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Some Applications of Quasi-boundedness for Excessive Measures

by

P. J. Fitzsimmons* and R. K. Getoor *

Department of Mathematics
University of California, San Diego
La Jolla, CA 92093-0112 USA

ABSTRACT

Let ~ and m be excessive measures for a right Markov process X and let Q~ and Qm
be the associated stationary Kuznetsov processes. We show that if ~ and m are harmonic,
then Q~ ~ Qm if and only if ~ is quasi-bounded by m in the sense that ~ = 
where each term in the sum is an excessive measure dominated by m. This result allows
us to describe the Lebesgue decomposition of Q~ relative to Qm and to give an explicit
formula for the Radon-Nikodym derivative in case Q~ « Qm. As a second

application of quasi-boundedness for excessive measures, we obtain a general form of a
theorem of U. Kuran, in which regularity for the Dirichlet problem is characterized by the
quasi-boundedness of a suitable excessive measure.

1. Introduction
Let X = (Xt, PX) be a Borel right Markov process and let ~ be an excessive measure

for X. . Associated with X and ~ is a stationary Markov process (Yt Q~) with random birth
and death times. This process has the same transition mechanism as X and E ~ ) _ ~
for all t E IR. We refer to Q~ as the Kuznetsov measure associated with X and g. Let Exc
denote the convex cone of excessive measures of X. The "cone Q~ provides a
powerful tool in the study of the potential theory of Exc.

Our goal in this paper is to explore certain aspects of the notion quasi-bounded as it
applies to Exc. The class of quasi-bounded harmonic functions was introduced by Parreau
[P51] in his study of Riemann surfaces. The concept was extended to superharmonic func-
tions by Arsove and Leutwiler [AL74] and played a fundamental role in their development
[ALSO] of an abstract potential theory. See also Doob [Do84]. Following [ALSO] we
say that ~ E Exc is quasi-bounded by m E Exc provided ~ admits a series representation
ç = En where ~’n E Exc and ~n  m for all n.

* The research of both authors was supported, in part, by NSF Grant DMS 91-01675.
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Suppose that ~ and v are initial distributions for X. It is well-known that P~‘ ~ Pv if
and only if  v. The analogous problem for Kuznetsov measures is a bit more involved,
and it turns out that quasi-boundedness plays an important role in its solution. We shall
examine the absolute continuity question for a given pair of Kuznetsov measures, and
when Q~ ~ Qm we shall exhibit an explicit expression for the Radon-Nikodym derivative

. As a corollary we obtain a Fatou-type limit theorem for the Radon-Nikodym
densities of harmonic excessive measures.

We shall also explore the connection between quasi-boundedness and regularity (in
the sense of the Dirichlet problem). Let D be a bounded domain in IRd. For simplicity
assume d > 3. Fix x E 8D and let u(y) = be the Green potential with pole at
x. Kuran [Kr79] has shown that x is regular for D in the sense of the Dirichlet problem
if and only if the restriction of u to D is quasi-bounded by 1 on D. We will show that
this regularity criterion, when stated in terms of excessive measures, holds in complete
generality. The proof, which involves Kuznetsov measures, is new even in the Newtonian
case studied by Kuran.

The connection between quasi-boundedness and absolute continuity is discussed in
sections 2 and 3. The extension of Kuran’s regularity criterion is the content of section
4. In the rest of this section we recall some of the basic facts and notation concerning
Kuznetsov measures.

Throughout the paper X = (Xt, Px) will be a right Markov process with Borel semi-
group (Pt) and Lusin state space (E, ~*). E be the cemetery for X. It is convenient
to realize X and (Y, Qm) as coordinate processes on canonical path spaces Q and W re-
spectively. Let W denote the space of paths w : IR --~ E U ~0} that are E-valued and right
continuous on an open interval ]a(w), IR, and that take the value A outside of this
interval. (W contains the "dead" path ~0~: t -+ A for which a(~L~~) = +00, ~i(~L1~) = -oo.)
Let (Yt: t E Ift,) denote the coordinate process on W, with associated a-fields

g; =  t}, , ~° = E IR~.

A family of shift operators is defined on W by

(03B8tw)(s) = {w(t + s), s  0, t ~ IR,0394, s ~ 0, t ~ IR.

