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Abstract

Operator theoretic methods are used to construct stochastic flows of diffeomorphisms on
smooth manifolds as solutions of stochastic differential equations driven by a single Brownian
motion or a Poisson process. Our only assumption is that the infinitesimal motion of the flow
is described by a complete smooth vector field.
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1. Introduction

In this paper we will be concerned with the construction of stochastic flows of diffeomorphisms
on manifolds by means of solving stochastic differential equations. Although a great deal of
work has been done in this area see e.g. [IkWa], [Kun 1, 2] and references therein), we feel that
the theory has two major deficiencies,

(a) Insufficient global analytic insight into its structure,

(b) An overemphasis on path-continuous flows which are driven by Brownian motion.

In this paper, we aim to take some first steps towards remedying both of these.

As regards (a) we observe that in the case of deterministic flows there are three perspectives
from which the flow can be investigated which, for want of better words, we will call
topological, analytic and algebraic (respectively . Topologically, the flow is given as a
two-parameter family I = {~s t ; s, t E !R, t > s of diffeomorphisms of the manifold M.

Analytically, we realise the flow as unitary operators U = s, t E ~, t _ > s} on the
intrinsic Hilbert space ho of the manifold by the prescription

Us t ’~ _ ~ o ~s t t ... (1.1)
for ’Ø E ho. Algebraically we obtain automorphisms J = s, t f R, t > s} of the algebra

CW(M) of smooth functions on the manifold by

1 ...(1.2)
for f f CW(M) (for details see [AMR]). The analytic and algebraic perspectives are further
related by the formula (for bounded f),

Js,t(f)=Us,t f U-1s,t ... (1.3)

If the flow consists of the family of integral curves obtained by solving a differential equation
on M, we obtain also differential equations for U and J (see §2 below).
When we come to look at the stochastic case, it turns out that exactly the same scenario holds
true as is described above only now all three of ~, U and J satisfy appropriate stochastic
differential equations. In fact the essence of our approach is to perturb the above procedure by
constructing U first and obtaining J and then t from it. In particular we are then able to show
that in the simple case where the flow is driven by a single Brownian motion without any drift
that I consists of diffeomorphisms under the sole (global) assumption that the vector field
which describes its infinitesimal behaviour is complete.

We do not here discuss the more general case of multidimensional noise with drift where we
expect the analysis to be more complicated due to the possibility of explosions.
We note that although our work is entirely classical, many of the formulae we obtain will come
as no surprise to devotees of quantum probability where the analytic and algebraic perspectives
reign supreme. In particular the infinitesimal expression for U will be familiar to readers of
[HuPa] and that of J to readers of [Hud] and [App 1]. Furthermore we observe that J is
essentially a quantum stochastic process in the sense of [AFL]. Before leaving the subject of
quantum probability we remark that in §3 we give an algebraic characterisation of a stochastic
flow of diffeomorphisms which when appropriately generalised may be of use in the study ofstochastic flows on "non-commutative manifolds".
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Turning our attention now to (b), we find that the form of U is such that it is natural to
replace the incidence of Brownian motion therein by a Poisson process (c.f. again [HuPa]).
When we do this, the procedure outlined above leads us to flows of diffeomorphisms of M which
are no longer path continuous and which arise as the solutions of stochastic differential
equations driven by a Poisson process. A specific example is described in local co-ordinates at
the end of §5.

This present work has arisen out of a series of papers by the author on a quantum probabilistic
generalisation of the concept of stochastic parallel transport (see [App 1 and references
therein). The transition from the viewpoint of [App 1] to that employed here (i.e. the use of
vector fields rather than covariant derivatives) is inspired by the discussion given in [Mey 2].

Notation

All Hilbert spaces will be complex however the algebras C°°(M) (and CK(M)) always comprise
real smooth functions (of compact support) on the manifold M.

