SÉminaire de probabilités (Strasbourg)

Freddy Delbaen
 Infinitesimal behaviour of a continuous local martingale

Séminaire de probabilités (Strasbourg), tome 26 (1992), p. 398-404
http://www.numdam.org/item?id=SPS_1992__26__398_0
© Springer-Verlag, Berlin Heidelberg New York, 1992, tous droits réservés.
L'accès aux archives du séminaire de probabilités (Strasbourg) (http://portail. mathdoc.fr/SemProba/) implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

Numdam

Article numérisé dans le cadre du programme

Infinitesimal Behaviour of a Continuous Local Martingale

FREDDY DELBAEN
VRIJE UNIVERSTEIT BRUSSEL
DEPARTMENT OF MATHEMATICS
PLEINLAAN 2
B- 1050 BRUSSEL BELGIUM

a. Summary

We investigate the behaviour of a continuous local martingale $\left(M_{t}\right)_{t \geq 0}$ in the neighbourhood of $t=0$. We prove that under suitable conditions $\frac{M_{t}}{\sqrt{t}}$ tends in law to a normal variable as $t \rightarrow 0$. A convergence theorem to Brownian motion as well as an application to continuous Markov processes are also given.

b. The main result

In this paragraph we suppose that $\left(\mathrm{M}_{\mathrm{t}}\right)_{\mathrm{t} \geq 0}$ is a continuous d-dimensional local martingale with $M_{0}=0$. The filtration $\left(\mathcal{F}_{t}\right)_{t \geq 0}$ satisfies the usual conditions and \mathcal{F}_{0} is degenerate. The process $\left(W_{t}\right)^{\mathbf{t} \geq 0}$ is a standard d-dimensional Wiener process defined on some probability space. The denotes the obvious Euclidean inproduct between vectors in R^{d}. If u is a vector in $\mathbf{R}^{\mathbf{d}}$ then $|\mathbf{u}|$ denotes the Euclidean norm of u. We use the results and the notation of [2] and [3].

Theorem:

If the continuous local martingale $\left(M_{t}\right)_{t \geq 0}, M_{0}=0$ satisfies
$\frac{1}{\mathfrak{t}}\left\langle\mathrm{M}^{\mathrm{i}}, \mathrm{M}^{\mathrm{j}}\right\rangle_{\mathrm{t}} \rightarrow \mathrm{a}_{\mathrm{ij}}$ a.e. as $\mathrm{t} \rightarrow 0$.
then for all $0=\mathrm{s}_{0}<\mathrm{s}_{1} \ldots<\mathrm{s}_{\mathrm{n}}=1$ we have
$\left(\frac{M_{s_{1} t}}{\sqrt{t}}, \ldots, \frac{M_{s_{n} t}}{\sqrt{t}}\right) \rightarrow\left(A^{1 / 2} W_{s_{1}}, \ldots, A^{1 / 2} W_{s_{n}}\right)$ in law as $t \rightarrow 0$.
Here $A^{1 / 2}$ is the symmetric positive definite square root of the positive definite symmetric matrix $A=\left(a_{i j}\right)$ and W is a standard d-dimensional Wiener process.
Proof :
We will work with complex valued martingales and we will show that for

$$
\begin{aligned}
& \left(u_{1}, \ldots, u_{n}\right) \in\left(R^{d}\right)^{n} \\
& E\left[\exp \frac{i}{\sqrt{t}}\left\{u_{1} \cdot\left(M_{s_{1} t}\right)+u_{2}\left(M_{s_{2} t}-M_{s_{1} t}\right)+\ldots \ldots \ldots .+u_{n}\left(M_{s_{n} t}-M_{s_{n-1} t}\right)\right\}\right] \\
& \quad \rightarrow \exp \left(-\frac{1}{2}\left(s_{1} u_{1} \cdot A u_{1}+\left(s_{2}-s_{1}\right) u_{2} \cdot A u_{2}+\ldots+\left(s_{n}-s_{n-1}\right) u_{n} \cdot A u_{n}\right)\right)
\end{aligned}
$$