Let Q = {w E IV: : a(w) = 0, Ya+(w) exists in E} ~ {[0394]}, and for t > 0 let Xt, F,
Fot denote the restrictions to 03A9 of respectively. Since (Pt) is a Borel right
semigroup, there is a Borel measurable family x E E} of probability measures on
(Q, ~’°) such that X = (~, ,~’°,.~’t+, Xt, 9t, Px) is a strong Markov realization of (Pt). Of
course, px is the law of X started at :r.

Recall that Exc denotes the class of excessive measures for X: m E Exc if and only if
m is a a-finite measure on E such that mPt  m for all t > 0. By our right hypotheses on
(Pt) and a theorem of Kuznetsov [Kz74], given m E Exc there is a unique measure Qm
on ( W, ~° ) such that Qm ( ~~~ ) = 0,

(1.1) Qm(Yi E A) = m(A), Vt E IR, A E E,

and

(1.2) Qm(F°8T ~ = Q~ -a.s. on {a  T  
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for each F E and time T. Implicit in (1.2) is the assertion that Qm
restricted to ~T+ is a-finite on {a  T  ~}.) It follows that Qm is a a-finite measure on
~° and that Qm is invariant with respect to the shift operators at, t E lR, defined on W
by

(°tw)(s) = w (t + s), s E n.

(As opposed to 0t, no truncation of the path is induced by at.) Let ~~ denote g; aug-
mented by the null sets in the Qm-completion ~’~ of The filtration is right
continuous. We say that a set A E gm is m-invariant (and write A E provided

= 0 for all t E IR.
A set B E E is m-polar provided E B for some t E IR) = 0. Equivalently,

Px(TB  oo) = 0 for m a.e. x E E, where T~ is the first hitting time of B.
The potential kernel of X is U := ~0 Pt dt. If  is a measure on E then the measure
is excessive provided it is a-finite. Such excessive measures are called potentials, and

the class of all potentials is denoted Pot. We say that ~ E Exc is harmonic (and write
ç E Har) provided ~ strongly dominates no nonzero potential. (Recall that r~ E Exc is

strongly dominated by $ if there exists 1 E Exc such that ~ + 03B3 = 03BE. The symbol ~ is used
to indicate this order relation.) There is a Riesz decomposition: Exc = Pot ~ Har, whose
probabilistic significance is as follows. Let m + 1 be the decomposition of m E Exc
into potential and harmonic components. Then Qm = + ~,y and

(1.3) = ~’m(’ ~’~ _ ~’rn(’ 

where Wp is, in essence, the set of paths in w E W such that a(w) E 1R and the right
limit Yo+ ( w) exists in E in the original topology and in the Ray topology. For a precise
definition of Wp see [G90, p. 57]. For our purposes it is enough to know that for any given
strictly positive bounded Borel function h on E, Wp can be constructed so that (1.3) holds
whenever m(h)  oo. Moreover, 

(1.4) Wp E G03B1+ and 03C3-1tWp = Wp for all t E IR,

(1.5) exists in E for all w E Wp,

(1.6) If m(h)  oo then for Qm a.e. w E W, btw E Wp, Vt .

Here bt is the birthing map defined by btw(s) = w(s) if s > t, = A otherwise.
Finally, certain arguments will depend on the reverse filtration ~t := > t},

its completion ~m (m E Exc), and the associated notion of (co-)predictability. Given
m E Exc, the Qm-copredictable a-algebra on W x IR is generated by the Q~-evanescent
processes together with the processes that are right continuous and vanish
on Q ~, oo Q . (Notice the time reversal implicit in this definition. ) A random variable
S W --~ IR is a time provided S  ~i and {S > t} E ~m for all t E IR. Such
a time is copredictable if and only if ] - oo, is a copredictable set. For full details on
these matters see 
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2. Quasi-boundedness and the Lebesgue decomposition of Kuznetsov measures
We adopt the convention that the letters ç, ~, ~y, p, and m, with or without afixes,

denote elements of Exc.
Recall from the introduction that ~ is quasi-bounded by m provided ç = En where
m for all n E IN. We write Qbd(m) for the elements of Exc that are quasi-bounded

by m. The class Qbd(m) is a convex cone which is solid in the natural order of measures;
see [FG91b]

The following simple observation will be used repeatedly in the sequel. Let J > 0 be
Gm03B1 n Im-measurable. Suppose that the measure

:= Qm(J; Yt E A), A E E,

is a-finite. (Note that ~ doesn’t depend on t E IR since J is m-invariant.) Then ~ E Exc
and

Conversely, we have the following

(2.1) Lemma. If Q03BE « Qm and if J E Gm is any version of the Radon-Nikodym deriva-
tive then J is ~Im-measurable.