If ~i are dense subspaces of Hilbert spaces hi(i = 1, 2), we denote their algebraic tensor

product by .~1 ® .~ and note that it is dense in h2. A densely defined, linear, closeable

operator T on a Hilbert space h has domain and closure T.
We will use the convention that inner products are conjugate-linear on the left.
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2. Deterministic Flows on Manifolds

Let M be a smooth finite-dimensional manifold. A flow on M is a family {03BEs,t ; s, t E R, t > s}}
of diffeomorphisms of M which satisfy

F (i) ~s s(x) = x for all s E R, x f M

F (ii) = 
i 

for all r  s  t.

A flow is said to be autonomous if F(iii) ~s t depends only on t-s.

Writing 03BEt = 03BE0, t, we see that for such a flow t f !R} is a one-parameter group of

diffeomorphisms of M with = ç-t for all t f !R.

Given a flow on M, we define for all s,t f R, with t > s a family of automorphisms of C°°(M) by
the prescription 

’

t ...(2.1)

for f f C°°(M). We note that each js leaves the subalgebra CK(M) invariant. (For
completeness, we prove this result in Appendix 1).

From F(i) and F(ii), we deduce
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F’ (i) js s(f) = f for all s f R, f f C°°(M)
F’(ii) jr,s 0 js,k = jr,t for all r  s  t

We call {js t : s,t f R, t > s} a flow of automorphisms of 

A flow of automorphisms is said to be autonomous if

F’ (iii) js depends only on t-s.

We write jo = jt for all t f !R.

Autonomous flows of diffeomorphisms of M induce autonomous flows of automorphisms of
COO(M) through the formula

jt(f) = f o ~t ... (2.2)
for all t f R, f E C°°(M).
In [AMR] pp. 230-3 it is shown that the correspondence between flows of diffeomorphisms of M
and flows of automorphisms of C°°(M) given by (2.2) is in fact one-to-one.
We recall the standard construction of autonomous flows of diffeomorphisms of M from
solutions of differential equations. A smooth vector field Y on M is said to be complete if the
initial value problem

c’ (t) = Y(c(t)) ... (2.3)
c(0) = x J ... (2.3)

has a unique solution for all x f M and all t f !R. For each x f M, let t f !R} be the
integral curve obtained by solving (2.3), then our flow is given by

~t(x) = c~(t) ... (2.4)

We will now seek to obtain some functional analytic insight into the ideas we have described.
To this end, we assume that M is oriented and let ~~ be a volume form on M. We denote by p
the unique Borel measure on M induced by ~c~. Every half-density on M can be written in the
form where h f L2(M, ~C) and

~~ (x) (Y1(x), ..., Y d(x)) = (Y l(x), ..., (2.5)

for each x E M and Yj(x) f Tx(M) (1  j  d) where d is the dimension of M. The half-densities
on M form a Hilbert space, which we denote as ho with inner product

hl hz ~~ > = hl h2 d~c ... (2.6)

for hl, ha f L2(M, ~). The mapping h --~ is thus a canonical isomorphism between

L2(M, /z). and ho.
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The divergence of a smooth vector field Y with respect to  is the unique map div (Y) e C"(M)
such that 

= ~c~ ... (2.7)

where Ly denotes the Lie derivative.

In local co-ordinates, if X(x) = a-!(x) 2014- and = v(x) dx1  ...  dxd where v(x) # 0 for all
x e M then

div (Y) =v(x)-i ~ ~xj (aj(x) v(x)) ... (2.8)

Now let ~~t, t f !R} be the autonomous flow of diffeomorphisms of M defined by (2.4) and (2.3).
We obtain a strongly continuous one-parameter group of unitary operators {U(t), t f !R} on ho
by the prescription

U(t) (f = f(~ (x))(~~(~ )(x))~ ... (2.9)
*

for x f M, where ( t (~v) is the pull back of .

