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A NOTE ON THE ENERGY INEQUALITIES FOR INCREASING PROCESSES

Masato KIKUCHI

Department of Mathematics, Toyama University

Gofuku, Toyama 930, Japan.

1. . Introduction.

Let (~ , F , ,P ) be a complete probability space with a filtration 

which satisfies the usual conditions. It is well-known that if is

an adapted right continuous increasing process whose left potential is bounded

by a constant c > 0, then

nicn

holds for every integer n ? 0. This is called the " energy inequality ".
In this short note, we establish the more general inequality

(1) E[03A6(A~)]~1 c(~003A6(cs) e-sds)E[A~]
where 03A6 is a convex function on lR such that (which is not

necessarily positive). (1) is used for an alternative proof of the theorem

on the equivalence of BMO03A6 - norms of martingales given in [1].

Dellacherie and Meyer in [3, p.189] investigated the case where 

p > 0 : their proof of the inequality

(2) ] ~ + 1) cp

contains an unavoidable error. In fact, (2) is valid only for though

they asserted otherwise :for p  1, the constant process At = c does not satisfy

(2). Their proof is based on the following assertion : if g is a convex func-

tion on the interval [1, + oo[ [ such that

(3) g(n) = log for every integer n >-_ 1 ;

(4) g(x+ 1) - g(x) ~ log r(x) for every x E [1, +~ [,

then g(x)  log r(x) holds for every . But the f ollowing example shows
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that this is false. For we set

g(x)=(log[x])(x-[x])+logr([x]) ,

where [x] denotes the integer part of x. It is clear that g is convex and

satisfies (3) and (4), but unless x is an integer, we have g(x) > log r(x).

Actually, if f is a convex function satisfying (3) and (4), then 

(cf. [2, Chap.7, §1, no.l, Prop.1]).

2. Analytic results.

In this section, we shall give an upper bound of the integral of 03A6f,

where f is an increasing BMO - function on the interval [0, 1[ [ and 03A6 is as in

(1).

For each right continuous integrable function f on [0, 1[ (which is not

necessarily increasing), we define the function f# by

f (t) = 1-t t E [0, 1[.

Note that f is uniquely determined by f# and 01 f(t)dt. In fact, if f#1=f#2,

then the function

F(t) = 1t(f1(s)-f2(s))ds, t~[0, 1[

is the unique solution of the equation (1-s)* F(s)ds and hence
we have F(t)= F(0) (1- t) . It follows that fl- f2 --- F(0) and therefore fl = f2
if J f 1 dt = J f2dt . ° 

~
Furthermore f can be expressed by f as follows :

Lemma 1. Let f be a right continuous integrable function on [0, 1[. If

f# is integrable over [0, 1[, then

(5) f(t)=f (1- s) _ 1 f#(s)ds+ a - f#(t), t E [0, 1[,

where a=f f(t)dt. In particular, if log( -11 ) f(t) is integrable or fp is

integrable for some p > 1, then f# is integrable and (5) holds.



535

Proof. Let g(t) be the function defined by the right-hand side of (5).

Using Fubini’s theorem, we easily verify that g =f 
Hence we obtain f = g , as noted above.

If the function log ( £ ) f(t) is integrable, then

If fp is integrable for some p> 1, then log(1 1-t) f(t) is also integrable by

Holder’s inequality. Thus the proof is complete. []

Now let 03A6 be a convex function on [0, + ~[ such that and

let cp be its right-hand derivative. Note that if 03A6 is a positive convex func-

tion such that ~(0)= 0 , it is necessarily right continuous at 0, that is, the

required condition is satisfied. In general, we cannot affirm that (p(0) 

but in the following lemma, we assume this.

Lemma 2. Let 03A6 and cp be as above and let f and g be positive Borel func-

tions on [0, 1[. and f, g satisfy the conditions

fl fl fl

0f(t)03C6(t)of(t)dt ~0g(t)03C6of(t)dt, 0f(t)03C60f(t)dt+~
then

ri 1
(6) .

This is a well-known lemma for ositive convex functions ~ ([3, p.180]).
The proof is almost the same as that of the case where ~ is positive. By the

formula for integration by parts, we have for u, 

t dcp(t) +03A6(v) ;
]0, u]

the equality holds if u=v. From this it follows that

rl 
f(t)(pof(f)dt= 

rl 

dt( 
~ 
+ 

rl 

Jo 
= 

Jo 
dt s I~ f(t) > s } d~(s) + ;

10g(t)f(t)dt~10dt( ~0sI{f (t)~s}d03C6(s))+ 1003A6g(t)dt .
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To prove (6), we may assume that and . Then

all the integrals in the preceding inequalities are finite, and (6) follows.

Proposition 3. Let 03A6 be as in (1) and f be a positive right continuous

increasing f unction on [ 0, 1[. If f# ~ 1 , then

(7) 1003A6f(t) dt ~ ( ~003A6(t)e-tdt) (10f(t)dt).

Note. As 03A6 is negative or bounded to the below on [0, 1[, integrals in

(7) make sense.

Proof. First let t~ be a bounded increasing function on [0, 1[. From (5)

and Fubini’s theorem, it follows that

(8) 
10f(t)03C8(t)dt=10f#(t)03C8#(t) dt+(10f(t) dt)(1003C8 (t)dt).

