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GENERALIZED HARMONIC OSCILLATORS
IN QUANTUM PROBABILITY

by B.V. Rajarama Bhat and K.R.Parthasarathy
Indian Statistical Institute, Delhi Centre

7, S.J.S. Sansanwal Marg, New Delhi 110 016

Introduction.

By a generalized harmonic oscillator we mean a pair (H, X~ of selfadjoint operators in
a complex separable Hilbert space 7~ satisfying

(1.1 ) forall 

where c2 ~ 0 is a constant and D is a dense linear manifold in When H is fixed we say
that X is harmonic with respect to H in the domain D . Such a definition is motivated
by the fact that in Heisenberg’s picture of quantum dynamics with energy operator H the
rate of change (or velocity) and the acceleration of the observable X are determined by
the operators i[H, X] ] and -[H [H, X]] respectively and (1.1) expresses the relation that
in every pure state the mean acceleration of X is proportional to the mean value
of X, the constant of proportionality being -c~ ~ 0. In the present exposition we shall
discuss several examples of generalized harmonic oscillators and establish the following : :
given any symmetric probability distribution p on the real line satisfying the property that
polynomials are dense in L~(~a~ there exists a generalized harmonic oscillator (H, X ~ and
a unit vector u in a Hilbert space such that Hu = 0, the spectrum of H is contained in
~0,1, 2, ~ ~ ~} and the probability distribution of X in the pure state u is We shall also
indicate situations when an arbitrary observable may be expressed as a superposition of
harmonic observables with respect to a selfadjoint operator having pure point spectrum.
Finally examples of quantum martingales are constructed in a boson Fock space for which
the observable at time t is harmonic with respect to the conservation operator A(t) for
every t . These include fermion brownian motion, Azema martingales and also martingales
for which the distribution at time t in the vacuum state is a properly scaled’ Wigner
distribution.

Examples of generalized harmonic oscillators. ,

We shall now present a few concrete examples of generalized harmonic oscillators and
examine their properties.

Example 2.1. Let ?~ _ ~2 with the orthonormal basis (eo , ei) where eo = ( ), e1 =
01. Define

03C30 = (10 01), 03C31=(01 10), 03C32 = (0 i -i0), 03C33 = (10 0-1)
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where os, ~ =1, 2, 3 are the well known Pauli spin matrices. Then (o~, (03, o=~~ = 4os if
i = 1) 2 and = 0 otherwise. Thus 7~ is harmonic with respect to u3 for each i and any
observable 03C3 in H can be expressed as 7 = 03A3i x;os where x; is a real scalar for each a . In
the pure state eo , op and o3 have degenerate distribution at 1 whereas o~ and 0’2 have
Bernoulli distribution with equal probability for the values 1 and -1. .

Example 2.2. Let 1l be a Hilbert space with orthonormal basis el, e2, ...~ . ~e
adopt the convention that en = 0 whenever n > dim 1l. For any u, v ~ ?~ define the

operator 11£ > i~ in Dirac’s notation so that

u for all w in ’M.

Let

(2.1) , L = ~ ~eJ > ej+1 ( ~

J J

Denote by D the linear manifold generated by eo, el, .... Then N is essentially selfadjoint
on D , , [N , L] = -L and > particular, Lk = 0 f or k > dimM.

(Since Leo = 0, , LeJ = for 1 ~ j ~ dim1l we may call L and L* the standard
annihilation and creation operators respectively. N may be called the number operator.)
We have the relations

(2.2) L*L = 1 - (ep > , LL* > ] where n = dim H,
N = £ L*~ L~ ,

~>1

For any bounded complex valued function f on {0,1,2,...,} define the bounded selfad-
, joint operator

(2.3) ~ = .