Let !iJ 0 be the dense subspace of ho comprising {h h f C °° (M)}, then it is shown in ([AMR]
pp 435-40) that the infinitesimal generator of {U(t), t f !R} is the closure of the essentially self
adjoint operator - i Ty on ~a where

... (2.10)

so we may write

U(t) = ... (2.11)

for all t e !R.

Now recall the flow ~j~, t £ !R} of automorphisms of C°°(M) constructed in (2.2).

Proposition 1

For all f f and t we have

jt(f) = U(t)f U(t) ... (2.12)

Proof Since U(t) is unitary for each t f R, any element of ho can be written in the form

U(t) for h E L2(M, thus for f £ Ci(M),
U(t)f U(t)~ U(t)h = U(t)f h 
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= by ( 2.9 )
- jt(f) U(t) h o

Using (2.11) and (2.12) we can write, for all t and f f C°°(M)

jt(f) 

- e t~Ty, ~~ f
= f ...(2.13)

since = [Y, f j = Yf.

We note that {U(t), t f !R} t f !R} satisfy the following analogues of the Schrodinger and
Heisenberg equations of non-relativistic quantum theory

... (2.14 )

for all 03C8 ~ 9Jo

djt dt(f)= jt(Yf) ... (2.15)

for all f f 

These results have a partial converse in the Povzner-Nelson theorem which states that if the
symmetric operator Ty is essentially skew adjoint on ~o then the flow ~~t, t f !P} given by
(2.4) and (2.3) is defined for all but a possible set of initial conditions in M of p-measure zero.
A proof may be found in [AMR] pp 435-40.

Stochastic Flows

Let P) be a complete probability space with Q also a Polish space. By a random variable
on Q, taking values in M, we will mean an equivalence class X of measureable functions from H
to M which agree almost everywhere with respect to P.

Let J be a unital *-homomorphism from L°°(M, ~) into P) which is normal in the sense
that given any net (fa)a e I of positive, increasing elements of L°°(M, p) for which
f03B1  L~(M, ) then

J[f03B1]= J(f03B1) ... (3.1)
03B1~I 

Any such J will be called a random morphism associated to (M, SI). It is shown in [Acc] (seealso (Var) ) that there is a one-to-one correspondence between random variables on 0 takingvalues in M and random morphisms associated to (M, H) given by the prescription
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J(f) = f o x ... (3.2)

for each f E ~), where x is any representative of X.

By a stochastic process of morphisms associated to (M, S~) we will mean a family J(t), t E ~+)
of random morphisms. It follows from (3.2) that there is a one-to-one correspon ence between
such objects and stochastic processes (X(t), t E of random variables on 03A9 taking values in
M.

Now for each s,t E ~+ t > s, let ~S t be a measurable function from M X ~ into M. We will call

{~s t ; t > s} a stochastic pre-flow. We will use the notation ~~ t to denote equivalence classes
of such pre-flows which agree almost everywhere with respect to  x P. . By (3.2) again, we canassociate to each {03A6s,t ; t g s a family J . t ; t > s of unital, normal *-homomorphisms from

~c) into x S~, ~ x P) for which

Js t(f) = f o ~s t ... (3.3)
> >

for each f E p).

We will say that a stochastic pre-flow has the fixed time covering property if for each s,t E ~
with t > s there exists AS t ~ M with t) = 0 such that- 

, >

~~s t(x~~)~ x E E S~} - M - As t ... (3.4)
, >

Theorem 2 A stochastic pre-flow t ; t _ > s} has the fixed time covering property if and

only if Js t is an isometric embedding of ~) into x X P) for each s,t r with

t>s

Proof. (To avoid introducing further notational complexity, we have here taken the liberty of
identifying functions with their equivalence classes).

