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Some Remarks on the Theory of Stochastic Integration *

J. A. Yan

The main purpose of this article is to propose a reasonable definition for the

stochastic integration (S.I.) of progressive processes w.r.t. semimartingales. This S.I.
generalizes that of predictable processes w.r.t. semimartingales as well as the stochas-
tic Stieltjes integration. This S.I. is proposed in § 1. We give also in § 1 an exponential
formula for semimartingales using this S.I.. The rest of this paper consists of several
remarks on the theory of stochastic integration which are mostly of pedagogical in-
terest. In §2 we propose a new construction of the S.I. of predictable processes w.r.t.
local martingales. A simple proof of the integration by parts formula is given in §3.
Finally, we propose in §4 a short proof of Meyer’s theorem on compensated stochastic

integrals of local martingales.

§1. S.I. of Progressive Processes w.r.t. Seminartingales

We work on a filtered probability sapce (H, 3,P, (~)) which verifies the usual conditions.
We denote by l the set of all local martingales and 03BD the set of all adapted processes of
finite variation. Let M E f and K be a predictable process such that K2 M is lo-
cally integrable. There exists a unique local martingale, denoted by such that one has

N~ = K.(M, N~ for each local martingale N. We call K,;iM the stochastic integral of K
w.r.t. M. We denote by Lm (M) the set of all M-integrable predictiable processes. Let A E v
and H be a progressive process such that for almost all 03C9 ~ 03A9 H.(w) is Stieltjes integrable
w.r.t. A.(w) on (o, t~, t E 1R+. H is said to be stochastic Stieltjes integrable w.r.t. A and we
denote by H; A this integral. Then H; A E v . We denote by Ia (A) the set of those progressive
processes which are stochastic Stieltjes integrable w.r.t. A.

Lex X be a semimartingale. A predictable process K is said to be X-integrable if there
exists a so-called K-decomposition X = M + A with M and A E v such that K E

Lm (M) n I, (A). In this case, we put K.X = K,;zM + K.A and call K.X the stochastic integral
of K w.r.t. X. K.X doesn’t depend on the utilized K-decomposition. We denote by L(X) the
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set of all X-integrable predictable processes. Let M E f. In general, we have Lm (M) C L(M).
But for a continuous local martingale M, we have Lm (M) = L(M). . 

It is very natural to raise the following question: How to define a stochastic integration of

progressive processes w.r.t. semimartingales in such a way that it generalizes that of predictable

processes w.r.t. semimartingales as well as the stochastic Stieltjes integration. We shall solve

this problem in this section.

1.1. The Case of Local Martingales

First of all, we consider the case of local martingales. Recall that for any optional process
H there exists always a predictable process K such that [H 7~ K] is a thin set.

’The following definition is a slight generalization of the one given by Yor [7].

Definition 1.1. Let M ~ £ and H be a progressive process. We denote by °H the optional

projection of H. If there exists a predictable process K such that

~i~ ~°H ~ K~ is a thin aet;
(tt) K E Lm (M);

 oo, a.s., Vt E IR+, ,
et

then H is said to be M-integrable and the stochastic integral is defined by the following

formula:

HmM = KmM + ~(Ha - K,)~M,. . (1.1)
..

It is easy to prove that doesn’t depend on the utilized predictable process K verifying
conditions (i)-(iii). We denote by Im (M) the set of all M-integrable progressive processes.

Remark 1. We have H E Im ( M) ~ ° H E Im(M) and H,;z M = ° H,;l M, because

(°H = o. ,

Remark 2. Let M, N E f. In general, we don’t have the inclusion Im (M) n Im (N) C

Im (M + N).

Remark 3. Let M be a quai-continuous local martingale. If H E 1m (M), then any
predictable process verifying condition (I) satisfies automatically conditions (II) and (ill). In

consequence, if M and N are two quasi-continuous local martingales, then we have Lm (M) n

Lm(N) C Lm(M + N). This remark is important for our definition of S.I. of progressive

processes w.r.t. semimartingales (see Definition 1.4 below). .

