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HITTING A BOUNDARY POINT

WITH REFLECTED BROWNIAN MOTION

KRZYSZTOF BURDZY
DONALD MARSHALL

University of Washington

ABSTRACT. An explicit integral test involving the reflection angle is given for the reflected
Brownian motion in a half-plane to hit a fixed boundary point.

1. Introduction and main results. Let D* = {z E C : Im z > 0~, identify R2 with C
and 8D* with R and suppose that 8 : : R -; (-03C0/2, 03C0/2) is a C1+~-function except, possibly,
at 0. Then there exists a reflected Brownian motion (RBM) in D* with the variable angle of
reflection 8(x). The angle of reflection 8( x) is measured in the clockwise direction from the
inward pointing normal. Here is a straightforward construction of such a process (Rogers
(1991)).

Let Y(t) = Yi(t) + iY2(t) be a standard 2-dimensional Brownian motion, Y(0) =
yl + iy2, y2 > 0. Let

Lt = max( - inf Y2(s), 0),

(1.1) X2(t) = Y2(t) + Lt.

Then the equation

(1.2) X1(t) = Y1(t) + / 
has a solution. The process X(t) = Xl (t) + iX2 (t) is an RBM in D* with the angle of
reflection 8. The process X is defined only’until it hits 0, i.e., it is defined on a random
time interval. The same remark pertains to other related processes discussed in this paper.

Here is our main result.
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Theorem 1.1. The reflected Brownian motion X hits 0 with positive probability if and
only if

(1.3) 
1 
exp -1 -1 03B8(x)ydx 03C0(x2 + y2)] dy  00.

Remarks 1.1. (i) If RBM X approaches 0 then it does so in a finite time because the
one-dimensional RBM Im X cannot stay bounded forever.

(ii) Theorem 1.1 answers a problem posed by Rogers (1991). Varadhan and Williams
(1985) discussed the case when 8 is constant on the positive and negative part of the real
axis. A partial solution in the general case is presented in Rogers (1991). See also a new
article by Rogers (1990).

(iii) Note that (1.3) is equivalent to

(1.4) 
o - y exp 1 -i 

dy  o0

in each of the following cases:

(a) when 6 is an odd function, or

(b) when 161 is bounded away from ~r/2, i.e., there is c > 0 such that ~8(x)~  ~r/2 - c
for all x.

In case (a) the integral under cosine in (1.3) is zero and in case (b) the cosine of the
same integral is bounded away from 0.

(iv) Our proof uses an idea of Rogers (1989, 1991). We will map D* onto a "strip
domain" D using an analytic function h so that h(X) is a time-changed RBM in D with
vertical vectors of reflection. The point 0 E aD* is mapped onto the "left endpoint" zo
of aD, possibly "oo". The horizontal component of h(X) is a time-changed Brownian
motion and it hits zo with positive probability if and only if zo has a finite real part. This
is equivalent to X hitting 0 with positive probability and may be expressed algebraically
as in (1.3).

Originally Rogers (1991) mapped D* onto a domain above the graph of a function.
This approach does not result immediately in an integral test but it has some other po-
tential. We will explore it in a forthcoming paper.

The test (1.3) may be difficult to apply as it contains complicated integrals. We will
now give a few more or less concrete examples of 6’s which satisfy or do not satisfy (1.3).

Corollary 1.1. Suppose that a > 0 and

_ 

 1/3,

0 if ~x~ > 1/3.
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Then the RBM X hits 0 with positive probability if and only if a > ~r/2.

One may consider an RBM in the strip {z E C : Im z E (o, ~r)} rather than in D*. This
strip is conformally equivalent to D* (use the mapping z -~ e~) and "-oo" corresponds to
0 E It is natural to consider periodic angles of reflection in a strip. They correspond
to "geometrically periodic" 03B8 in D* which we discuss in the next corollary.

Corollary 1.2. Suppose that for some c > 1 and all x E R we have 9(x) = 9(cx). Then
the RBM X hits 0 with a positive probability if and only if

~ 8(x) - B(-x) dx0.
7i x

Corollary 1.3. The event that the first hitting time To of 0 is finite and there exists E > 0
such that Re X (t) > 0 for all t E (To - ~, To) has positive probability if and only if

10 (03B8(x) + 03C0/20dx x  ~.