(Necessity). Suppose that has the fixed time covering property then for each s,t E ~+,
t > s, f E ~c)

= inf {K ; ; i Js > t(f)(x, ~) ~ [  K for almost all (x, ~) E M x ~}

= inf ~K ; ; t(x, w)) I  K for almost all (x, c~) E M x S~}

= inf ~K ; ; I f(x) I  K for almost all x E M}

= ~f~

(Sufficiency). Suppose that for all s,t f R+ with t > s and for all f  L~(M, ), ~Js t(f)~ = ~f~
but that ~ does not satisfy the fixed time covering property. Hence there exists t C 

M with

> 
t) > 0 such that ~~S W) ; x E M, c~ E S~} - M - 1
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then we have Js,t[~Ns,t] = ~Ns,t (03C6s,t) = 0

and we have obtained our desired contradiction. a

Now let § be a stochastic preflow on M and define a M ~ M by

03C6ws,t(x) = 03C6s,t(x, 03C9) ...(3.5)
for each s,t E t > s, w E 03A9, x E M.

We say that § is a stochastic flow of diffeomorphisms of M (c.f. [Kun 1, 2]) if, for almost all ~r E
SI, each of the mappings 03C603C9s is a diffeomorphism of M and the axioms F(i) and F(ii) of § 1 are
satisfied.

We will again use the notation § for equivalence classes of stochastic flows of diffeomorphisms
of M which agree almost everywhere on S~ with respect to P.

By (2.1), for almost all 03C9 E 03A9, we obtain a flow of automorphisms of t _ > s} by
j03C9s,t(f) = f 0 03C603C9s, t ... (3.6)

We introduce the normal unital *-homomorphisms 03C9 E 03A9} from $ m(M x SI,  x P) into
~° °°(M, ~) by the prescription

f) (x) = f(x, c~) ... (3.7)

for x E M, c~ E S~, f E e~°°(M x x P)
We can now give an algebraic analogue of a stochastic flow of diffeomorphisms. A stochastic
flow of automorphisms associated to M will mean a family J = t _ > s) of normal unital

*-homomorphisms from ) into x 03A9,  x P) which is such that for almost all w 
Sl, the family t ; t > s) of operators on C °° (M) extends to a flow of automorphisms of

where

t ... (3.8)
> >

for each t > s, c~ f ~.

It is not difficult to verify (using (2.1)) that if such automorphisms exist then they are unique.
Proposition 3. There is a one-to-one correspondence between equivalence classes of stochastic
flows of diffeomorphisms of M and stochastic flows of automorphisms associated to M.

Proof is a stochastic flow of diffeomorphisms on M we define J by (3.3).

We then obtain for each s,t E t > s, c~ E Sl, f E 

t (f ) = Ew o J t(~
> >
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- E of = f 

which extends to the required flow of automorphisms of C°°(M).

Conversely, given J = t > s), for each x E M, t > s, is a normal unital
a 
’ 

>

*-homomorphism from ) into (03A9, F, P) where

(Js t f )(w) _ (Js t f )(X~ w)
for w f Sl, f E ~).

Hence by (3.2), there exists a measurable function ~s t : ~ --~ M such that

> >

Now by (2.1), for f ~ C°°(M) we have

Jws,t(f)=(Js,t f)(x,w)=f003C6ws,t

where (03C6ws,t ; t > s) is a flow of diffeomorphisms of M for almost all w E 03A9.
_

Now combining the above results we see that for each x E M, w E ~ we can find

t~ ~ -’ M~ ~s t ~ M -’ M such that
> >

= (X))

for all f E CK(M). By taking f to be a suitable bump function as in p. 215, we see that

‘Ys t(w) _ > 
" 

> ,i 
X

thus we obtain our required pre-flow (~s t; t > s) by defining

03C6s,t(x, w) = 03C6xs,t (w) = 03C6ws,t (x)

for each x E M, w  03A9 o

4. Brownian Flows

Let (5~,,~ P) be the canonical space for n-dimensional Brownian motion ..., Bn) and let

Yo, ..., Yn be smooth vector fields on M. We denote by (r~X(t), t > s) the unique solution of the
stochastic differential equation (SDE), written in Stratonovitch form,
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n 

= o + 

j = 1
... (4.1)

= x a.e.

for x £ M.