The following two lemmas are essential for our main results of this section.

Lemma 1.1. Let A E y and H E I,(A). . Then urc have °H E I,(A) and 0 H.A = H;A.

Proof. Since R.A E ’V, according to a result from the general theory of stochastic processes,
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° H; A exists and we have ° H; A = (H.A)O = H; A, where B° stands for the optional dual
projection of B.

Remark. Let A E ’V and H be a progressive process. It is possible that ° H E le (A) but
H ~ I, (A).

Lemma 1.2. Let M E ,C ~ v and H E Im(M) ~ I, (M). . Then we have H,;sM = H;M.

Proof. Let K be a predictable process such that conditions (i)-(’iii) in Definition L1 are
satisfied.

Set A = . Since M E ,~ ~ v, we have M = A - AP and AP is continuous, where
..

AP is the predictable dual projection of A. Thus, we have OM = and H - K E Ie (A) in
view of condition (iii) By Lemma 1.1, we have °H - K E I, (A) and

(H - K);A = (°H - K);A = (°H - K);M.

Again by Lemma 1.1, we have °H E I, (M) so that K E I, (M). Consequently, according to
a property of S.I. of predictable processes w.r.t. local martingales we have K,;aM = K;M.
Finally, we obtain that

= K;(A - AP) + - 

,.

= K:M + - 

.~.

= + - K,)OM, = H,;aM.
,~.

1.2 The Case of Semimartingales

Lemma 1.2 suggests us to give the following definition.

Definition 1.2. Let X be a semimartingale. A progressive process H is said to be X -
integrable in the restricted sense, if there exists a so-called H-decomposition X = M + A with
M E ,~ and A E v such that HE Im (M) n I, (A) . In this case, we put

H;.X = H,;aM + H;A (1.2)
and call H,X the stochastic integral of H w.r.t. X in the restricted sense. By Lemma 1.2, HfX
doesn’t depend on the utilized H-decomposition of X.

We denote by Ir(X) the set of those progressive processes which are X-integrable in the
restricted sense. It is easy to see that we have L(X) C Ir (X) and I, (A) C Ir (A) for A E v and
these stochastic integrations coincide. Let X and Y be semimartingales. In general, we don’t
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have the inclusion Ir (X~ C Ir (X +Y~. Therefore, the above definition of S.I. isn’t quite
reasonable.

Befor going to give a reasonable definition of S.I. of progressive process w.r.t. semimartin-

gales, we introduce some notations.

We denote by (resp. v‘~‘) the collection of those purely discontinuous local martingales
(resp. processes of finite variation) which have no jump at totally inaccessible times. We denote
by (resp. the collection of all quasi-continuous elements of l (resp. v). We put

sQ = + 

Then we have S = (B S9 (direct sum), wher S is the set of all semimartingales (see [6]). Let
X E J. We denote by X = X~ + Xq the decomposition of X following Sda C Sq.

Let X E S. We have L(X) = and H,X = This observation

suggests us to define a S.I. of progressive processes w.r.t. semimartingales along this way.
The following lemma characterizes the elements of L(X) for X E Jela.

Lemma 1.3. Let X E and H be a predictable process. Then H E L(X) if and only if
there exists a (unique ) Y E Sd°‘ such that DY = If it is the case, one has H.X = Y.

Proof. We only need to prove the sufficency of the condition. Assume that there exists a

Y E such that AK = Put

Ot or 

et

Then X-C and Y-H;C are special semimartingales. Let X-C = M+A and Y-H;C = N+B
be their canonical decompositions. Then we have H(AM + = AN + AB. By taking

predictable projections we get that = AB. Thus we have B = H;A and HAM = AN.

The latter equality implies that N = HmM. Thus we conclude that H E L(X) and Y = H.X.
The following lemma characterizes the jump of an element of 

Lemma 1.4. Let Z be an accessible process such that Zo = 0 and {Z # 0} is a thin

Then there ezists an X E Sda such that AX = Z if and only if E v and

v, where PH stands for the predictable projection of H.
e.