In particular, X may approach 0 from the right if for some a  -1, we have =

- 03C0/2 + |log x|03B1 for x > 0. The process will not approach 0 from the right if 8(x) =
- ~r/2 + ~ for x > 0.

We are glad to acknowledge great influence of ideas of Rogers (1989, 1991) on our
research. We would also like to express our gratitude to Chris Rogers for numerous dis-
cussions of the subject.

2. Proofs. Recall that we identify R2 with C and aD* with R. Let R+ = {x E R : x > 0~
and R- = {x E R : x  0}. The closure of a set A will be denoted A. For a harmonic
function ~O, its conjugate function will be denoted ~.

Proof of Theorem 1.1. Step 1. A domain D will be called a strip domain if whenever
x + iy1 E D and x + iY2 E D then x + i y E D for all y E Y2] . The vector of reflection is
defined by V( x) = tan 8(x) + i. We will map D* conform ally onto a "strip domain" D in
such a way that V will be mapped onto a vertical vector. Moreover, R- will be mapped
onto the "upper boundary" of D and the image of V(.r) will point downwards for x E R-.
The positive part of the real axis will be mapped onto the "lower boundary" of D and the
image of V(.r) will point upwards for x E R+.

Let Di = {z E C : Im z E (0, and let g(z) be the branch of log z which maps D*
onto Di For z E aDl, let cp(z) = Extend c~ continuously to Dl so as to be bounded
and harmonic in Di and let ~p be a conjugate function of ~p. Define an analytic function f
on Di by

(2.1) f’(z) = + 
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Note that C (-7r/2,7T/2) for z C Di. Therefore,

(2.2) 

Let = tz + (1 - t)w where z, w ~ Di. Then ~(~) = z - w and

/~)-/(~)= 

=f~/(~))~(~-~).
Since the real part of the integral is strictly positive, /(?) = if and only if z = w. In
other words, the function / is univalent. Let h = on D* and D = h(D*).

Let us establish some basic properties of h and D.

The argument of /~ is always strictly between 2014Tr/2 and 7T/2 so {~ ~ Di : = ?r}
is mapped by / onto a curve Fi which is the graph of a function. We obviously have

h(R_) = 03931. By analogy, h(R+ ) is a similar curve. It follows from the argument
principle that D is a "strip domain."

The derivative of h is given by

(2.3) ~)=~(~))~(~)=~(log~)~
A harmonic function composed with an analytic function is harmonic, so z) = ~(~)
and z) = ~(~) for z ~ D* , where 8 is the bounded harmonic extension of the original
8 to the whole of D* and 03B8 is a conjugate function of 8. Hence, (2.1) and (2.3) yield

(2.4) ~(~)=~exp[~M+~))].
We have

for x ~ R+

and
= ~(.r) - ?r for .r ~ R-.

This implies that the horizontal component of the vector is null for .r ~ 7~ 0.
In other words, the vector V(.r) is mapped by h onto a vertical vector for :c ~ RB{0}.

Step 2. In this step, we will prove that h is C~ on Dj (except at 0) provided 8 ~ C~~
away from 0. Our argument is standard but we could not find a ready reference.

Let
{03B8(x) for x ~ R+,

03B1(x) = {03B8(x) - 03C0 for x ~ R-.
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Extend a boundedly and harmonically to D* and let &#x26; be the conjugate function. Observe
that h’(z ) = exp(I(a(z) + I&#x26;(z))) .

First we will localize our argument. Let I be an open interval in R+ or R- and let J
be an open subinterval of I with J c I. Let § e C°°(R) with supp(§) c I and § z I on
J. Then §a e Moreover (a + iZ) - (§a + I§a ) extends analytically across J, by the
Schwartz reflection principle, since a - §a = 0 on J. Hence, h e C2(D* u J) provided the
analogous function corresponding to §a has the same property. We will assume without
loss of generality that a e and has compact support which lies in R+ or R- .

Let #(z) = a’(z) for z e R and

be the harmonic extension of # to D* . We have

a(z) = 
oo 

u v2 + y2 
a(z + v) 

dv 03C0 
, z = z + iy e D* .