If Y , ..., Ynare complete and generate a finite dimensional Lie algebra, it is shown in [Kun 2],
p.194 that the prescription, for 03C9 E 03A9,

~s t(x?~) _ ... (4.2)
yields a stochastic flow of diffeomorphisms t > s). Flows of this type will be called_

Brownian (c.f.[Kun 1, 2]). Note that for f E CK (M), Ito’s formula yields
n n

= 1 (Y;f)(~(t)) dB’(t) + + 1 (YZf)(~(t)) dt ... (4.3)
J=1 i J_1 i

We will now consider Brownian flows from the algebraic and analytical perspectives. For
simplicity we will here only consider the case of flows driven by a single Brownian motion
B = (B(t), t f ~+). Using the canonical realisation on paths

= 
... (4.4.)

for c~ E ~, t we consider each B t) as a multiplication operator acting in P). Wenote that each B(t) is self adjoint with domain 
( > > )

= Y £ L2(~~’~ P)~ ] 2  o0

S~ 
A common core for the B(t)’s is the dense domain ~comprising finite linear combinations of
exponential martingales (see e.g. [Mey lj
Now let Y be a complete smooth vector field on M so that the linear operator
Ty = Y + 1 div (Y) acting in ho is essentially skew-adjoint on 9~ .
We will work in the complex separable Hilbert space h = L2(S~, ~ P; ho) which is canonically
isomorphic to ho ® L2(Sl, ~; P). For convenience we will identify these two spaces. Note that

L°°(M x S~, x P) C B(h). For each t the linear operator Ty ® B(t) is essentially
skew-adjoint on the dense domain in h. We denote its closure by A(t) and observe that
for 03C8 E D(A(t)) we have

= w(t) TY 03C8 (03C9) ... (4.5)

We now form a family U = (U(t), t E ~+) of unitary operators in h by the prescription
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... (4.6)

For each t e , contains a dense set of analytic vectors for A(t) which we denote by

By (4.5) and (4.6) we have, for 03C8 e Da(t), in the strong topology on h,
m

(U(t)03C8)(03C9)=[A(t)m m! 03C8](03C9)

= w(t)mmY m! 03C8(03C9) ... (4.7)
m=0

Let denote the complete smooth vector field then it is not difficult to verify that

...(4.8)

and we see from (4.7) that for each ~ e ~a(t), m e S~, is analytic for 

For each t e define

= e Y~~~t~~ ... (4.9)

then each U~’(t) is a unitary operator on ho and we have

= U~(t) ... (4.10)

Now for each t e note that

U~t)_i - U(t)* = 
and define, for t > s,

U(s, t) = 

= e T~, ~ B(s,t) 
... (4.11)

where B(s, t) = B(t) - B(s)

We obtain a family of automorphisms of B(h), J = t > s) by defining

Js,t(X) = U(s, t) X U(s, t)-1 ... (4.12)
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In the sequel we will only be concerned with the restriction of these automorphisms to ~)
which we regard as a *-subalgebra of x x P)

Theorem 4. J is a stochastic flow of automorphisms on M.

Proof For each w E 03A9, we define J03C9 = (J S r ; t > s) by
J03C9s,t(f)=U03C9(s, t) f U03C9(s, t)-1

on C °° (M), then by (2.13) we see that each Jt is the restriction to CK(M) of the

automorphism of It follows from (4.13) that J ~ satisfies F (I) and
F (it) and thus is a flow of automorphisms of Hence by (2.1), there exists a flow of

diffeomorphisms of M, {~ S t; t > s} for which_

J03C9s, t(f) = f 003C603C9s, t

for each f E 

Now for f E ~) we have (JS ~)(w) = (U~(s,t)f U~(s,t) 1)~(W) for each 1/1 E h, c~ E ~,
hence each Js x x P). (3.8) is now easily verified a

By proposition 3, we may now associate to J a stochastic flow § = (~S t; t > s) of_
diffeomorphisms of M. It follows from the contruction of theorem 4, that for each t >_ s, w E ~.
x ~ M

~) _ (X)
where ~ is the deterministic autonomous flow of §2 obtained from the integral curves of Y.

