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A NOTE ON THE ENERGY INEQUALITIES FOR INCREASING PROCESSES

Masato KIKUCHI
Department of Mathematics, Toyama University
Gofuku, Toyama 930, Japan.

1. Introduction.

Let (,F,P) be a complete probability space with a filtration (Ft)tZO
which satisfies the usual conditions. It is well-known that if A= (At)tZO is
an adapted right continuous increasing process whose left potential is bounded

by a constant c >0, then
E[A:] < n!cn-lE[Aw] <nlct

holds for every integer n20. This is called the " energy inequality".
In this short note, we establish the more general inequality

©
(1) E[0(A)] S~ Ioé(cs) e ds) E[A]
where ¢ is a convex function on ]R+ such that H.xg ®(t)=9(0)=0 (which is not
necessarily positive). (1) is used for an alternative proof of the theorem
on the equivalence of BMOq)-norms of martingales given in [1].

Dellacherie and Meyer in [3, p.189] investigated the case where <I>(t)=tp,
p >0 : their proof of the inequality

(2) E[AP 1< T(p+1)cP

contains an unavoidable error. In fact, (2) is valid only for p21, though
they asserted otherwise : for p<1, the constant process At=c does not satisfy
(2). Their proof is based on the following assertion :if g is a convex func-
tion on the interval [l, +o[ such that

(3 g(n) =logT'(n) for every integer n21 ;

4) g(x+1) -g(x) Slogl'(x) for every x€[1, +o[,

then g(x) £logT'(x) holds for every x21. But the following example shows



that this is false. For x21, we set

g(x) = (Log[x]) (x - [x]) +Log T([x]) ,
where [x] denotes the integer part of x. It is clear that g is convex and
satisfies (3) and (4), but unless x is an integer, we have g(x) > logl(x).

Actually, if f is a convex function satisfying (3) and (4), then logl'<f<g
(cf. [2, Chap.7, §1, no.l, Prop.l]).

2. Analytic results.

In this section, we shall give an upper bound of the integral of &ef,
where f is an increasing BMO - function on the interval [0, 1[ and ¢ is as in
1).

For each right continuous integrable function f on [0, 1[ (which is not

#

necessarily increasing), we define the function f" by

1
f#(:)=Tft—I (£(s) - £(t))ds,  te€[0, 1[.
t
1
Note that f is uniquely determined by f# and fo f(t)dt. In fact, if ff=f§ s

then the function

1
F(t)=I (f].(s)- fz(S))dS, t€ [0’ 1[

t
is the unique solution of the equation F(t)=F(0)- Iot (1- s)—lF(s)ds and hence
we have F(t)=F(0)(1-t). It follows that fl- fst(O) and therefore f1 =f2
if [£de=[f,dt.

Furthermore f can be expressed by f# as follows :

Lemma 1. Let f be a right continuous integrable function on [0, 1[. If

f# is integrable over [0, 1[, then

t -1 # #
(5) f(t)=[ (1-8) f'(s)ds+ a-£f"(t), t€[o, 1[,
0

1

where 0(=I f(t)dt. In particular, if 1og(—1—1T) f(t) is integrable or P is
0 _

integrable for some p>1, then f# is integrable and (5) holds.
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Proof. Let g(t) be the function defined by the right-hand side of (5).
Using Fubini's theorem, we easily verify that g#=f# and folg(t)dt =J'01f(t)dt.
Hence we obtain f=g, as noted above.

If the function log(L) f(t) is integrable, then
1-t

1 4 1 1 1
[ | £ (t)ldtéf log(1)~ f(t)ldt+j |£(t) |dt <+
-t
0 0 0
1f £P is integrable for some p>1, then log(ﬁ) f(t) is also integrable by
Holder's inequality. Thus the proof is complete. []

Now let ¢ be a convex function on [0, +[ such that %&tg ®(t)=2(0)=0 and
let ¢ be its right-hand derivative. Note that if ¢ is a positive convex func-
tion such that $(0)=0, it is necessarily right continuous at 0, that is, the
required condition is satisfied. In general, we cannot affirm that @(0) > -,

but in the following lemma, we assume this.