Let $\sigma=\inf \left\{t \mid \operatorname{trace}\left(\langle M, M\rangle_{t}\right) \geq t(\operatorname{trace}(A)+1)\right\}$
Since $\frac{1}{t}\langle M, M\rangle_{t} \rightarrow A$ as $t \rightarrow 0$ we certainly have $\sigma>0$ a.e.
Stopping M at time σ, the difference between
$\left.E \exp \frac{i}{\sqrt{t}}\left\{u_{1}\left(M_{s_{1} t \wedge \sigma}\right) u_{1}+u_{2}\left\{M_{s_{2} t \wedge \sigma}-M_{s_{1} t \wedge \sigma}\right) u_{2}+\ldots .+u_{n}\left(M_{s_{n} t \wedge \sigma}-M_{s_{n-1} t \wedge \sigma}\right) u_{n}\right\}\right]$
and
$E\left[\exp \frac{i}{\sqrt{t}}\left\{u_{1}\left(M_{s_{1} t}\right) u_{1}+u_{2}\left\{\left(M_{s_{2} t}-M_{s_{1} t}\right) u_{2}+\ldots .+u_{n}\left(M_{s_{n} t}-M_{s_{n-1} t}\right) u_{n}\right\}\right]\right.$
is clearly bounded by $\quad 2 \mathbf{P}[\sigma<t]$,
and hence we only have to prove the theorem for $\mathrm{M}^{\boldsymbol{\sigma}}$ instead of M . From now on we therefore suppose w.l.o.g. that $\langle M, M\rangle_{t} \leq t($ trace $(A)+1)$.
Let $h=u_{1} 1_{\left[0, s_{1} t\right]}+u_{2} 1_{\left.] s_{1} t, s_{2} t\right]}+\ldots+u_{n} 1_{\left.] s_{n-1} t, s_{n} t\right]}$
h is a deterministic process and we have to calculate

$$
E\left[\exp \left(i \int_{0}^{t} h(s) \cdot d M_{s}\right)\right]
$$

Since the martingale M is continuous we know from Itô's lemma that the process (indexed by v):

$$
\exp \left(i\left(\int_{0}^{v} h(s) \cdot d M_{s}\right)+\frac{1}{2} \int_{0}^{v} h(s) \cdot d<M, M>s h(s)\right)
$$

is a martingale.
Therefore for all $\left(u_{1}, \ldots, u_{n}\right) \in\left(R^{d}\right)^{n}$
$E\left[\exp \left\{i\left(u_{1} \cdot M_{s_{1} t}+u_{2} \cdot\left(M_{s_{2} t}-M_{s_{1} t}\right)+\ldots+u_{n} \cdot\left(M_{s_{n} t}-M_{s_{n-1} t}\right)\right)\right.\right.$

$$
\left.\left.\left.+\frac{1}{2} u_{1} \cdot\langle M, M\rangle_{s_{1} t} u_{1}+\ldots+\frac{1}{2} u_{n} \cdot\left(\langle M, M\rangle_{s_{n} t}-<M, M\right\rangle_{s_{n-1} t}\right)^{u_{n}}\right\}\right]=1
$$

Replacing u_{i} by $\frac{u_{i}}{\sqrt{t}}$ gives

We will use this equality to prove the theorem. Let K denote the quantity

The integrand is bounded since $\frac{1}{v}<M, M>_{v} \leq$ (trace $\left.(A)+1\right)$ for all v. We therefore can apply Lebesgue's theorem

$$
|K-1| \leq
$$

$$
\left\lvert\, E\left[\exp \left\{i \sum_{\substack{i=1}}^{i_{m}^{n}} \frac{u_{m}}{\sqrt{t}} \cdot\left(M_{s_{m} t}-M_{s_{m-1}}\right)+\frac{1}{2 t} \sum_{m=1}^{n} u_{m}\left\{<M, M>s_{s_{m} t}-<M_{, M} s_{s_{m-1}}\right\rangle\right) u_{m}\right\}\right.
$$

