Bu - x)dx ] dBu.

To handle the final integral in (5), first change order, then introduce local time:

1 2t0u003C6’n(Bu-Bs)ds du = 1 2~-~~-~t003C6’n(y-x)L(u,x)L(du,y)dy dx .

Integrate first over x, then let n ~ oo and use the fact that the 03C6’n converge weakly to
v and are uniformly bounded in L1 to see that this is

= 1 2 ~-~t0[~-~ 03C6’n(z)L(u,y-z)dz] L(du,y)dy

~ 1 2 ~-~ t0[~-~ L(u,y- z)03BD(dz)] L(du,y)dy,
giving

t0 03C8(Bt-x)L(t, x)dx = t03C8(0) + t0[~-~L(u, x)03BD(-~,x] dx] dBu
(6) +1 2~-~ t0 [~-~L(u,y-z)03BD(dz)] L(du,y)dy .
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If v = ~_1(bo - b~) then ~(o) = 0, so this is

t0 03C8(Bt- x)L(t,x) dx = t0 [~-~L(u,x)03BD((-~,x]) dx] dBu
(7) +1 2 ~- ~ t0 ~-1(L(u, y) - L(u, y - ~))L(du, y) dy

- o ( -oo dx dBu
2 0 Bu) - L ( 2l, Bu - ~)) du .

Now we can let e -~ 0+. The first two terms converge in L2, hence so does the third,
giving

(8) A(t, Bt) = t0 L(u, Bu) du + lim 1 2 t0~-1(L(u, Bu) - L(u, Bu - ~)) du .

This proves the first half of (2). . To get the second half, apply the same argument to
v" _ ~-1 (b_~ - 60) and note that this time ~(0) =1 for all n, so that

(9) A(t, Bt) = t + t0 L(u, Bu) dBu + lim 1 2 t0 ~-1(L(u, bu + ~) - L(u, Bu)) du .

~~0+

To see the limits in (2) are uniform, notice that all three terms in (7) are continuous
in t. The left-hand side converges uniformly in t for t in compacts, and the stochastic
integral converges in L2, again uniformly in t, hence the final integrals in (8) and (9)
also converge. b

3 Some Remarks

Remark 1 The equation (2) can be interpreted in terms of Schwartz distributions.
Let a~ and a~ represent the right-hand and left-hand partial derivatives. Consider
x H L(t, Bt + x). . The limits in (2) just involve ez and ez , which evidently exist in
some distributional sense, so we can formally rewrite (2) as

(10) Xt = 1 2 t0~-L ~x(s, Bs) ds

= 1 2t0 (2 +~+L ~x (s, Bs)) ds .

The partials are not functions, for if they X would be of bounded variation,
whereas it is known (2, 3~ to have nontrivial 3-variation, and hence infinite variation.

Remark 2 Here is a quick forma.l but non-rigorous argument which shows that The-
orem 1 is a disguised version of Ito’s lemma. Notice that A(t, x) is continuously differ-
entiable as long as Bt ~ x (A(t, x) = fo ds so ~A ~t (t, x) = and it is

continuously differentiable in x = L(t, x)), but the second derivative fails to exist.
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Thus one can almost, but not quite, apply the classical version of Ito’s lemma. If we
ignore this inconvenience and apply it purely formally to j4(, F + ~) and F 2014 c), ,
noting that = 1 ~nd = 0, we get

A(t,Bt+~)=t+t0L(s,Bs+~)dB,+1 2t0~L ~x(s,Bs+~)ds
and

A(t, Bt- ~) = /’ L(s, B. - ~) dBs + /’ 1 2~L ~x(s,Bs- ~) ds.

Now just let c j. 0 to get (10). .

Remark 3 If we subtract the two expressions for X, we see that

jf(~.’-’~-’)~-~ .
for all , which leads to the conclusion that, in some distribution sense

~ ~~-~’~=-’
for a.e. s. A similar phenomenon occurs with expectations:

(12) ~+ ~xEy{L(t,x)}|x=y - ~- ~xEy{L(t,x)}|x=y = -2.

In some sense, then, (10) is an almost-everywhere form of (12).
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