Lemma 2. Let ¢ and @ be as above and let f and g be positive Borel func-

tions on [0, 1[. If (0)( =‘1.$tg @(t)) >-o and f, g satisfy the conditions

1 1 1
I f£(t) cpof(t)dté}' g(t) pof(t)dt, J f(t) @of(t)dt <+
0 0 0
then
1 1
(6) I @of(t)dtéf dog(t)dt .
0 0

This is a well-known lemma for positive convex functions ¢ ([3, p.180]).
The proof is almost the same as that of the case where ® is positive. By the

formula for integration by parts, we have for u, v20,
vo(u) 4 t do(t) +8(v) ;
10, u]
the equality holds if u=v. From this it follows that

1 1 o 1
f(t)wof(t)dt=[ dt([ s1 do(s) +J Pof(t)dt
'[O 0 0 {f(t)2s} ) 0

1

1 1 o
g(t) wof(t)dtéj' dt(f sI dcp(s))+[ dog(t)dt .
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To prove (6), we may assume that L}¢of(t)dt>-—m and Iléog(t)dt<-+w. Then
o
all the integrals in the preceding inequalities are finite, and (6) follows.

Proposition 3. Let ® be as in (1) and f be a positive right continuous

increasing function on [0, 1[. If f#él., then
1 o -t 1

(7 I dof(t) dt £ ([ d(t) e dt)([ f(t) dt) .
0 0 0

Note. As ¢ is negative or bounded to the below on [0, 1[, integrals in

(7) make sense.

Proof. First let y be a bounded increasing function on [0, 1[. From (5)

and Fubini's theorem, it follows that

1

1 1 # 4 1
(8) I f£(e)y(t)de =[ (v (t)dt+(f f(t)dt)(l P(t)de).
0 0

f
0 0

Now let g be an integrable function on [0, 1[ such that f#:ég# . g# is inte-

grable, and L}g(t)dt==£}f(t)dt . Since (8) is also valid for g, we have

1 1
[ f(t)w(t)dté[ g(t)P(t)dt .
0 0

If the right-hand derivative ¢ of ¢ is bounded, we can set Y= @of . Then by

Lemma 2 we have

(€)) rd)of(t)dt < rdmg(t)dt .
0 0
By the monotone convergence theorem, we obtain (9) for any ¢ as in (1).

To prove (7), it is sufficient to show that (9) applies to the function
g(t)=log+{a(1—t)—1}, where a==£:f(t)dt. So we must verify that L}g(t)dt=(x
and f#(t)§g#(t)=a(1—t)—1A1. But the first condition is obvious and the
other follows from the definition of f# and the inequality f#é 1. Thus the

proof is complete. [}

3. Application.

The following theorem is an easy consequence of Proposition 3, and as

remarked later, they are equivalent.
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Theorem 4. Let A= (At) be an adapted, right continuous, incrasing

t20
process (resp. predictable, right continuous, increasing process which is
zero at t=0), and let ® be a convex function on [0, +<«[ such that %%gl@(t)=

®(0)=0. If
(10) E[Am—AT_|FT]§c a.s. (resp. E[Aw-AT|FT]§c a.s. )

holds for every stopping time (resp. predictable stopping time) T, then

{ee]

1) E[0(A )] g%(f o(ct) e " dt) E[A_]
0

Corollary. Let A= (At) be as in Theorem 4. Then

E(AP] < P T (p+1) E[A_] < cP T (p+1) (1sp<+w);
E[AP] 2 P T(p+1) ElA ] (0<p<1);
Elexp(aA)] ST E[A ] +1S12— (0sa<i/e).

Previous to proving Theorem 4, we note that for every A= (At) as in the

statement, we have

(11) (Aoo-)\)dPécP{Aw>)\} for all A>0 ,

I{Am>A}

(for the proof see [4, p.346]). We use only this inequality to prove (1), so

(1) is true for every random variable A satisfying (11).