$$
\begin{aligned}
& K=\exp \left(\frac{1}{2}\left(s_{1} u_{1} \cdot A u_{1}+\left(s_{2}-s_{1}\right) u_{2} \cdot A u_{2}+\ldots+\left(s_{n}-s_{n-1}\right) u_{n} \cdot A u_{n}\right)\right) . \\
& E\left[\operatorname{exp~i} \sum_{m=1}^{n} \frac{u_{m}}{\sqrt{t}} \cdot\left(M_{s_{m} t}-M_{s_{m-1} t}\right)\right] \\
& =E\left[\operatorname { e x p } \left(i \sum_{m=1}^{n_{m}} \frac{u_{m}}{\sqrt{t}} \cdot\left(M_{s_{m} t}-M_{s_{m-1} t}\right)+\frac{1}{2 t} \sum_{m=1}^{n_{m}} u_{m},\left(<M, M>s_{s_{m} t}-<M_{1} M_{s_{m-1} t}>u_{m}\right) .\right.\right. \\
& \exp \left\{\frac{1}{2 t} \sum_{m=1}^{n}\left(s_{m}^{-s_{m-1}}\right) u_{m} \cdot A u_{m}-\frac{1}{2 t} \sum_{m=1}^{n} u_{m}^{u} \cdot\left\{\left\langle M, M>s_{s_{m} t}-<M, M_{s_{m-1}}>\right)_{m}\right\}\right]
\end{aligned}
$$

$$
\begin{aligned}
& E\left[\operatorname { e x p i } \left\{\left(u_{1} \cdot \frac{s_{1} t}{\sqrt{t}}+u_{2} \cdot\left(\frac{s_{2} t}{\sqrt{t}}-\frac{M_{1 t}}{\sqrt{t}}\right)+\ldots+u_{n} \cdot\left(\frac{s_{n} t}{\sqrt{t}}-\frac{M_{n-1 t}}{\sqrt{t}}\right)\right)\right.\right. \\
& \left.+\frac{1}{2 t}\left(u_{1} \cdot<M, M>{ }_{s_{1} t} u_{1}+\ldots+u_{n}\left\{\left\langle M, M>s_{s_{n}} t^{-<M, M>} s_{n-1} t\right) u_{n}\right)\right\}\right]=1 .
\end{aligned}
$$

$\left.\exp \left\{\frac{1}{2 t} \sum_{m=1}^{n_{m}}\left(s_{m}-s_{m-1}\right) u_{m} \cdot A u_{m}-\frac{1}{2 t} \sum_{m=1}^{n} u_{m} \cdot\left\{<M, M>s_{m} t-<M, M_{s_{m-1}}>\int_{m}\right\}-1\right] \right\rvert\,$
$\leq E\left[\exp \left\{\sum_{m=1}^{n} \frac{1}{2 t} \sum_{m=1}^{n_{1}} u_{m}\left\{\langle M, M\rangle s_{s_{m} t}^{-\left\langle M, M_{s_{m-1}} t^{\prime}\right.}\right)_{u_{m}}\right\}\right.$.
$\left.\exp \left\{\frac{1}{2 t} \sum_{m=1}^{n_{m}}\left(\left(s_{m}-s_{m-1}\right) u_{m} \cdot A u_{m}-u_{m}\left\{\langle M, M\rangle_{s_{m} t}-<M, M_{s_{m-1}}>\right) u_{m}\right)\right\}-1\right]$.
Since $\left.\left(s_{m}-s_{m-1}\right) u_{m} \cdot A u_{m}-\frac{1}{t} u_{m}\left\{<M, M>s_{m} t^{-<M, M} s_{m-1}\right\rangle\right) u_{m} \rightarrow 0$ as $t \rightarrow 0$
we obtain $K \rightarrow 1$ as $t \rightarrow 0$.
qed.

Remarks

1. If the 1-dimensional martingale $\left(M_{t}\right)_{t \geq 0}$ is such that $\left(\frac{M_{t}}{\sqrt{t}}\right)_{t \geq 0}$ is bounded in L^{p} and $\frac{1}{t}<M, M>_{t} \rightarrow c$ then we find for all $r<p$
$E\left[\left|\frac{\mathrm{Mt}}{\sqrt{\mathrm{t}}}\right|^{\mathrm{r}}\right] \rightarrow \gamma(\mathrm{r}) \mathrm{c}^{\mathrm{r} / 2}$.
Indeed $\frac{M_{t}}{\sqrt{t}}$ tends to a normal variable with mean zero and variance c. The theorem now
follows with $\gamma(r)=\sqrt{\frac{2}{\pi}} \int_{0}^{\infty} x^{r} e^{-x^{2} / 2} d x$.