Then

, ,

so that X is harmonic with respect to N on D When dim H = oo, f(j) = 1/2 for all j
and k === 1, X = (L + L*)/2 is a harmonic observable with respect to N on D having the
standard Wigner distribution with densit y function 2 ~ 1- xZ ~ 1~2 in the interval ( -1 , 1 in
the pure state eo. This is easily shown by proving that  eo, >= 0 if n is odd and

= + when n = 2k through a routine computation.
The boson annihilation operator a can be expressed as a = (N + 1~1~~ L. Then

(2.4) X = (N + 1~1~2L + L* ~N + 1~1~2
can be closed to an unbounded selfadjoint operator with D as a core and

, .
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This is covered by (2.3) by putting k = 1, dim H = oo and avowing the unbounded
function f with = (j +1)~ for all j. In the pure state eo, X has the standard normal
distribution. In the pure state e~ the density function of X is (27r)’~~(~c:~ ~ where
~ is a suitably normaliaed k -th degree Hermite polynomial..
Now consider an arbitrary operator X whose domain includes D and express it as

X = Stj ~ e; ] where ~  oo for each j . Define the functions

= 
, 

= 

for at! t > 0 where xii+k = = 0 whenever t + k > dim H. Then we have

(2.5) Xu=fo(N)u+ 
~l

(2.6) =

fo(N)u+ 
~>l

In particular, (2.6) implies that are determined by the identities :

’

"

= ~~ 
for all u ~ Dj where the right hand side integrals are in the strong sense. If X is symmetric
on D then j~ and fo is real. If X is bounded

1 .

If X is Hilbert-Schmidt we have the "Plancherel identity"

(2.7) Tr ~ = Tr E Tr + 
~>l

where = 1 if dim H = oo.

When X is a bounded selfadjoint operator ~ = y~ in (2.5) and Xi = +
is a bounded selfadjoint operator. Thus (2.5) may be interpreted as follows:

every bounded observable is a superposition of bounded observables harmonic with respect
to ~.

Example 2.3. Let H be any selfadjoint operator in a complex separable Hilbert space
’M with pure point spectrum S. Then S is a finite or countable subset of R. Denote by G
the countable additive group generated by S and endowed with the discrete topology. Let
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G be its compact character group with the normalized Haar measure. For any bounded
operator X on M and A E G define the bounded operator

(2.8) .

Let be such that Hu = Hi = Then

( "~(~-v-a~d~~u,Xv>. .
Thus .

 u, X À v > =  u, Xro > if A = ~ - v,
=0 

In other words, for any nonzero bounded operator X there exists a A ~ S - S =

~(~ - v E ~~} such that 0 and on the linear manifold 1) generated by all
the eigenvectors of H

>

, .

a>o

If X is selfadjoint (X~~* = X_a and X is a "superposition" of bounded harmonic
observables Xo and ~(X _a + X a , a E S - ~~, a > 0 } with respect to H . Whenever X, Y
are Hilbert-Schmidt operators we have the analogue of (2.’T~ : :

Tr X*Y = Tr X*0Y0 + 03A3 Tr .

~>o

and X = Xo + + converges in Hilbert-Schmidt norm.

Example 2.4. In contrast to the preceding examples where the energy operator H had
pure point spectrum we may consider ?~ _ , H = p, X = cos aq , a ~ R where p, q
is a canonical Schrodinger pair satisfying [q,p] = a . . Then [p, [p, cos 03B1q ] = 03B12 cos 03B1q
on the domain of smooth functions with compact support. Similarly ~p, ~p, sin aq~~ _
a2 sin aq . More generally one can construct examples of harmonic observables of the form
X = e103B1q + where f is a sufficiently regular complex valued fucntion and
hope to describe an arbitrary observable as a "continuous superposition" of such harmonic
observables.

Harmonic observables with a prescribed distribution

Adopting the notations of Example 2.2 consider a selfadjoint operator Z in M whose
restriction to the linear manifold D generated by an orthonormal basis has the form

(3.1) Z = f(N) + g(N) L + 
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where f and 9 are functions defined on the set ~(0,1, 2, ...~, , f is real and ~g( j ~~ > 0 for
all j. Define the projections

k

, 0  k  dim H
;=0

with range equal to the linear span of ei, ... , ek} and the operators

(3.2) PkZPk |Hk .

Consider the polynomials

(3.3) po(x) = 1 , , = Ak) , 1 ~ k  dim H.

Inspired by the theory of orthogonal polynomials as expounded in [1] we shall establish the
following theorem.
THEOREM 3.1. The sequence 0  k  dim H} defined by (3.3) is also the sequence of
monic orthogonal polynomials of the distribution of the observable Z in the pure state eo .
We reduce the proof to two elementary lemmas.