Note that by continuity of the Brownian paths, the stochastic flow § is itself path continuous so
that the equivalence class of flows given by proposition 3 has only one member. Our aim in the
rest of this section is to investigate the relationship between the flows a and ~, where a is given
by (4.2). In order to do this, we must first investigate the differential structure of §.

Now by [Re Si II; p. 205] we may write ~a(t), for each t E as the linear span of a set of

product vectors of the form v ® ~ wherein v (~) is analytic for Ty (B(t)), thus for u E ho,
X E L2(SI,,~ P) we may write

u ~ ~, U(t)(v ~ 03C8)> = 1 m!  u ~ ~, TmY v ~ B(t)m 03C8 > = E(~ Gt(u, v) 03C8)

where 

Gt(u, v) = u, TmY v>h0 m ! B(t)m ... (4.13)
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and the limit is in the weak topology in h. We will prove elsewhere([App 2]) that each Gt(u, v)
is, in fact, a bona-fide random variable on (fZ, ~ P) and that the process t --~ Gt(u, v) is thus a
smooth function of Brownian motion.

Lemma 5. For each t E we have

dGt( u, v) = Ty v) dB(t) + ~ 1 Gt(u,T Y 2 v) dt ... (4.14)

Proof Applying Ito’s formula to (4.13) we find

dGt(u, v) = 
u , TmY v> (m-1)!B(t)m-1 

dB(t) + 1 2 u , TmY v> (m-2)!B(t)m-2
dt

m-l I m-2

and the result follows 0

By analogy with the notation of [HuPa], we write (4.14) as

dU = U(Ty dB(t) + ~ 1 dt) ... (4.15)
= 

with initial condition U(0) = I.

It is easily verified that the process Us = (U(s,t); t > s) also satisfies (4.15) with the initial
condition U~(s) = I.

Now taking adjoints in (4.11) yields

* -Ty ~ B(s,t)
U(s, t) = e 

’

so that given v ~ 03C8 E for t ~ s, we have

U(s, t)*(v ~ 03C8)=(TY)mv ~ B(s, t)m 03C8 m! ...(4.16)

A similar calculation to lemma 5 with analytic vectors yields the familiar result that for each

s,t f m+ with t > s and for each f E we have

= + i (Y2f) (~s r) dt ... (4.17)

Comparing (4.3) (with n == 1, Yo = 0) and (4.17) we see that these are identical in form so that
each flow of stochastic diffeomorphisms A and (() yields a solution of (4.17).

Now let 7r = t _ > s) be any stochastic flow of diffeomorphisms of M which is a solution of
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(4.17) and define a family of linear operators on h, V = t > s) by

((Vs t 03C8)(03C9))(x) = 03C8(03C9)(03C0s,t(x, w)) ... (4.18)
for 03C8  h, x ~ M, 03C9  03A9.

In the sequel we will write (4.18) in the simplified form

Vs,t 03C8 = 03C8 0 03C0s,t ...(4.19)

Lemma 6 is unitary for each t > s.
_

Proof. Let 03C8 E h, w E Sl be such that

~( w) = f ~~ v
where f E L2(M, ) and define V $ t by

V03C9s,t 03C8(w) = (Vs,t03C8) (03C9) = (03C8 0 03C0s, t)(03C9) = f 0 03C003C9s,t((03C003C9s,t)* v)
Hence is unitary by (2.9) and we have

[Vs,t* Vs,t 03C8(03C9) = [V03C9s, t 03C8(03C9) = 03C8(03C9)

*

A similar calculation for V5 confirms the unitarity of VS t °
> > >

Now let D1 denote the dense domain D0 ~  in h.