By interchanging integration and differentiation we see that #(z) = £a(z) for z e D* .
Since # is continuous on R, its harmonic extension to D* is continuous on E and equal
to # = a’ on R. In other words, £a is continuous on D* .

By Theorem 6.8 of Zygmund (1979, vol. I, p. 54) transported to D* , # extends to be
continuous on D* . Likewise, G is continuous on E.

Since the analytic functions £ la(z) + iZ(z)I and #(z) + I#(z) have the same real part,
We have £z(z) = #(z) + ic Where c is a real constant. Thus £M extends to be continuous
on D* . Moreover, on R this extension equals £Gz> Since

(x1 + iy) - (x2) + iv) = + iy)dv~~ z

= /~ [#(v + iy) + ic]dvzi
- [#(v) + ic]dv.y-o ~2

Divide "("2 ) bY 22 and let x1 - 22 ~ 0. Thus £ "(Z) # #(Z) + iC On R.
Let z e R. By the mean value theorem

~~~ ~ ~~ ~~~~ - - 
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for some t E [0, s~. . Since = - i a, y a extends to be continuous on D* and hence,
for x E R,

lim i y)ly=t = lim 
a(x + a(x) 

= a aa ( x + 

A similar statement applies to = 

Thus we have shown that a + ia is a C1 function on D*.

Recall that h is analytic in D* with h’(z) = exp(i(a(z) + for z E D*. By the
above remarks, h’ E C1 (D* ). Since h is the integral of the derivative (which is bounded),
h is continuous on D*. By the reasoning above ~ ~xh and ~ ~yh are continuous on D* with

= h’ and = ih’ for z E D*. Again, using the result above, h, a~ h, 
a h, h and h are all continuous on D*. In other words, h is CZ on D* (except
at 0, since we used a localization argument).
Step 3. Let

b=bD=inf{Reh(z): Rez=O,zED*}.

Clearly a  b, though there are domains for which a ~ b. We will prove that a = -oo if
and only if b = - oo .

It follows from (2.2) that Re f is increasing on horizontal lines. This implies that
Re h(z) is an increasing function of ~z~ along the half lines in D* ending at 0 and for

Re h(z) = Re f (log z)  sup Re f (v) df M  oo.

vEDi
Rev=0

Thus M- Re h is a positive harmonic function on U and is continuous on Therefore,
it has the following representation

M - Reh(z) = PI(M - Reh)(z) + cy x2 + y2, z=x+iy,

where "PI" is the analog of the Poisson integral and c is a non-negative constant. The
above representation is well known for the disc and can be transported to U by a conformal
mapping.

Suppose that a = -oo. If c ~ 0 in the above formula then clearly M - Re h(iy) -i oo
as t/ 2014~ 0. If c = 0 then we also have M - Re h(iy) ~ oo. This follows easily from the
maximum principle and the fact that M - Re h(z) increases as (z~ decreases, z E 8D*. In
both cases we have b = -oo.
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Step 4. Equations (1.1) and (1.2) may be rewritten as

X(t) = + / 
where V is the vector of reflection introduced in Step 1. The mapping h is of class C~ in
E B {0} and analytic in D~ so the Ito formula is applicable to and we obtain

~(X(~))=~(X(0))+ / h’(X(s))dY(s) + / 
By the abuse of notation, ~ denotes in the above formula the Jacobian matrix of 
The process X spends zero time on 9D~ and h is analytic in D~ so ~ is a

time-change of Brownian motion. The local time L does not increase unless X is at the
boundary of D* and = 0 for T ~ 0, so 
has null real component. It follows that Re h(X(t)) is a time-changed one-dimensional
Brownian motion run for a random amount of time.

Note that ~ CB{0} for 0. If we time-change Reh(X(t)) so that it becomes