LEMMA 3.2. The sequence obeys the following recurrence relations :

=1 ~ pl(x) _ ~ - f (~) 
= (x - f (k - 2) |2pk-2(x) if 2  kdim H.

PROOF. In the orthonormal basis el, ... ek-1} of the 8ubspace Hk-1 the operator
A~ has the tridiagonal matrix representation

f (0~ g(0) 0 0 ... p

go) f(1) ?(1) 0 ... 0

(3.4) A k = 
0 9(1) f (2) 9(2) ... , 0

... ... ... ... ... ...

0 0 ... ... ... g(k - 2)
B 0 0 ...... g(k-2) f(k-1)

Expanding the determinant of .~ by the last row we obtain the required relations
immediately..
LEMMA 3.3. The polynomials satisfy the following : :

(3.5) pk(Z)e0 = h(k) ek for all 0 ~ k  dim H

where

(3.6) h(0) =1, , h(k) = g(0)g(1) ...g(k -1) if 1 ~ k  dim H.

PROOF. We have trivially

po(Z) eo = eo a eo = (Z - f (~~~ eo = 9(~~ e 1 = ei .
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For k ~ 2 we use induction. By Lemma 3.2, induction hypothesis and (3.1) we have

= ~Z - 
= (Z - 2)I2h~k - 2)ek-2
= 9~k _ 2) h~k _ 1~ ek_2 + 2)~2h~k _ 2~ ek_2
= g(k -1) h(k = ..

PROOF OF THEOREM 3.1. Let ~co be the probability distribution of Z in the pure state eo . .
Lemma 3.2 implies that the coefficients of the polynomials pi are all real and by Lemma
3.3

pk(x)pl(x)d 0(x) = e0,,pk(Z)pl(Z)e0 >

>

=  h(k) e~ > _ .

Since > 0 for all 0  k  dim H the required result follows. N

COROLLARY 3.4. Define the polynomials 0 ~ k  dim H} by

where p,~ and h(k) are defined by (3.3 ) and (3.6 ). Let ~ck be the probability distribution
of Z in the pure state ek for each 0  k  dimH Then ~,~ « ~so and

dhk (x)= qk(x)2 .

If dim H = oo and 0 i8 determined uniquely by its moments then the distribution of the
observable Ale defined by (3.2~ in the pure state eo has its support in the set of zeros of
qlc and converges weaidy to Po as k --~ oo . .

Proof. For any real t we have from Lemma 3.3 .

=  eo Z ) eo >

_ ~ eo, > = .

This proves the first part. To prove the second part first observe that pj~ is the characteristic

polynomial of Ak for each k Since qo, q1, ... are the orthonormal polynomials for
the distribution of Ale in the pure state eo as well as the first k orthonormal polynomials
for the distribution 0 it follows that their first k moments are same..

Remark 1. Suppose in (3.1) we drop the hypothesis ‘g~ j)~ > 0 for all j. We can still
define the sequence by (3.3) and obtain the recurrence relations of Lemma 3.2. From
the proof of Theorem 3.1 and (3.6) we obtain

I = I h(k) |2 = |g(j) |2.

" j=0
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If k = min~j : : g(j) = 0~ then it follows that the polynomials 1, x, x~, ..., x~-1 are

linearly independent and pl, ... is an orthogonal basis of .

Remark 2. Let dimH = n  oo and let the observable Z be defined by (3.1) with
g(j) > 0 for all 0 ~ j  n 2014 1. Translating the recurrence relations of Lemma 3.2 in terms
of the normalized polynomials in Corollary 3.4 we obtain

n-1

(Z - ~~ E = 
.

j=0
If xo, xl, ... , is an enumeration of the zeros of qn then

n-1 
"

ej = 0~j ~n-1

( qr(x .~211~2
r=0

is a unit eigenvector of Z for the eigenvalue In particular, the observable Z assumes
the values xo, xl, ... , xn-1 with respective probabilities

pij = qi(xj)2 qr(xj)2 , 0~j~n- 1

r=0

in the pure state e; for each i = 0, 1, 2~... ~ -1. It is to be noted that is a doubly
stochastic matrix. In this remark we have used the fact that the roots xo, ... , xn-1 of

qn are distinct. 
’

Remark 3. From the table of orthogonal polynomials as presented in [1] it is possible
to determine the functions f and g in (3.1) so that the corresponding observable Z has
some of the well known probability distributions. We shall present a few examples :

(1) Let f(j) = 0, _ ~ for all j so that Z = (L + L~~~2. As remarked in Example
2.2, Z has standard Wigner distribution in the pure state eo whenever dim H = oo Then
its density function in the pure state ek is ~~-, q~(x~2(1- x~~l~Z in the interval (-1,1~
where 3 0} is the sequence of Chebyshev’s polynomials of the second kind : :

qk(x)=sin((k+1)Arc cos x) sin(Arc cos x).