Lemma 7 V = t _ > s) is a solution of equation (4.15) on !Õ..
Proof. Let 03C8 E D1 be such that 03C8(03C9) = f 1 2 for w E 03A9, f 1 2 E D o, then

vs , = ’~

Now by Ito’s product formula, we obtain

dV
s, t 03C8 = df( 03C0s, t) 03C0s,t* ( v) 1 2 + (f03C0s,t) d 03C0s,t* ( v)1 2 + df(03C0s,t) d 03C0s,t* ( v)1 2

=[(Yf)(03C0s,t) dB(t) + 1 2 (Y2f)(03C0,t) dt] 03C0s,t*( v)1 2 + f(03C0s,t)(1 2div (Y)(03C0s,t)dB(t)

+ + 1 dt 
+ 1 2 (Y(f) div (Y)(03C0s,t)03C0s,t*( v)1 2 dt

= (TY 03C8)(03C0s,t)dB(t) + 1 2(T2Y 03C8)(03C0s,t) dt

= Vs,t(TYdB(t) + 1 2T2Ydt)03C8 °

Now by the appendix, we see that the solution to (4.15) is unique on D 1. Hence we deduce
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that

03C8 0 03BBs,t = 03C8003A6s,t

for all t > s, 03C8 f ho, so that 
’ ’

t

for all f f CK(M) from which we deduce that t 
= ~s > as required.

We also note that

U(s, t) = VS t for all t > s.

The extension of these results to the more general case wherein the noise is a multidimensional
Brownian motion with a drift is far more problematic. However, we observe that in the simple
case, where each Yj is divergence-free and [Yj, Yk] = 0 for 0  j, k  n we may write

U(t) = exp [Yj ~ Bj(t) + Y0 t]- = eY0t exp(Yj ~ Bj(t))

j=l i ~ j=l i

which is the unique solution of the SDE

n n

j=1 i j=1 i

with U(0) = I. In this particular case we will still obtain a stochastic flow of diffeomorphisms
however in the general multidimensional case, we cannot expect all the symmetric operators

(A(t), t f where A(t) = Ty t + E n B.(t) to be essentially skew adjoint on E.

5. Poisson Flows

In this section we will consider a class of flows which unlike the Brownian ones discussed in the

previous section, no longer possess continuous sample paths.

To this end, we here take (~, ~ P) to be the sample space for a Poisson process

(N a = (N a (t), t E of intensity A > 0, and consider each Nx(t) as a self-adjoint
multiplication operator on L2(S~, ~; P). Now, for each t E let C(t) denote the closure of the

essentially skew-adjoint operator Ty ~ N~(t) on the domain ~(N~(t)) in h and let

U = (U(t), t f be the unitary operator valued process defined by

U(t) = eC(t) ... (5.1)

We shall also have need of the unitary operator e TY on ho which we denote by Wy.
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Theorem 8 U = (U(t), t E is a solution of the operator valued SDE

dU = U(Wy-I) dN03BB ... (5.2)

with U(o) = I

Proof. We use the same technique as in theorem 3 and expand U(t) as a series on analytic
vectors of the form v ® ~.

We write for u E ho, x E L2(03A9,F, P), as above:

Gt(u, v) = u, TnY v> n!N03BB(t)n ... (5.3)
n=O

The required result will follow if we can show that

v) = I)v) 

By Ito’s formula in (5.3), we obtain
m -n

f u, Ty v> n n

v) - 

’ n . + 1) - N~(t) J 
n=1 I

m n-1 i

= £ n u, T n v> N dN (t)
n=1 I r=O

However, since v is analytic for TY, we obtain
m

(Wy - I)v) = u, Ty(Wy - I) v> N 
n=O

m m

- - n 
+m 
v> N n" 

k n. m. U> Ty V> N A(t)
m=1 1

= 1 r!(n-r)! u, TnY v> N03BB (t)r

= 1 n![ n r] u, TnY v> N03BB(t)r as required o

Now as in §4, for t > s, write

U(s,t) = U(s) - 1 U(t) ... (5.4)

and Js,t(X) = U(s,t) X U(s,t)-
1 

... (5.5)
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for X E B(h). Again we can define for each 03C9 E 03A9, the unitary operators

... (5.6)

but note that in this case each c~(s), is a natural number.