Theorem.

Let $\mathrm{M}_{\mathrm{t} t \geq 0}$ be a d-dimensional continuous local martingale as in the previous theorem.
Let A be as in the previous theorem.
Put $\quad B_{s}^{t}=\frac{M_{s t}}{\sqrt{t}}$ for $s \in[0,1]$.
Then $B \xrightarrow{t}{ }^{\text {law }} A^{1 / 2} W$ as $t \rightarrow 0$,
where W is a standard d-dimensional Wiener process.
Proof.

Since the finite dimensional distributions converge we only need to prove that the image laws on $C[0,1]$, the space of d-dimensional continuous functions on [0,1], form a tight family as $\mathrm{t} \rightarrow 0$. We will use the Aldous' criterion [1].
As in the previous theorem we may suppose that the martingale is bounded and satisfies

$$
\left.\left|\frac{1}{\mathrm{t}}<\mathrm{M}^{\mathrm{i}}, \mathrm{M}^{\mathrm{j}}\right\rangle_{\mathrm{t}} \right\rvert\, \leq \mathrm{c}
$$

for a fixed constant \mathbf{c}.
(a) We first verify the uniform boundedness
$\mathbf{P}\left[\sup _{s \in[0,1]}\left|B_{s}^{t}\right|>k\right]=\mathbf{P}\left[\sup _{s \in[0,1]}\left|\frac{M_{s t}}{\sqrt{t}}\right|>k\right]$
$=P\left[\sup _{s \in[0,1]}\left|M_{s t}\right|>k \sqrt{t}\right] \leq\left(t k^{2}\right)^{-1} E[$ trace $<M, M>t] \leq \frac{d c}{2}$
this quantity tends to zero uniformly in t.
(b) For fixed stopping times $\mathrm{S} \leq \mathrm{T} \leq \mathrm{S}+\theta$, (with respect to the filtration ($\mathrm{F}_{\mathrm{st}}{ }_{0 \leq \mathrm{s} \leq 1}$) we have

$$
\begin{aligned}
& \mathbf{P}\left[\left|\mathrm{B}_{\mathrm{S}}^{\mathrm{t}}-\mathrm{B}_{\mathrm{T}}^{\mathrm{t}}\right| \geq \varepsilon\right] \\
& =\mathbf{P}\left[\left|\mathrm{M}_{\mathrm{St}}-\mathrm{M}_{\mathrm{Tt}}\right| \geq \varepsilon \sqrt{\mathrm{t}}\right] \\
& \leq\left(\mathrm{t} \varepsilon^{2}\right)^{-1} \mathrm{E}\left[\left|\mathrm{M}_{\mathrm{St}}-\mathrm{M}_{\mathrm{Tt}}\right|^{2}\right] \\
& \leq(\mathrm{t} \varepsilon)^{2-1} \mathrm{E}\left[\operatorname{trace}\left(\langle\mathrm{M}, \mathrm{M}\rangle_{\mathrm{Tt}}-\langle\mathrm{M}, \mathrm{M}\rangle_{\mathrm{St}}\right)\right] \\
& \leq\left(\mathrm{t} \varepsilon^{2}\right)^{-1} \mathrm{E}[\operatorname{trace}(\langle\mathrm{M}, \mathrm{M}\rangle(\mathrm{S}+\theta) \mathrm{t} \\
& \left.\left.\left.-\langle\mathrm{M}, \mathrm{M}\rangle \mathrm{St}^{\prime}\right\rangle\right)\right] \\
& \rightarrow \frac{\theta}{2} \operatorname{trace}(\mathrm{~A}) \\
& \varepsilon^{2} \\
& \text { as } \mathrm{t} \rightarrow 0 .
\end{aligned}
$$

Aldous' criterion is therefore satisfied and the theorem is proved. qed.

c. Application to continuous Markov processes

Let E be a locally compact space on which a strongly continuous Feller semi group ($\mathbf{P}_{\mathbf{t}}^{\mathbf{t} \geq 0}$ is given. We suppose that the domain \mathcal{D}_{A} of the infinitesimal generator A is an algebra and we denote by $\Gamma(f . g)=A(f g)-f A g-g A f t h e ~ c a r r e ́ ~ d u ~ c h a m p ~ o p e r a t o r . ~ T h e ~ s e m i-~$ group ($\mathbf{P}_{\mathbf{t}}^{\mathbf{t} \geq 0}$ is supposed to generate a continuous Markov process with values in E. For $x \in E$ we denote by E_{x} the corresponding expectation operator. Clearly $X_{o}=x P_{x}$ a.e. Theorem
Let $f_{1} \ldots f_{n} \in \mathcal{D}_{A}$ and let α is the $n \times n$ matrix consisting of the elements $\alpha_{i j}=\Gamma\left(f_{i}, f_{j}\right)(x)$.