Suppose dim H = n. By the discussion in Remark 2 and the fact that the zeros of qn
are {cos n+1 a~, ,~ = 0,1, ... , n -1} it follows that the observable Z assumes the value

cos 
~ + 1 

’If with probability
n+1 

P Y

pij = 1 - cos 2(i+1)(j+1) n+1)x n+1, j = 0,1,2,...,n-1
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in the pure state e~ for each i = 0,1, 2, ... , n -1. It is curious that ((p~~ ~~ is a symmetric
matrix.

(2) Let dim1l = oo, = 0, = 2-1~Z, = 1/2 for all j ~ 1, . Then the
distribution of Z in the pure state eo is the symmetric Arcsin law with density function
1r-1(1 - x2~-1/2 in the interval (-1,1). In the pure state ei , Z has the density function
~-lq~(x~2(1- xZ~-ll2 where ~qk, k ~ 0} is the sequence of Chebyshev’s polynomials of
the first kind ; :

qo =1, , 2 cos(k Arc , k ~ 1, , ~ 1 ’ .

(3) Let dim1l = oo, = 2j +a, 9(~~ _ ~(3 +1~(~ +a~}l~~ for all j where a > 0 is
a constant. Then Z has Gamma distribution in the interval (0, oo) with density function

e-~ . In the pure state e~ the density function of Z is e-~
in (0, oo) where k ~ 0} are the Laguerre polynomials : :

qk(x)={0393(03B1)0393(k+1) 0393(03B1+k+1)}1/2 L03B1k(x), k~1
where k ~ 0} is determined by the generating fucntion

L03B1k(x)wk = (1 - w)-03B1 exp(- xw 1-w).k=0 1 _ w

The binomial, Poisson, normal and Beta distributions along with their Krawtchuk,
Charlier, Hermite and Jacobi orthogonal polynomials can be similarly realized through
the observable Z in (3.1) by an appropriate choice of f and g using the extensive table
in [1].
THEOREM 3.5. Let p be a probability distribution on the real line with moments of all
order and satisfying the condition that the linear manifold D of all polynomials is dense in .
LZ (~~ . Suppose Z is the selfadjoint operator of multiplication by x, i.e., = 

with maximal domain. Then there exist an orthonormal basis 0 ~ k  of

polynomials and real sequences {f(k), g(k) |0 ~ k  satisfying the following :
(i) qo =1, , deg qk = k, g(k) > 0 for every k ;
(ii) for all 

where N and L are the number and standard annihilation operators defined by

.

)
t k=0

respectively.
Proof. First observe that the sequence is linearly independent in
L2(~~ , By applying the Gram-Schmidt process on this sequence construct an orthonormal
basis 0  k  of real polynomials with qo = 1. Since is in the
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linear span of qp, q1, ... , qk+1 it follows that  qm, Zqk > = 0 for m > k+2. For k ~ m+2
we have  qm, Zqk > =  0. Combining both we conclude

if ~m-k~~2
In other words, in the orthonormal basis the matrix of Z has the tri-diagonal form

g(0) 0 0 0 0 ...

g~0) till. g(1) 0 0 0 ...

0 ~2) g(2) 0 0 .../ 0 0 9~~) f ~3) g(3) 0 ...

.....................

where f(k ) =  Zqk >, g(k) =  Zqk+1 > for each k . By Remark 1 after the proof
of corollary 3.4, 0 for k  dimL2(p). If g(k)  0 change to This
can be done successively to ensure that g(k) > 0 for all 0 ~ k  dim L2( ). This shows
that Z satisfies the required properties..
COROLLARY 3.6. In Theorem 3.5 suppose that p is a symmetric probability distfbution.
Then the function f can be chosen to be identically 0.