Now let g be an integrable function on [o, 1[ such that f# ~ g#, g is inte-
grable, and . Since (8) is also valid for g , , we have

10f(t)03C8(t)dt~10g(t)03C8(t)dt.

If the right-hand derivative (p of 03A6 is bounded, we can set 1jJ= cpof . . Then by

Lemma 2 we have

(9) 1003A6(t)dt~10g(t)dt.

By the monotone convergence theorem, we obtain (9) for any 03A6 as in (1).

To prove (7), it is sufficient to show that (9) applies to the function

where So we must verify that fg(t)dt=a
But the first condition is obvious and the

other follows from the definition of f and the inequality f# ~ 1. Thus the
proof is complete. D

3. Application.

The following theorem is an easy consequence of Proposition 3, and as

remarked later, they are equivalent.
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Theorem 4. Let A = {At)t?0 be an adapted, right continuous, incrasing
process (resp. predictable, right continuous, increasing process which is

zero at t = 0), and let ~ be a convex function on [0, such that 

If

(10) ~c a.s. (resp. ~c a.s. )

holds for every stopping time (resp. predictable stopping time) T, then

(1) .

E[03A6(A~)]~1 c (~003A6
(ct)e-tdt)E[A~] 

.

Corollary. Let A = (At) be as in Theorem 4. Then

E[A~] ~ r ( p+ 1) E[A~] ~ {1 S p +°° );

r(p+l) ] (0  p  1) ; ;

+ 1 ~ 1- 1 ca .

Previous to proving Theorem 4, we note that for every A = (At) as in the
statement, we have

(11) 
> 03BB} 

for all 03BB>0 ,

(for the proof see [4, p.346]). We use only this inequality to prove (1), so

(1) is true for every random variable A~ satisfying (11).

Proof of Theorem 4. Without loss of generality, we can assume that c = 1.

Let f be the (unique) right continuous increasing function on [0, 1[ with the

same distribution as A~ , , with respect to the Lebesgue measure. We set, for

each t E [0, 1 [ ,

f(s) > f(t)}n 1 . .

It is obvious that ]T(t), , 1[ c{ s : : f (s) > f (t) } c [T (t) , , 1[ [ and hence that

P{A>f(t)}=l-T(t) and 
f 

A~ dP= 103C4(t) 
1 

f(s)ds.> f (t) } =1- T (t) and A~ dP = f {s)ds . .
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Since the function is increasing and T(t)>-_ t , , we have

f (t) =  1- T(t) 1 T(t) 1 (f (s) - f (t)) ds

_ P{A~> 1 f(t)} { ~> f(t)} 
where the last inequality follows from (11) with c=l. In order to obtain (1),
it only remains to apply Proposition 3 to this f. []

Remark. Although Theorem 4 is probabilistic, it is equivalent to Propo-
sition 3, which is purely analytic. To see this, let S~= [0, 1[, dP be the

Lebesgue measure on S2, and F t be the augmentation of the a-field generated

by the set ]tAl, 1[ [ and the Borel subsets of [.0, tAl]. If f is a function as

in Proposition 3, the increasing process A (w) =f(tAw) satisfies (10), and

hence (7) follows from (1). Furthermore, if we set f(t)= clog (a(l-t) ) for
a E ]0, 1] and c > 0 and if we define At as above, then (At) satisfies (10) and

the equality holds in (1). Therefore (1) cannot be improved any more. There

is a more interesting such example in [3].

We now give an application of Theorem 4. Using general Young functions,

Bassily and Mogyorodi in [1] introduced the BMO~ - norm corresponding 
and proved that it is equivalent to the usual BM01 - norm, if ’ has a finite

power. Their proof is elementary, but somewhat complicated. We give a more

straightforward proof of it.

Let 03A6 be an increasing convex function on [0, +00 [ such that = 0 ,

and let M= be a right continuous, uniformly integrable martingale.

We set

~M~BMO03A6 = inf{03BB>0:sup~E[03A6(1 03BB |)|FT]~L~ ~1},

where the supremum is taken over all stopping times. The original definition

of the BMO~ - norm is seemingly different from this definition, but they are
identical ; see the proof of Theorem 6 in [1].

Theorem 5 (Bassily and Mogyorodi). Let 03A6 be an increasing convex func-

tion on [0, +oo [ such that 03A6(0)= 0 . If e - t dt  +~ for some constant
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c > 0, then, for every right continous uniformly integrable martingale M = (Mt)
we have

~~ ~~ 
1 ~ 1

where and depend only on ~, and denotes the norm corre-

sponding to the function ’Y(t) = t. 
1

Proof. We prove the right-hand inequality only : the left-hand inequality

is an easy consequence of Jensen’s inequality. We set t ? 0.

It is well-known (e.g. [3, p.193]) that

E [ M~ - ~- I ~T ’

Let C 1 = inf~ c > 0 : e t dt > 1 } . It then follows from the hypotheses

that 0  C03A6  +~. By Theorem 4, setting S = 4 ~M~BMO1 , we have

E[03A6(1 BC03A6M*)]~1 03B2 (~003A6( t c03A6) e-t dt) E[M*~]~ 1 .

We put this inequality in conditional form in the usual manner (cf. [3, p.190]).
Then we have

E[03A6(1 03B2C sup|MT+t - MT-|)|FT] ~ 1 a.s.

4l t

and hence I I M I C03A6 = 4 C03A6 I I M I . This completes the proof. []
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