The proof of this lemma is deferred to the end of this section. Note that we make no
assertion concerning the a-finiteness of or In fact, if m has a harmonic
component then typically Qm is not a a-finite measure.

As a simple corollary of the lemma we obtain

(2.2) Proposition. Given ~, m E Exc let Q~ = Z~Qm+Q’ be the Lebesgue decomposition
of Q~ with respect to Qm. . Then both Z . Qm and Q’ are Kuznetsov measures. That is,
there exist r~, ç’ E Exc such that Z . Qm = Q~ and Q’ = . In particular, ~ = r~ + g’ .

Proof. By Lemma (2.1) there exists J E ~« +~ n C (~« n Im) n Z~) with
0  J  1 such that Q~ = J ~ (Q~ + Qm). Then

Q~ = J(l - J)-11{J1}Qm + 
is the Lebesgue decomposition of Q~ with respect to Qm. In view of the discussion

preceding Lemma (2.1), the proposition follow upon taking Z = J(l 2014 and

Q’ =1{ J-1}Q~. D
From [FG91b] we know that Exc admits a Riesz decomposition relative to Qbd(m):

Exc = Qbd(m) (B Qbd( m)..1, where Qbd( m)..1 denotes the class of excessive measures that
strongly dominate no nonzero element of Qbd(m). In what follows we write ~ J- Qbd(m)
to indicate ~ E Qbd( m )..1. As usual, , 1 v means that the measures and v are mutually
singular.

(2.3) Proposition.
j) Q~ « 3~ ~ $ E Qbd(m).
(ii) $ 1 Qbd(m) =~ Q~ -~- Qm.

Proo f . (i) If Q~ « Qm then by Lemma (2.1) we have Q~ = J . Q~, with J E n 

Clearly J  oo a.e. Qm. . For n E IN put Jn = J so that = Q~n for some
excessive measure Evidently m and ç = En It follows that ~ E Qbd(m).
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(ii) Let Q~ = Q~ + Q~~ be the Lebesgue decomposition of Q~ with respect to Qm as
in Proposition (2.2). Then Q~ c Qm, so q E Qbd(m) by point (i). This forces ~ = 0 since
~ = r~ + ~’ and ~ 1 Qbd(m). Consequently Q = ~~~ 1 Qm. D

The reader will have no trouble producing examples demonstrating that the reverse
implications in (2.3) are not valid in general. However they are valid if we insist that ~ be
harmonic. A bit more generally, recall from [FG91b] that given m E Exc, an excessive
measure ~ is m-subtractive provided ~ « m and ~~  r~, r~ « m~ ~ ~ -~ r~. We write Sub(m)
for the class of m-subtractive elements of Exc. The class Sub(m) is a convex cone which
is solid in the strong order; see [FG91b, (2.2)]. A complete characterization of Sub(m)
can be found in [FG91b] ; for our purposes it is enough to know that Sub(m) contains all
excessive measures of the form ~ + where ~ m, ~ is harmonic, m, and  is
carried by an m-polar set. (Conversely, if X has no holding points, then every element of
Sub(m) takes this form.)
(2.4) Proposition. Let ~ be m-subtractive. Then

(i) ~ E Qbd(m) =~ Q~ « Qm,
(ii) Q~ 1 1 Qbd(m).

Proof. (i) Since 03BE E Qbd(m) we can write 03BE = 03A3n03BEn where 03BEn ~ m for all n. Clearly
03BEn - 03BE, so gn E Sub(m); thus 03BEn ~ m forces m. It follows that Q03BEn ~ Qm, and this
yields the assertion since ~n Q n .