Let $\left(B_{s}^{t 1} \ldots B_{s}^{t n}\right)_{o \leq s \leq 1}$ denote the \mathbf{n}-dimensional process
$f_{i}\left(X_{t s}\right)-f_{i}(x)-\int_{i}^{s t} f_{i}\left(X_{u}\right) d u$
$B_{s}^{t i}=\frac{0}{\sqrt{t}} \quad$ viewed under P_{x}.
Then $B^{t} \rightarrow \alpha^{1 / 2} W$ in distribution, where W is a standard n-dimensional Wiener process.

Proof

Let $M_{t}^{i}=f_{i}\left(X_{t}\right)-f_{i}(x)-\int_{0}^{t} A_{i}\left(X_{u}\right) d u$
This is a martingale and $\left\langle M_{,}^{i}, M^{j}\right\rangle_{t}=\int_{0}^{t} \Gamma\left(f_{i}, f\right)\left(X_{u}\right) d u$.
Clearly $\frac{1}{t}\left\langle M^{i}, M^{j}\right\rangle_{t}=\frac{1}{t} \int^{t} \Gamma\left(f_{i}, f\right)\left(X_{j}\right) d u \rightarrow \Gamma(\underset{i}{f}, f)(x)$.
0
We now can apply the main theorem.
Corollary.
If $f \in \mathcal{D}_{\mathbf{A}}$ then
$E_{X}\left[\left|\frac{f\left(X_{t}\right)-f(x)}{\sqrt{t}}\right|^{p}\right] \rightarrow \gamma(p) \Gamma(f, f)(x)^{p / 2} \quad$ as $t \rightarrow 0$
where $\gamma(p)=\sqrt{\frac{2}{\pi}} \int_{0}^{\infty} p^{p} e^{-x^{2} / 2} d x$.
Proof.
Putting $M_{t}=f\left(X_{t}\right)-f(x)-\int_{0}^{t} A f\left(X_{u}\right) d u$,
we have $\langle M, M\rangle_{t}=\int_{0}^{t} \Gamma(f, f)\left(X_{u}\right) d u$
Clearly $\left|\left|\int_{0}^{t} \operatorname{Af}\left(X_{u}\right) d u \frac{1}{\sqrt{t}}\right|_{p} \rightarrow 0 \quad\right.$ as $t \rightarrow 0$,
so that $E_{x}\left[\left|\frac{f\left(X_{t}\right)-f(x)}{\sqrt{t}}\right|^{P}\right]$ and $E_{x}\left[\left|\frac{M_{t}}{\sqrt{t}}\right|^{p}\right]$ have the same limit
 obtain $\left\|\frac{M_{t}}{\sqrt{t}}\right\|_{p} \leq c\left(\max _{y \in E} \Gamma(f, f)(y)^{1 / 2}\right) t^{1 / 2}$.
We can therefore apply a previous remark for all p between o and ∞. qed.
Acknowledgement: I thank Prof.dr.Van Casteren (U.I.A., Antwerp) for suggesting the problem solved in the previous corollary and Prof.dr. T. Bruss (Vesalius College, V.U.B., Brussels) for discussions and valuable suggestions.

References:

[1] Aldous,D. : Weak convergence of stochastic processes viewed in the Strasbourg manner. Preprint 1978.
[2] Dellacherie, C. - Meyer,P.A. : Probabilités et Potentiel, tome ii : Chapitres V à VIII: Théorie des martingales. Hermann, Paris, 1980
[3] Dellacherie, C. - Meyer,P.A. : Probabilités et Potentiel, tome iv : Chapitres XII à XVI: Théorie des processus de Markov. Hermann, Paris, 1987