PROOF. The symmetry of p implies that the odd moments of p vanish. Thus L~~~u) _
S+ ~ S_ where Sj and S- are respectively the closed subspaces spanned by {x21, j =0, 1, 2, .. ,} and ~x , ~ = 0,1, 2, . , ,} . Thus the polynomials qk of Theorem 3.5 satisfy :

S~ according as k is even or odd. In particular, is orthogonal to in
L (p) and hence f(k) =  qk, Zqk > _ 0 for all k . 1

COROLLARY 3.7. Let  be any symmetric probability distribution on the real line with
moments of a~I order. Suppose that the set of ah polynomials is dense in L~~~), . Then
there exists an orthonormal basis el, e~, ...} and a selfadjoint operator X in L~ ~~u)
satisfying the following :

(i) e~ belongs to the domain of X for each j ;
, 

(ii) X is harmonic with respect to the number operator N = Ej j lej >  ej| in the
linear manifold D generated by {eo, el, ...} ;

(iii) The distribution of X in the pure state eo is p. .
PROOF. This is immediate from Theorem 3.5, Corollary 3.6 and the relation

f~ [N, g(N) L + ~~~~)l 1= g(N)L + L* g(N)
on the domain ~, where L = ~~ ~e~ >  N

Examples of processes satisfying harmonic property
We begin with a heuristic argument. Consider two commuting selfadjoint operators H, K

in a Hilbert space h. Let A(F), A(K) be their respective differential second quantizations
in the boson Fock space ~I = r(h) defined by = for all t6 R. For any
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u E h let a(u~, at(u be the associated annihilation and creation operators in Define

X = + a (u~ d(I~~ . If Hu = cu for some scalar c we have the commutation .

relations : ~~(H~, X~ _ + cat (u) ~1(K~ and ~a(H~, y(H~, Xll ] = c2X. .
By imposing suitable domain restrictions on H and K it is possible to construct many
examples of generalised harmonic oscillators of the form (a(H~, X~. A slightly modified
form of this construction reveals the harmonic property of many processes in Fock space
with respect to the conservation process. We follow the methods of quantum stochastic
calculus as described in [4], [5], [7]. Consider M = the boson Fock space
over and the creation, con’servation and annihilation processes At, A and A
respectively. Let ~(X(t~, t > 0} be an adapted family of selfadjoint operators satisfying

dX = EdAtEtdAt

where (E, Et) is a pair of adapted processes adjoint to each other on a suitable domain of
exponential vectors and satisfying [A(t), E(t) = 0. From quantum Ito’s formula it follows
that [A(t), ~~1(t~, X(t~~~ = X(t) modulo domain considerations. As a consequence of this
heuristic discussion we have the following examples.

Example 4.1. . Let F, Ft be the fermion annihilation and creation processes in 
satisfying .

dF = JdA , dft = JdAt

where J is the reflection process [2]. Then (A (t), F(t) + Ft (t)) is a generaliced harmonic
oscillator in the linear manifold generated by all exponential vectors.

Example 4.2. Let -1 ~ c  1 be any constant. Following [6] consider the Azema
martingale obeying the stochastic differential equation

, Xc{O)=O. .

This is not a process of the form described earlier but it once again follows from quantum
Ito’s formula that

I~(t~ = 

on a dense linear manifold generated by vectors of the exponential type.

Using Maassen’s kernel formalism [3], [4] in Guichardet’s version of Fock space we shall
now prove a lemma and use it to exhibit some examples of quantum martingales with the
harmonic property. To this end consider a standard, totally finite and non-atomic measure
space (S, .~, m) and the associated Guichardet space rs = {u : u C S, ~o  oo} with its ,

symmetric measure constructed from m integration with respect to which being indicated
by du and ~o denoting cardinality of a . . Consider the annihilation, conservation and
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creation operators in defined by