a Brownian motion, it cannot stop or converge unless X reaches 0 or oo.

Whether X hits 0 with positive probability, does not depend on the values of ~(.r) for
~ > 1. Thus we may assume without loss of generality that ~(~) = 0 for ~ > 1. Then
Fi = ~(R-) and r2 = h(R+) cannot intersect at a finite right extreme point of D and
sup{ = oo. Since Re h(X(t)) is a time-change of Brownian motion, it cannot
converge to +00 and it follows that Reh(X(t)) cannot stop or converge unless X hits 0.

Suppose that aD > 2014oo. If Reh(X(t)) stops at a finite time or converges then
X hits 0 and we are done. Otherwise will hit aD with probability 1. Let
To = inf{t > 0 : Reh(X(t)) = Then  t  To} is a curve in Dj which must
converge to 0 as t -~ To. We have already pointed out in Remark 1.1 (i) that To  oo a.s.

Now consider the case a D = -oo. If stops at a finite time or converges
then X converges to 0 and Reh(X(t)) converges to -oo. This is impossible for a time-
changed Brownian motion and therefore Re h(X(t)) will take arbitrarily large values in
every interval According to Step 3, M - Re h is positive in a neighborhood of 0
so X(t) will never approach 0.

We have just shown that X hits 0 with positive probability if and only if a D > 2014oo
and this is equivalent to bD > 2014oo by Step 3. Recall that for y > 0

(2.5) ~ ~y Re h (iy) = - Im h’(iy)
= - Im[ 1 iy exp(i(03B8(iy) + i(iy)))]

= 1 y exp(-(iy)) cos 03B8(iy) > 0.



88

Thus b D > "oo if and only if

1 9
(2.6) / 
We may use the following formula to express the harmonic extension of 03B8 and its conjugate,
~, which vanishes at z.

(2.7) i(03B8(iy) + i(iy)) = ~-~ (1 x - iy - x 1 + x2) 03B8(x)dx 03C0

= ~ -~(x x2 + y2 - x 1 + x2) 03B8(x)dx 03C0 + i ~-~ y x2 + y2 03B8(x)dx 03C0.

’7-~B~+~ 1+~/ ~ 7-~~+~ 7r 
’

In view of (2.5) and (2.7), condition (2.6) becomes

(2.8) 7o !/ L./-ooB-~+~ 1+~7 ~ J L7-oo~+~ ~ J

As before, we may assume that ?(;c) = 0 for );~ > 1 and rewrite (2.8) as

(2.9) / 1 y exp [1 -1 (x x2 + y2 - x 1 + x2) 03B8(x)dx 03C0] cos o Y L7-iB~+~ 1+~7 ~ J L/-i~+!/ Y ~ J

Note that

since ~(~)!  ?!’/2. We can drop the corresponding integral from (2.9) and obtain an
equivalent inequality

10 1 y exp [1-1 x x2 + y2 03B8(x)dx 03C0] cos [1-1 y x2 + y2 03B8(x)dx 03C0] dy  ~.o y -i r + ~ 7r J + ~ ~ J

This completes the proof of Theorem 1.1. D

Proof of Corollary ~.~. Since 8 is an odd function, (1.3) reduces to (1.4).
Suppose that a  ?r/2. We have for y  1/3

1/30 x dx (x2 + y2)|log x| 
= (y0 + 1/3y) xdx (x2+y2)|log x|

o ~o ~ ~ l

~ y0 xdx y2 + 1/3y xdx x2 | log x |
= c1 + log |log y|.
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Thus

11 1 
x B(x)dx 11 1/3 x 03B1dx11 - 1 ex [j1 X - 8(x)dx] dy = 11 1 yexp [ -2 11/3 X 03B1dx |log x|] dy

> 1/30 1 y exp [ -(c1 + log|log y|) dy
~c2 11/3 dy y|logy|203B1/03C0 = 00.

Hence, ( 1.3) is not satisfied when a  ~r~2.
Now assume that a > ~r~2 and choose E > 0 and a  oo such that

a2 a2 + 1 203B1 03C0 > 1 + ~.

Then, for y  1~(3a),

1/30 1/3ay 
0 (x2 + y2)|log xl 

>_ 
ay (x2 + y2)|log x

>_ 
ay (x2 + x2/a2)|log x|

1/3ay - 

a2 + 1 ay x|log x|
a2

~e obtain

1/303B101 y exp [1-1 x x2+y2 03B8(x)dx 03C0]
dy

= 1/303B101 y exp [-2 1/30 x x2+y2 03B1dx |log x|]dy0 y o 

- 1/3a 1 y exp - 203B1 03C0 c3 + a2 a2 + 1 log| log ay|)] dy
 C4 1I/3a dy 

 00.

This implies (1.4). p
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Proof of Corollary 1. 2. First we will derive a formula for

1 l ’~ ~ ~’