Proof. Assume that Z satisfies the conditions mentioned above. Put

At = ~ °

et

Then A E v and A is a predictable process. Put

, K = J - PJ.

Then PK = 0, and we have

~ Ka ~ 2 + (pJe )2~  00, a.8.

et at
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Since the increasing process 03A3K2s is obviously locally integrable, there exists a unique,.

M E such that AM = K by a theorem of Chou and Lépingle (see [2]). Put

B = L , X = M + A + B.
a~

Then X E and 0394X = Z. The sufficiency of the conditions is proved. We leave the proof of
the necessity part to the reader.

Lemma 1.3 suggests us to give the following definition.

Definition 1.3. Let X E Sdo.. A progressive process H is said to be X-integrable if there
exists aYE such that 0394Y = In this case we put H.X = Y and call H.X the

stochastic integral of H w.r.t. X. We denote by I(X) the set of all X-integrable progressive
processes.

Remark 1. Let X E Then H E I(X) t~ °H E I(X) and we have H.X = 0 H.X,
because H0394X = °HaX.

Remark 2. Let X E Sdo. and H be progressiv eprocess. If there ezists a predictable process
K such that K E L(X) and ~ !H, - E Y, then H E I (X) and we have

a.

H.X = K.X + ~(H, - K,)~X,. . (1.3)
e.

Now we arrive at a reasonable definition of S.I. of progressive processes w.r.t. semimartin-
gales.

Definition 1.4. Let X E Sq. A progressive process H is said to be X-integrable if there
exists a so-called H-decomposition X = M+A with M E £q and A E vQ such that H E 1m (M)
and H E I, (A~ . In this case, we put

H.X = + H; A, ( 1.4)
and call H.X the stochastic integral of H w.r.t X. Let X E J. A progressive process H
is said to be X-integrable if H is separately Xda-and XQ-integrable. In this case, we put
H.X = and call H.X the stochastic integral of H w.r.t. X. We denote by I(X)
the set of all X-integrable progressive processes.

Remark 1. Let X and Y be semimartingales. V H E I (X) n I (Y) then H E I (X + Y~
and we have H.(X + Y) = H.X + H.Y. Moreover, we have L(X) C I (X) and l, (A) C I (A~ for
A E v. Therefore Definition 1.4 is more reasonable than Definition 1.2.

Remark 2. Since Im (M) = ~ Im (Mq) for M E ,C, we have Ir (X) C I (X) and
two integrations coincide. Therefor Definition 1.4 is more general than Definition 1.2.

Remark 3. If H E I (X ) then ° H E I (X and H.X = ° H.X.
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The following theorem gives us a usefull creterion for optional integrands.

Theorem 1.1. Let XES and H be an optional process. If there exists a predictable
process K such that

(i) [K ~ Hl is a thin set; K E L(X); (iii) 03A3 |Hs - K, ~0394Xs| E v, ,
e_.

then H E I(X) and we have

H.X = K.X + - 

. (1.5)
,~-

Proof. In view of Remark 2 following Definition 1.1, we may assume X E Sq. Put

. !~ or .

at 
’

Then X - A and K. (X - A) are special semimartingales. Let X - A = N + B be the canonical
decomposition of X - A. According to a lemma of Jeulin (see ~5~), we have

K.(X-A) =K,;zN+K;B.

Since X - A is quasi-continuous, B is continuous. Therefore, we have OX = ~N + ~A,
0394N0394A = 0, and

+ 

.~- .:5- ’:5-

Consequently, H,;aN exists and we have K; B = H.B. Thus, H.(A + B) exists and we get

K.X + ~(H, - 
’:5-

=KmN + KaB + K~A + ~(~j’e - Ke) UNe + 
..~-

=H,;aN + H; (A + B).
This means H E I (X) and we have (1.5).

Remark. In (7~, the stochastic integral of H w.r.t. X was defined by (1.5). Theorem 1.1
shows that the present definition of S.I. is more general than that given in (7~.