We can now imitate the argument of theorem 4 to assert that there exists an equivalence class
of stochastic flows of diffeomorphisms of M, ~ _ (~S t; t > s) for which_

Js,t(f) = f003A6s,t ... (5.7)

for all f E L°°(M, ). However it follows from (5.6) that the map 03C9 ~ 03C6s,t(x, w) (for x  M,
t > s, c~ E S~) will not be continuous. We will call § a Poisson flow. Similar algebraic
manipulations to those of theorem 8 show that for each f E t > s we have

_ ...(5.8)

By (2.2) and (2.13), we can write

...(5.9)
where ( = (~r, t E tR) is an autonomous (deterministic) flow on M. Since Y is complete, we can

use (2.4) to obtain ( from a family of integral curves x E M}.

Writing Y(x) = aj(x) ~ ~xj in local co-ordinates we have, for 1  j  d, t r R+

cjx(t) = x + taj(c()) d = x + hj(t)
- ao

Let h-! = then we can write (5.8) in local co-ordinates as

_ + h) - ... (5.10)

where h = (hi, ..., hd).

Using Ito’s formula for Poisson processes, we see that a solution to (5.10) is given by
~X(t) ... 

where, in local co-ordinates, for each x f M, I  j  d, we have

~X(t)~ = xi + hl N (t) ... (5.12)

with = x~

i.e. each r~ is a point process with jumps of size hi.

Similar techniques to those used in §4 establish that (5.12) is the unique solution to (5.10), in
the sense of agreement almost everywhere with respect to P.
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Appendix 1

We show here that the process U = (U(t), t > 0) of §4 is the unique solution of (4.5). To do
this, it is more convenient to work in Fock space rather than Wiener space and we will assume
here some familiarity with the decomposition therein of Brownian motion into a sum of
annihilation and creation processes and the realisation of exponential martingales as
exponential vectors (see [HuPa], [Mey] for details). In fact we will prove a slightly stronger
result.

Let ha be a complex separable Hilbert space and La be a skew adjoint operator on ha with
invariant domain D0.
Consider the equation

dU = dB + 1 L20 dt) ... (A1)
U(o) = I on 

Theorem If a solution U = (U(t) t > 0) exists to (Al) then it is unique.
Proof Let V = (V(t), t > 0) be another solution to (Al) and write

W(t) = U(t) - V(t)for each t f ~+
so that W = (W(t), t > 0) solves the SDE

dW = W(Lo dB + 1 L20 dt)
w(o) = 0

Now let u f g; 0’ f ~with f a locally bounded function, then by the Ito product formula of
[HuPa] , we obtain

u ~ ~f ) (~

=J~{2Re(f(s)). 2ReW(s) L u (f), W(s) u (f) > + Re  W(s) (f),
o

(f) > +  W(s) (f), W(s) L u ® ~ (f)>} ds
 u e tP (f) ~ + u e tP (f) j~) + (f) )j’

0

+ + II 2J ds ... (A.2)
c.f. [HuPa], corollary 1 p.310.

Let IIW(s) Lk (f) ~~2 for k = 0, 1, 2, then (A.2) may be written

2

«a(t) ~ L Ck(t) ak(t)
k=0

where co(t) = cl(t) = 4 I f(t) ] + 1 and c2(t) = 1.
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By a slight extension of Gronwall’s inequality we obtain

c t
03B10(t)~03B10(0)t exp[tc0()d][c1(s)03B11(s) + c2(s) 03B12(s)] ds

o s )
But ao(o) = 0 and the result follows, o
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