(ii) Decompose 03BE as ~ + 03B3, where ~ ~ Qbd(m) and y 1 Qbd(m). Then ~ e Sub(m)
since r~ - ~ E Sub(m). Therefore by part (i) we have Q,~ ~ Qm. Since Q~ = Q~ + Q~,
this is compatible with the hypothesis Q03BE 1 Qm only if Q~ = 0. Thus ~ = 0 and
~ = y 1 Qbd(m). D

(2.5) Corollary. Fix ~ E Sub(m). + ~~ be the Riesz decomposition of ~
relative to Qbd(m), so that 03BEq E Qbd(m) 1 Qbd(m). Let Q03BE = Z + Q’ be the
Lebesgue decomposition of Q~ relative to Qm. . Then Z . Qm = Q~Q and Q’ = ,

The final result of this section is a general characterization of the absolute continuity
of Kuznetsov measures. Recall the Riesz decomposition Exc = Pot (B Har.

(2.6) Theorem. Write ~ = vU + yy and m + ~y, where r~ and , are harmonic. The
following statements are equivalent:

~i~ Q~ « Qm.
(ii) Qr~ « Q~ and 
(iii) r~ E and v « ~c.

Proo f . The equivalence of (i) and (ii) follows immediately from (1.3). Observe that any
harmonic element of Exc is m-subtractive provided it is absolutely continuous with respect
to m. Thus Qn « Q~, if and only if r~ E by (2.3) and (2.4). Moreover, by [G90,
(6.20)],

(2.7) v = Qvv(Y«+ E ~ ; 0  a  1, Wp),
and the analogous formula holds when v is replaced by Thus Qvu « implies
v « Conversely, if v « ~C then Pu which in turn implies Qvv « because of
the formula

(2.8) Wp) = QvU(F’’) = / u F03C3t) dt, F E G,
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and its companion for which follow on combining (fi.ll) and (fi.19) in ~G90~. D
Proof of Lemma (2.1).

Let ~ and m be given such that Q~ « Qm, and let J be any gm-measurable version
of . Then J = J03C3t a.s. Qm for all t E IR because of the (03C3t)-invariance of Q03BE
and Qm. . So we need only show that J is Gm03B1-measurable. Fix t E IR and a strictly positive
Borel function g on E such that (g)  oo. Then

Qm(J 9(x )) = = I(9)  oo.

Notice that the trace u-algebra g° n {a  t  ,~} is generated by products of the form
where F E p~t and G E p.~°. Moreover, by the Markov property of Q~,

= G°et)
= 

= 

Since {g(Yt) > 0} == {a  t  ,~~, it follows that

J = n {a  t  ,~}), a.s. Qm on {a  t  ~i},

so  t  /?} is ~~ n {a  t  ,8}-measurable. But

limsup + 
rational 

and this is gfi-measurable because E ~q , ~ + _ and gm n {~i  t~ _
~~ n { ~i  t } . Since ~ + = ~a it follows that J E ~a as claimed. 0

3. Radon-Nikodym derivative; Fatou theorem
Our object in this section is to compute the Radon-Nikodym derivative in

case Q~ ~ Qm. Before stating the result we need some additional notation. Suppose
that r~ ~ ~. By [FG91a, (2.15)] we know that there is a Borel version u > 0 of the
Radon-Nikodym derivative such that a.e. Q’Y’ t H is finite-valued and right
continuous on ]a, ,Q~ and has a finite right limit at t = a.

Given ~ and m, let ~ = r~ + vU and m = q + be the Riesz decompositions of ~ and
m into harmonic and potential components. If Q  Qm, then by (2.6) we have Q~ « Q~
and v  . In particular, ~ 03B3. Let u be the "fine" version of the density 
described in the last paragraph, and let f be any Borel version of the Radon-Nikodym
derivative 

(3.1) Theorem. IfQ « Q~, then a version J of the Radon-Nikodym derivative 
is given a.e. Qm by the formula

(3.2) J := 
on W;,

’ ’ 
f (Ya+), on Wp,



491

the existence of the limit Qm -a.e. on W; being part of the assertion.
Because of (1.3), the second case in (3.2) follows from (2.8): if F E p~° then

Wp) _ = / n IR,

= 

= 

= _ 

as required.
The rest of this section is devoted to proving the first case of (3.2).

(3.3) Lemma. If m is harmonic then a is Qm-copredictable.
Remark. By adapting an argument of Azéma [A72, pp. 480-81] it can be shown that a
is Qm-copredictable if and only if m = + ~y where ~c is carried by an m-polar set and
~ is harmonic.