Proof of Theorem 4. Without loss of generality, we can assume that c=1.

Let f be the (unique) right continuous increasing function on [0, 1[ with the
same distribution as A, with respect to the Lebesgue measure. We set, for
each t€ [0, 1,

T(t)=1inf{s € [0, 1[; £(s) > f(t)}IAl.
It is obvious that Jt(t), l[<={s: f(s) >f(t)}c=[t(t), 1[ and hence that

1
P{A_ > £(t)} =1-1(t) and I AmdP=I f(s)ds .
{a,>£()} T(t)
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Since the function t — T—i?'ftl: f(s)ds is increasing and T(t)2t , we have

et

A

1
() 1—_{(—0[ (£(s) - £(1)) ds

T(t)
1

——__f (A -f(t))dPs1,
P{A_>£(t)} 7{a_>£(t)}

where the last inequality follows from (11) with c=1. In order to obtain (1),
it only remains to apply Proposition 3 to this f. []

Remark. Although Theorem 4 is probabilistic, it is equivalent to Propo-
sition 3, which is purely analytic. To see this, let Q=[0, 1[, dP be the
Lebesgue measure on §}, and Ft be the augmentation of the 0~ field generated
by the set ]tal, 1[ and the Borel subsets of [0, tAl]. If f is a function as
in Proposition 3, the increasing process At(w) =f(tAaw) satisfies (10), and
hence (7) follows from (l1). Furthermore, if we set f(t)=clog+(0L(1-t)_1) for
0€]0, 1] and ¢ >0 and if we define At as above, then (At) satisfies (10) and
the equality holds in (l1). Therefore (l) cannot be improved any more. There

is a more interesting such example in [3].

We now give an application of Theorem 4. Using general Young functions,
Bassily and Mogyorddi in [1] introduced the BMO(b-norm corresponding to ¢,

and proved that it is equivalent to the usual BMO, -norm, if ¢ has a finite

1
power. Their proof is elementary, but somewhat complicated. We give a more

straightforward proof of it.

Let ¢ be an increasing convex function on [0, +« [ such that $(0) =0,

and let M= (Mt) be a right continuous, uniformly integrable martingale.

t20
We set

: 1
”M”BMO =inf{A>0: supHE[(I)(—X- IMOO—MT_l)IFT] | .s1},
9] T L
where the supremum is taken over all stopping times. The original definition

of the BMO. - norm is seemingly different from this definition, but they are

o]
identical ; see the proof of Theorem 6 in [1].

Theorem 5 (Bassily and Mogyorddi). Let @ be an increasing convex func-—

tion on [0, +o [ such that ®(0)=0. If I:@(ct) e_t dt <+e for some constant
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¢ >0, then, for every right continous uniformly integrable martingale M= (Mt)

we have
C(I) ”M“BMOI s “M”BMO(I) s C(b ”M”BMOI ’

°

where s >0 and Cq) >0 depend only on ¢, and denotes the norm corre-

lBMOI
sponding to the function ¥(t) =t.

Proof. We prove the right-hand inequality only : the left-hand inequality
is an easy consequence of Jensen's inequality. We set M: = sup ]MS| , t20.

It is well-known (e.g. [3, p.193]) that

sst

E(My-Mp_|Fols4 I|M”BM01

Let C;l =inf{c>0: f:tb(ct) e—t dt >1}. It then follows from the hypotheses

that 0<C,<+®. By Theorem 4, setting B =4 ||M||

® ,» we have

BMO 1

E[@(E(-I%M:)] 3 (ru%) e tar) Bl <1
0

We put this inequality in conditional form in the usual manner (cf. [3, p.190]).

Then we have

E[@(Bqu) sup|My, - [)[F ISl aus.
t

(=W

and hence ||M|| b BC¢=4C¢ ||| This completes the proof. []

BMO ® BMO 1
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