Corollary. Let X, YES. . Then Y E I (X and we have

Y.X = Y_.X + ~ ~Y, OXe. (1.6)
’:5’

Proof. By Theorem 1.1, we have Y E ) and

= + 
’:5-

Put

Z = + ~ DYeOX,a’°,.
.~-
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Then Z E and OZ = Thus Y E and = Z. Consequently, (1.6)
holds.

Let M E In general, we have Im (M) I (M). The following theorem shows that we
have Im(M) = I (M) if M is a continuous local martingal. For further result see Theorem

1.3. (6).

Theorem 1.2. Let M be a continuous local martingale. We have Im (M) = I (M) and
H.M = H,;,M = K,;aM, where K is any predictable process such that (°H ~ K~ is a thin set.

Proof. Assume that H E I(M). Let M = N + A be a H-decomposition of M. Then
N E and A E v. Put Bt = Then A = B - BP and BP is continuous. Let

K be a predictable process such that (°H ~ K~ is a thin set. We have

.~.

=Km N _ (H - K); B + H, B - K.BP

=KmN + K; (B - BP) = K.M.

Since M is a continuous local martingale and K is a predictable process, we have K,M = K,;zM
by Jeulin’s lemma. Consequently, we have H E 1m(M) and H,;1M = KmM = H.M.

Remark. Let M be a continuous local martingale. Then Im (M) consists of those pro-
gressive processes H such that (°H)2 E I, ((M, If H E Im (M), then H,;iM is the unique
continuous local martingale such that (HmM, N~ = °H; (M, N~ for each continuous local mar-
tingale.

We end this sub-section with the following theorem. We leave its proof to the reader.

Theorem 1.3. Let XES and H E I (X) .

(1) We have = and = H.XC where X~ stands for the continous
local martingale part of X.

(2) For any stopping time T we have

= H.XT = 

(H.X)T- = = 

(3) (H.X, Y) = H.(X, Y~, VY E S
(4) Let K be a locally bounded predictable process, then we have

K.(H.X) = H.(K.X) = (KH) .X.

(5) Let H’ be a locally bounded progressive process such that H’ E I (X~ . Then H’ + H E
I(X) and (H’ + H).X = H’.X + H.X.

(6) If X is a continuous semimartingale, then for any predictable process K such that
(°H ~ K~ is a thin set we have K E L(X~ and K.X = H.X. ~""~ . _ ,
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1.3 An Exponential Formula for Semimartingales

Let X be a semimartingale with Xo = 0. Assume that = 1] is an evanescent set. We
consider the following stochastic equation:

H==l+ /* Y.dX.. , (1.7)

or equivalently (by (1.6))

~==1+ . (1.8)
~ «

If Y is a solution of (1.8), we have

0394Yt = Yt-0394Xt + 0394Yt0394Xt

so that

~~=~- . ~)

Put

~i~: . ".’"’

It is easy to prove that A ~ T and we have

~ AY,AX,= .

o~ ~o

Consequently, satisfies the following Doléans-Dade equation

Y,=l+ (1.11)

Conversely, if (~) satisfies (1.11), then we have

’

from which it follows

Y_0394A = 0394Y - Y_0394X = 0394Y0394X.

Thus satisfies (1.8).
Therefore we have proved the following

Theorem 1.4. Let X be a semimartingale with Xo = 0. Assume that = 1] is an

evanescent set. Then the stochastic equation (1.7) has a unique solution denoted by e(X),
which is given by the following formula:

1 
e(X)t = ~(X + A)t = exp{Xt - t 2  Xc,Xc>t} 03A0 1-0394Xs, (1.12)
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where A is defined by (1.10), the product Zt = 03A0 e-0394Xs 1-0394Xs is absolutly convergent and (Zt)
is a process of finite variation.