Proof of (9.9). By [Fi87, (6.3),(6.41)] (with ~ = m) there is an optional copredictable
homogeneous random measure r~ carried by such that

(3.4) Qm(F)=QmIRFbtk(dt)+Qm(F;03B1=-~), F ~ pGm.

Let f = denote the copredictable projection (relative to Qm) of the process 
Then by [Fi87, pp. 437-39], f is Qm-optional,

~Q c ~~ > o} c Qa, aQ

up to Qm evanescence, and for Qm a.e. w and all t E JR

ft(w) > 0 =~ btw E Wp.

The Qm-copredictability of £ entails that ltbt = ft for all t  ,Q a.e. Qm. Thus, by (3.4)and the assumption that m is harmonic,

(3.5) 
> 0, a > -oo) _ > 0, a > -oo; Wp )

= Qm IR 1{l>0}(t)1Wcp(bt) 03BA(dt) = 0.

But the (mt)-stopping time

~ a, on = 0, a E IR} ~~ 

~ 2014oo, otherwise,
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is a Qm-copredictable time since

~ -~~s~ _ ~-~~sQ ~(Qa~aQ ~f~=o})

is evidently Qm-copredictable. By (3.5), a = S a.e. Qm, and the lemma is proved. D
Proof of (9.1). In view of the earlier discussion we need only prove the first part of (3.2).
Because of (1.3) we have = dQ."jdQ’Y on Wp, which set carries both Q~ and
Q’Y’ Therefore it suffices to prove that the Radon-Nikodym derivative J = dQ."jdQ’Y is
equal to limt~03B1 u(Yt), where u is the "fine" version of the density described before
the statement of (3.1). Of course, both the asserted equality and the existence of the limit
hold only a.e. Q03B3 = Recall from Lemma (2.1) that J is gJ n I03B3-measurable.

Let g > 0 be a Borel function on E such that  oo and = 1, and define
a probability measure P := g(Yo) . on (W, G°). Then P(J)  oo and P is carried by
{a  0  ,~}. We claim that

(3.6) a.s. P on {a  t  /?}, Vt  0.

In fact if H E p~t then

a  t) = u(Yt); a  t).

Consequently, if t  0, then

P(JH; a  t  /?) =  t  ~3)
=  t  ,~)
= u(Yt)) = P(H u(Yt); a  t  ,~).

This proves (3.6). Now, is harmonic so by Lemma (3.3) there is a decreasing sequence
(Sn) of countably-valued (03B3t)-stopping times such that a  Sn for all n and Sn i a a.s.
P. Since the Sn are countably-valued, (3.6) remains valid with t replaced by Sn. Passing
to the limit we obtain

(3.7) lim u(Yt) = u(YSn) = P(J| Vn Sn ),

a.s. P, hence a.e. {a  0  ,Q}. But up to Q03B3-null sets, so

(3.8) J = lim u(Yt), a.s. Q~, on ~a  0  ~3}.
tia

But both sides of (3.8) are ,-invariant, so by composing with 7g (q rational) we see that
the equality in (3.8) holds a.e. 0y on Uq~a  q  ,~}, hence a.s. Q~. 0

Remark. The limit in (3.8) coincides a.e. Q,~ with the essential limit inferior J’ :=

ess lim inftia u(Yt) which has the advantage of being Go03B1+-measurable and perfectly in-
variant : J’(otw) = J’(w) for all t E IR and w E W; cf. [FG91a, (2.7)]. (The "essential"
here refers to Lebesgue measure on IR.) Substituting this essential limit inferior for the
limit in (3.2), we see that if Q~ ~ Qm then the derivative can always be taken
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Go03B1+-measurable and perfectly invariant, since the other ingredients in (3.2) already enjoy
these properties.

We can make the first part of (3.2) look more like a Fatou-type theorem by recalling
Dynkin’s decomposition [Dy] of a given excessive measure into minimal components. Let
us fix a bounded strictly positive function q E E such that (q) + m(q)  oo. Recall that
- Y is minimal provided the only strong minorants (in Exc) of q are constant multiples of
03B3. Let M denote the class of minimal elements 03B3 such that = 1, and give M the
a-algebra M generated by the maps 03B3 ~ 03B3(f), f E p~. By [Dy], there is a uniquely
determined measure ~r~ on (M, M) such that

(3.9) Q03BE(F)=MQ03B3(F)03C003BE(d03B3), F ~ Go.