where h is the function defined in the proof of Theorem I .I .

The analytic functions 8(z) + 18(z) and 8(cz) + 18(cz) have the same real part and
hence differ by a purely imaginary constant. When we evaluate the difference at I and
take into account that 8(I) = 0 we see that the constant is equal to -18(ic): This fact and
(2.4) yield

h’(CZ)/h’(Z) ~ > °.

Since £ Re h(iy) = Re ih’(iv),

~ ~yRe h(i(cy))/~ ~y Re h(iy) = e-(ic)/c.

Now

(ic) = ~-~ ( l + r z2 z2 + r c2 ) 8(z)dz x °

Since 8(cz) = 8(z), we have

° ( z z ) 8(z)dz~0 x 1 + x2 - x x2 + c2) 03B8(x)dx 03C0

= lim 03A3 (x 1 + x2 - x x2 + c2) 03B8(x)dx 03C0
- 

03A3 

jC ( ckv 
- ckv ckv)2 + c2) 03B8(ckv)ckdv 03C0

’ d£lJ ~i i I + + c~ x
=-n

= lim 

n 

jC ( c2kv 
- c2k-i>v ) 8(v)dv

= lim c1 c2nv 1 + c2nv2 - c2(-n-1)v 1 + c2(-n-1)v2) j 03B8(v)dv 03C0

= c1 03B8(v)dv 03C0v.

Thus

(ic) = c1 03B8(v) - v(-v) 03C0vdv.
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Recall that (1.3) is equivalent to (2.6). We have

/’ ~- Re = ~ - Re ~ 0 ay k=0 ay

= 03A3 1 1/c ~ ~y Re h(i(c-ky))c-k dy
= 03A3 1 ~ ~u Re h(iy)(1 e-(ic))-kc-kdy

= 11/c ~ ~y Re h(iy)dy 03A3 (e-(ic))-k.
- / - Reh(iy)dy 03A3(e-(ic))-k.

The last expression is finite if and only if > 1. Hence, (1.3) is equivalent to 8(ic)  0,
i.e.,

c1 03B8(v) - 03B8(-v) 03C0v dv  0. a

Proof of Corollary 1 . 9. If the RBM in D* may approach 0 from one side only, the values of
8 on the other side are irrelevant and we may assume without loss of generality that 8 is an
odd function. If f o (B(x) + ~r~2)x-1 dx  oo then B(x) - -~r~2 as x ~, 0 and a computation
analogous to the one in the proof of Corollary 1.1 shows that (1.3) holds. Hence it will
suffice to discuss the case when To  oo a.s.

Step 1. First we will show that with positive probability there is a random interval
(To - ~, To ) such that Re X(t) > 0 for all t E (To - e, To ) if and only if with positive
probability there is a random interval (To - ~, To) such that Re X (t) > 0 for all t E
(To - é, To) such that X (t) E 

Let
Ti = inf{t E (0,To] : : ReX(t) = 0},
Ul = inf {t E (Ti, ToJ X(t) E R},
Tk = inf {t E : Re X(t) = 0}, k > 2,

There are two possible cases. First, suppose that, with positive probability, Tk = To for
some k and, consequently, Tm = oo for m > k. Then our follows with 6 = To - Tk_1
( if k == 1 we let é = To). Note that although X((Tk_1, To)) may lie in the left half plane,
it may also lie in the right half plane with positive probability, by the symmetry of 8.

Now suppose that Tk  To for all k a.s. The events ~ Re X (Uk ) > 0} are inde-
pendent by the strong Markov property and each one has probability 1/2, by symme-
try. It follows that infinitely many events { Re X(Uk) > 0} happen a.s. and the same
is true for {ReX(Uk)  0}. In this case, with probability 1, for every 6 > 0 there are
t1, t2 E (T0 - ~, T0) such that X (t1 ) E R+ and X (t2 ) E R- and our claim holds.
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Step 2. We will sketch an idea which allows us to look at RBM in D in a new way.

Suppose that D2 is a domain with the property that if x + i y E D2 then x + iy1 E D2
for all yi > y. Let Y be a 2-dimensional Brownian motion and let N(t) be the supremum
of non-positive numbers such that D2 + iN(t) contains Y(~0, t~). Then Y(t) - iN(t) is an
RBM in D2 with the vertical vector of reflection (pointing upwards) on 8D2 .

The idea goes back to Levy in the 1-dimensional case (see (1.1)). It was first used by