Corollary. ( 1) Let X and Y be semimrtingales with Xo = Yo = 0. Assume that [AX = 1]
and = 1} are evanescent sets. Then we have

e(X)e(Y) = e(X + Y - (X, Y~) (1.13)

(2) Let X be as above. Then we have

 X~, X~ >) =1 (1.14)

Remark. Let X be a semimartingale with Xo = 0. If we consider the following stochastic

equation

Yt =1 + Y, - dX, + ~ ’ 

(1.15)
~ et

then from the above argument we see that (1.15) has a unique solution which is given by the
follwoing formula:

Yt = exp{Xt - 1 2  Xc, Xc >t} 03A0 e-0394Xs 1-0394XsI[0394Xs~1]. (1.16)
§2. A Simple Construction of the S.I. w.r.t. Local Martingales

In this section we shall show how to reduce the S.I. of predictable process w.r.t. local

martingales to that w.r.t. locally square-integrable martingales.
Let M be a locally square-integrable martingale and H be a predictable process such that

the increasing process M~ is locally integrable. Then it is well known that there exists a
unique locally square-integrable martingale, denoted by H.M and called the stochastic integral
of H w.r.t. M, such that for each local matringale N we have ~H.M, N~ = H.~M, N~. Moreover,
one has = The extension of this S.I. to local martingale case has been achieved
by Meyer and Doléans-Dade. We propose here a very simple appoach to this extension.

Theorem 2.1. Let M be a local martingale and H be a predicatable process such that the
increasing process H2.(M, M is locally integrable. Then there exists a unique local martingale,
denoted by H.M and called the stochastic integral of H w.r.t.M, such that one has (H.M, N~ =
H.(M, N~ for each local martingale N. Moreover, one has = 

Proof. Set

At = ~ or 

at
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Since M is a local martingale and H2.(M, MJ is locally integrable, it is easy to see that A
and H.A are of locally integrable variation. Thus, H.AP exists and we have (H.A)P = H.AP,
where Ap is the predictable dual projection of A. Put

V = A - AP, U = M - V

We have

 ~A! +  1 + = 1 +  2

= 1

+  2

Therefore, U is a locally square-inegrable martingale, andH2.[U, U] is locally integrable because
H2.[U, U] _ 2H2.((M, M] + (Y,YJ) E v. We put

H.M = H.U + H.A - H.AP

Then H.M is a local martingale which meets the requirement. The uniqueness is trival.

§3. A Simple Proof of the Integration by Parts Formula

Let X be a semimartingale. It was first discoved by Dellacherie and Meyer in their book [1]
that the Ito formula could be deduced easily from the following so-called integration by parts
formula: X2 = 2X_.X + (X.X~. This is a great simplification to the theory of the stochastic
integration. However, the proof of the integration by parts formula given in [1] seems to be a
little complicated. Now we propose a simple one.

The following lemma is well known and can be easily proved (see Jacod and Shiryaev [2]).

Lemma 3.1. Let M be a local martingale and A be a predicatable process of finite variation.

Then [A, M] and MA - M_.A are local martingales.
Now using this lemma we can prove the integration by parts formula.

Theorem 3.1. Let X be a semimartingale. We have

Xz = 2X_.X + (X, X~.

Proof. Instead of considering XT ~-, where Tn = inf ~t : > n}, we may assume that X is

bounded, so that X is a special semimartingale. Let X = M+A be its canonical decomposition.
We have, using the fact that A2 = 2A_.A + (A, A],

2x_ .x - (X, xl
= M2 + 2MA + A2 - 2M-.M - 2A_.M - 2M_.A - 2A- .A

- [M, M] - 2[M, ~] - fA, ~L]
= (M2 - [At, At]) - 2M_.M + 2(MA - At- .~ - A_.M + [M, A])
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By Lemma 3.1, 2X_.X - (X, X~ = B is a local martingale. Moreover, B is continuous.
On the other hand, just as proved in (1~ by the dominated convergence theorem for the S.I.,
X2 - 2X_.X is an increasing process. Therefore, B is of finite variation, so that B = 0. The
theorem is proved.