In particular, 03C003BE(M) = 03BE(q)  oo. Of course the analog of (3.9) holds with 03BE replaced by
m.

(3.10) Lemma. Q « Qm ~===~ ~~ « 7rm.

Proof. . The implication ~ is clear. Conversely, suppose that Q~ « Qm. . By the Remark
above there is a Go03B1+-measurable version J of which is invariant (i.e., J(atw) =
J(w) identically). It follows from the discussion just before Lemma (2.1) that if, E M
then Q03B3 is trivial on Go03B1+-measurable invariant sets. Thus there is an M-measurable map
M -~ such that J = a.e. Q~ for all, E M; indeed = q(Yo)).

Then for F 

(3.11) Q03BE(F) = Qm(JF) =MQ03B3(JF)03C0m(d03B3) = MQ03B3(F)03C8(03B3)03C0m(d03B3).
The uniqueness of now forces = 

Referring again to [Dy], there is a Go-measurable, invariant map r : : W ~ M such
that r E and the representing measure ~r~ is the image of Q~ under r. Combining
(3.1) and (3.10) we arrive at the following

(3.12) Proposition. Suppose m E Har and Q03BE « Qm. . Then

lim d03BE dm(
Yt) =d03C003BE d03C0m( 0393), a. e. Qm,

where is understood to be the "fine" version of the Radon-Nikodym density.
When m is dissipative the random element r can be identified with a right limit yr the
superscript r indicating that the limit is taken in a certain Ray-Knight compactification
of E. This compactification, which amounts to the construction of a Martin entrance
boundary, is dicussed in detail in [GG83,GG84]. A closely related limit interpretation of
r can be found in [Dy].

Time reversal provides a link between the results of the last two sections and the
theory of Follmer measures for supermartingales, as developed in [Fo, AJ, AF]. Suppose
~ « m and let u be the "fine" version of the density discussed above (3.1). Then
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under Qm the process (u(Yt))«ta is a right continuous supermartingale relative to the
reverse filtration in the sense that for all s > t,

 u(Ys), a.e. Qm on {a  s  ,Q}.

By martingale theory the left continuous modification

Zt :=lim u(Ys), t  03B2,

is likewise a supermartingale relative to the filtration (mt-), where mt- = It can

be shown that if S is a Qm "co-optional" time and if F E then

-oo  S  ~3) = -oo  S  ~3).

In other words Q~ is the Follmer measure associated with the supermartingale (Zt, Qm)’

4. Quasi-boundedness and regularity
In this section we prove a general version of the regularity criterion of Kuran mentioned

in the introduction.

Throughout this section we work with a finely open Borel set D. Let T = inf {t > 0 : :
Xt ~ D} denote the exit time from D, and let reg(DC) := {x E E : : Px(T = 0) =1} denote
the corresponding set of regular points. The natural state space for the process (X, T)-X
killed at time T- is ED := E ~ reg(D~). Clearly D C ED, and ED B D = DC B reg(DC) is
semipolar for X and polar for (X, T). Thus we can restrict (X, T) to D to obtain a right
process which we denote XD. Now XD need not be a Borel right process, but it does

satisfy the hypothesis (6.2) in [G90] which ensures the existence of Kuznetsov measures
associated with XD. Writing Exc(XD) for the class of excessive measures of XD, we note
that if $ E Exc then ç(ED B D) = 0 and is an element of Exc(X ). We shall write

for the class of X D-excessive measures that are quasi-bounded by 
Here is our extension of Kuran’s theorem. We fix m E Exc and x E E such that Ex U

is a-finite, hence excessive for X. . If m = I + is the Riesz decomposition of m into
harmonic and potential parts, then N(m) denotes the class of sets B ~ E that are both
m-polar and ~-null.