El Bachir (1983) and Le Gall (1987) in the 2-dimensional case. See also Burdzy (1989).

Let Z be the time-change of h(X) so that its martingale part is a Brownian motion.
Then Z admits a similar representation Z(t) = Y(t) + iM(t), where Y is a 2-dimensional
Brownian motion and M is a suitable real process with locally bounded variation. The
process M(t) may be decomposed as M(t) = M1 (t) - M2 (t), where Ml (t) increases only
when Z(t) E r1 and M2 (t) increases only when Z(t) E r2 .

We will discuss this idea in greater detail in a forthcoming paper.

Step 3. Recall that we assume that 9 is an odd function. Then r1 and r2 are symmetric
and have a common endpoint zo E C.

Let D3 = {z E C : Re z > We will show that Z may approach zo by hitting
only one of the curves r1 or r2 if and only if D is a minimal fine neighborhood of zo in
D3. See Burdzy (1987) and Doob (1984) for the discussion of the minimal fine topology
and its relationship with Brownian paths.

Suppose first that D is a minimal fine neighborhood of zo in D3. Let T be the first
hitting time of 8D3 by Y and let D4 = D + (Y(T) - zo ). By the probabilistic interpretation
of the minimal fine topology, w.p.l there is e > 0 such that Y((T - ~, T )) C D4. Then,
with positive probability Y( ~0, T ~ ) C D4. If this event happens and Im zo > Im YeT) then
Z hits only the lower part of the boundary of D before hitting zo because all that is needed
to move the path of Y into D is an occasional push upwards. Since Y( ~0, T ~ ) C D4, the
resulting path will not hit the upper boundary of D. Hence, X hits only the positive part
of the real line prior to hitting 0, with positive probability.

Conversely, suppose that D is not a minimal fine neighborhood of zo in D3. Then for
each 6 > 0 w.p.l there is t E (T - c, T) such that D4. In this case Z must hit both

03931 and 03932 before approaching zo a.s. This is equivalent to saying that X hits R+ and R-
before hitting 0 a.s.

Step 4. We have proved that X may approach 0 from one side with positive probability
if and only if D is a minimal fine neighborhood of zo in D3. According to Theorem 9.2 of
Burdzy (1987), D has this property if and only if

(2.10) limGD(zo + a, zl > 0,
a0a 

(

where GD is the Green function of D and zi is a fixed point in D. By the conformal
invariance of the Green function, (2.10) is equivalent to

(2.11) + a , h-1 (zi )) > 0.
aio a
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Note that -t- a) = 0 and

Im h-1(z0+a)/GD*(h-1(z0 + a), h-1(z1)) ~ c ~ (0,~).

Thus, (2.11) holds if and only if

(2.12) >0.

Let a == for 6 > 0. Then (2.12) may be rewritten as

(2.13) lim  Re (~(z&#x26;) - ~o)  oo.

According to the proof of Theorem 1.1,

(2.14) Re (h(ib) - zo) = b0 1 y 
exp 

1-1
x x2+y2 03B8(x)dx 03C0] dy.

We have 
10

x x2+y2 (03C0/2)dx 03C0 
= 

1 2 
log I + 1 /y2

and, therefore,

(2.15) - [1-1x x2+y203B8(x)dx 03C0]
= 1 1+1/y2 exp 10 x x2 + y2 2(03C0/2+03B8(x))dx 03C0
~ 1 1 + 1/y2 exp 10 2(03C0/2 + 03B8(x)) dx 03C0x

Assume that 

10 03C0/2 + 03B8(x) x dx  c  ~.10 03C0/2+03B8(x) x dx c ~.

Combine (2.13), (2.14) and (2.15) to see that

Re(h(!’6) - z0)  / 1 ydy 1+1/y2e2c/03C0 = e2c/03C0  oo.
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If 

/~~=oc
then

exp 10 x x2+y 22(03C0/2+03B8(x))dx 03C0]
increases monotonically to oo 0. It follows that

/ 201420142014-20142014i2014201420142014~2014dM=oo. D
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