§4. A Remark on the Compensated S.I. w.r.t Local Martingales

The so-called compensted S.I. of optional processes w.r.t. local martingales was introduced
by Meyer [4]. The main result of this S.I. is the following theorem:

Theorem 4.1. Let M be a local martingale and H be an optional process such that

H2. M, M is locally integrable. Then there exists a unique local martingale, denoted by
such that for each bounded martingale N, H.(M, N~ is a local martingale.

Moreover, one has = (HAM) where p(HL1M) is the predictable projection
of HAM.

Let M~ (resp. Md) be the continuous (resp. purely discontinuous) local martingale part
of M. If H is an optional process such that H2.[M, M] is locally integrable, then HcMc and
HcMd exist and one has HcM = + Moreover, for any predictable process K
such that [H ~ K] is a thin set one has HcMc = K.Mc. Therefore, the compensated S.I. can
be reduced to that w.r.t. purely discontinuous local martingales. In the latter case, just as
remarked by Jacod [3], one can use a theorems of Chou and Lepingle on the characterization of
the jump of a local martingale to give the following general definition of the compensated S.I.

Definition 4.1. Let M be a local martingale and H be an optional process. H is said to
be M-integrable in the sense of compensated S.I. (we write H E Lc(M)) if (i) H2.  M~, M~ >
is an increasing process, and (ii) exists and ~~~. Za is locally integrable where
Z = HAM -P (HOM). If HE Lc(M), we put

~cM = + L

where K is any predictable process such that K( is a thin set and L is the unique purely
discontinuous local martingale such that AL = Z.

Now we give a simple proof of Theorem 4.1 by using the theorem of Chou-Lepingle.

Proof of Theorem 4.1. We may assume that M is a purely discontinuous local mar-
tingale. Assume that locafly integrable. Set W = =

and A = ~e~, W,. Then A is a process of locally integrable variation. We
have P(W)) = Since HAM = W + U, exists.

Set B = ~ U; . Then B is locally integrable, and we have = p(U2), so that
.,:::;.
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~ P(U2).  BP. Put Z = HAM -P We obtain that
  

~ Z;  2(Hz.(M, M~ + ~ ~p(HOM), ~2)
e. 

 2~H2.~M! M~ + + 
s. s.

Therefore, ~a~. Z; is locally integrable. Let L be the unique purely discontinuous local

martingale such that AL = Z. Then for any bounded martingale N, the following process V
is obviously of locally integrable variation:

V = (L, Nj - H.(M, N~

and we have AV = Therefore, we obtain that 0 (Vp) = p (~Y) ~ = 0. That
means VP is continuous. However, V = ~V, E so we must have VP = 0. Thus, V is
a local martingale. Theorem 4.1 is proved.

The following theorem shows that the sufficient condition in Theorem 4.1 is almost neces-

sary.

Theorem 4.2. Let M E f and H be an optional process such that H2 E Ia ((M, M~).
Then the compensated stochastic integral HeM exists if and only if H2.(M, M] is locally
integrable.

Proof. We only need to prove the necessity of the condition. Assume that exists.

Let Z = HOM - . Then we have

A := 03A3[p(H0394M)s]2 ~ 2(03A3Z2s + H2.[M,M]) ~ U.

Since A is predictable, A is locally integrable. Thus, H2.[M, M] is locally integrable, because
we have

03A3H2s0394M2s ~ 2(A+ 03A3Z2s).

Corollary. Let M E f and H be an optional process such that H E Im(M). Then HcM
exists if and only if H,;1M is a special semimartingale. If it is the case and H.M = N + A be

its canonical decomposition, then HcM = N.

Proof. Assume H,;aM is a special semimartingale. Let HmM = N + A be the canonical

decomposition of HmM. Then HAM = AN + AA and = L1N. Thus ~N =

HAM - On the other hand, we have = = Thus

HcM exists and HcM = N. Now assume that HcM exists. Let K be a predictable process

verifying conditions (i)-(iii) in Definition 1.1. Then from (1.1) it is easy to see that H2 E

1. ([At, MD. Since HcM exists, by Theorem 4.2 M is locally integrable. But we have

[HmM, = H2.~M, M~ by (1.1), thus H,;aM is a special semimartingale. 
’
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