(4.1) Theorem. (i) Assume x E DC and ~x~ E N(m). If ExU~D E then

x E reg(DC).
(ii) Conversely, suppose x E E is such that ~xU « m. If x E reg(DC) then ~xU|D E

Proof. (i) If p E Exc(XD) then QD denotes the Kuznetsov measure associated with XD
and p. When p = ~ ~ D for some ~ E Exc we write Qf instead of . We can (and do)
assume that QD has been constructed on the sample space W used in previous sections.
In case ~ E Exc the paper [G88] contains a useful relationship between Q~ and Q~ which
forms the basis of our argument. Set T := inf {t > a : D}, and note that T~~ = T. Let
G denote the set of left endpoints, strictly between a and ,Q, of the intervals contiguous
to the right closed (in ~a, ~~) random set {t E Ja, ~~ : Yt ~ D}, together with a if a  T.
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Note that robt = inf{s > t : D} on {a  t}. Combining Theorems (4.9) and (5.11)
in [G88] we have

(4.2) = Q~ , F E .

tEG

Here kt is the usual killing operator: ktw(s) = w(s) if s  t, = A otherwise.
We abbreviate A = ~xU and 7r = Let V denote the potential kernel of X D and

let r~ + vV be the Riesz decomposition of 7r into harmonic and potential components taken
relative to XD. By hypothesis 7r E Qbd(mID), hence r~ and vV are also quasi-bounded by

In particular, QD « QD by (2.4)(i).
Recall that x E D~. We are going to show that if x ~ reg(D~) then

(4.3) = x, a  r;Wp) = o0

while

(4.4) = x, a  r;Wp) = 0.

This will contradict QD ~ QD, allowing us to conclude that x must lie in reg(D~) after
all.

If a G G then a  T and consequently

{a E G} n = x, a  T} n Wp] = ~Ya+ = x, a E G} n Wp.

Thus, using (4.2) with 03BE = A = ~xU and dropping all terms but the one corresponding to
t = a, we have

(4.5) = x,a  T; Wp) >_ = x,a E G;Wp)

By (2.8) the second term in (4.5) equals

(4.6) Q03BB(Y03B1+ = x,03B1  ) =IR Px(T > 0)dt = IR 1 dt = ~,
since x ft reg(Dc). Also, by (2.8) applied to XD,

(4.7) QDvV(Y03B1+ = x) = IRPv(X0 = x,T > 0) dt = 0,

since v is carried by D and x E DC. Combining this with (4.5) and (4.6) we see that (4.3)
holds. On the other hand, by by another application of (4.2),

( ) 
~ Qm ~ llYt+=xllWp(bt)

~-~ tEG

tEG,t>a
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which vanishes since ~x~ E N(m) by hypothesis. This yields (4.4) and the desired contra-
diction.

(ii) We will prove that QD ~ QD, which implies the stated result because of (2.3)(i).
Let (A, be an exit system for X relative to the homogeneous optional set ~t > 0 :

Xt / D~. Thus A is an additive functional of X, and (pY; y E E) is a measurable family
of a-finite measures on (Q, such that for any p E Exc

(4.9) Qp L Fto()t = / dt / 
~’ E

for all B(IR) Q9 0°-measurable maps Ft(w) of IR x Q into Here vA, the
characteristic measure of A relative to p, is defined by

(4.10) (4.10) v03C1A(f ) = t- 1 P03C1
t0

f(Xs) dAs.

See [FM86, §6] or [G90, §11] for details. Given FE go let 03C8(t,y) = 
Using (2.8) we see that the hypothesis x E reg(D~) implies that Qx(a E G) = 
T) = 0. Thus by (4.2), (4.9), and the identities bt = and = 

tEG 

(4.11) 
= Qa ~ = / dt / 

A similar computation yields

(4.12) QDm(F) ~IR dtEvmA(dy)03C8(t, y).

But it follows easily from the definition (4.10) of characteristic measure that vA vA
since A = ~xU « m by hypothesis. Putting this together with (4.11) and (4.12) we see
that QD « as desired. D

Remarks. (a) Let X be uniform motion to the right on the real line, and take m = ~0U and
D =]0,1[. Then ~0U|D = is trivially quasi-bounded by but 0 ~ reg(DC). . This
shows that the hypothesis ~x} E N(m) cannot, in general, be eliminated from (4.1)(i),
nor can it be replaced by the weaker condition "~x~ is m-polar." On the other hand

"~x} E N(m)" is not necessary for the validity of (4.1)(ii). For example, 1 E reg(D~) and
~1U|D = 0, but {1} ~

(b) The side conditions imposed in Theorem (4.1) are certainly satisfied in the New-
tonian context, and in this context there is a natural isomorphism between excessive mea-
sures and positive superharmonic functions. Consequently Theorem (4.1) contains Kuran’s
criterion as a special case.
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