{a(u~ f}(Q~ = ,

~~~~G~f}~a~-~~ ‘~~’~}fta~ >
sEQ

(at (u) f) (u) = £ u(s) f(u ) s)
tEa

where u E L2(m~, ~p E .

LEMMA 4.3. Let u E and let 03C8 be a function on the set {0,1,2,...} satisfying
supn n1/2|03C8(n) |  oo Then the closure of the operator is bounded.

PROOF. Put B = Then

(Bf)(u) = ~ ~ s)’~~#~a ~ s))
sEQ

* §(#U - I) £ U(3) ~ s~ if a fl ~P~
rEo

=0 

By the sum-integral formula for integration with respect to du we have

(4.1) ~Bf~2 = |03C8(#03C3 - 1) |2|u(s)|2|f(03C3B s) (2 du

+ #03C3~2 |03C8(#03C3-1)|2 u(s1)f(03C3Bs1)u(s2)f(03C3]s2)d03C3

+ J 
The second term on the right hand side of (4.1) is equal to

(4.2) J | u(s)f(03C3~s)dm(s) |2 |03C8(#03C3 + 1)|2 d03C3
 ( ,/ 1 J s~ ~2 ~~’(~v + 1~ 

- ~u~2 f |f(03B4) |2 |03C8(#03B4) 12 da
eEb

= ~u~2 #03B4|03C8(#03B4) |2 |f(03B4) |2 d03B4 .

Combining (4.1~ and (4.2) we have for any f in the domain of B

~Bf~2 ~ {sup(n + 1) ~u~2 ~f~2. []
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COROLLARY 4.4. Let 03C8 be any function on {0,1,2,...} such that

sup n1~2  oo .
n

Define

X(t) _ {~(1l(t)) A(t) + At(t) ~(A(t)) }"’
in where At, A, A are the boson creation, conservation and annihilation
processes and N denotes closure. Then ~X (t~, t > 0} is a quantum martingale of
bounded selfadjoint operators in the standard Fock filtration. Furthermore (A(t~, X(t) ) is
a generaliaed harmonic oscillator on the linear manifold generated by exponential vectors
for every t .

PROOF. By considering X(t) as an operator in where S is the interval (0, t~ with
Lebesgue measure and putting u(s ) = 1 it follows from Lemma 4.3 that

~X(t)~ ~ t sup (n + 1)1/2|03C8(n)) for all t > 0 .

Since (At, A, A) is the correct Wick ordering so that dAt dA = dAtdA = dAdA = 0 it

follows that obeys the martingale property..

Remark. In Corollary 4.4 the probability distribution of in the vacuum state

is also the probability distribution of the bounded operator

Z = ~(N + 1)(N + 1)’~2 L + + 1) (N + 1)1/2
in the pure state eo where N, L, eo are as in Example 2.2 with the dimension of the
underlying Hilbert space 7-f being infinite. In particular,

X(t) = 2 1 ~A~t) + + At(t)(A(t) + 

is a quantum martingale of bounded selfadjoint operators where t-1~2X(t~ has standard
Wigner distribution in [-1,1] for all t > 0. Indeed, this is immediate by putting
L(t) = {(A(t) + L*(t) = At(t)(A(t) + 1)-ll2 and observing that

LtL*t = t, [(t),L(t)] = -L(t) for all t. In this construction X(t) is a noncommutative
martingale. It will be interesting to construct a commutative version.

REFERENCES 

[1] T.S. Chihara : An Introduction to Orthogonal Polynomials, Gordon and Breach, New
York 1978.

[2] R.L. Hudson and K.R. Parthasarathy : Unification of fermion and boson stochastic
calculus, Comm. Math. Phys. 104 (1986) 457-470.

[3] H. Maassen : Quantum Markov processes on Fock space described by integral kernels,
p. 361-374 in Lecture Notes in Math. 1136 (1985), Springer, Berlin.



51

[4] P.A. Meyer : Eléments de probabilités quantiques (exposés 1-x) in Séminaire de Prob-
abilités, Strasbourg, Lecture Notes in Math 1204 (1986), 1247 (1987), 1321 (1988)
Springer, Berlin.

[5] P.A. Meyer : Fock Spaces in Classical and Noncummutative Probability, Chapters 1-IV,
Publication de l’Institut de Recherche Mathématique Avancée, Strasbourg 1989.

[6] K.R. Parthasarathy : Azéma martingales and quantum stochastic calculus, I.S.I. preprint
1988, to appear in the proceedings of Conference held in memory of R.C. Bose, Delhi,
1988.

[7] K.R. Parthasarathy : I.S.I. Lectures on Quantum Stochastic Calculus, New Delhi 1988
(mimeographed notes)


