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Necessary and sufficient conditions for the existence of
In-perfect processes associated with Dirichlet forms

by

Sergio Albeverio*,**,#, Zhi Ming Ma**,***

1. Introduction and the main result

As is well known, a Hunt process associated with a Dirichlet form with "Co"-regularity(i.e.
with a regular Dirichlet form on a locally compact metrizable space) was first constructed
by M. Fukushima [Fu2]. See also the fundamental work of Fukushima [Fu3] and Silver-
stein [Si]. In this paper we extend the result of Fukushima and Silverstein to Dirichlet
forms without the assumption of Co-regularity. We mention that there exist already pub-
lications concerning the existence of strong Markov processes associated with non-regular
Dirichlet forms, see the work of Fukushima [Fu1] and Silverstein [Si]. Moreover there are
constructions of diffusion processes for Dirichlet forms in infinite dimensional spaces, see
the papers by Albeverio and Høegh-Krohn [AH1]-[AH3], Albeverio and Rockner [AR62],
Fukushima [Fu4] and Kusuoka [Ku]. The authors of the above mentioned papers made use
of the previous results for Co-regular Dirichlet spaces by employing certain compactifica-
tion methods.

There has been another treatment of the relationship between Markov process and Dirichlet
spaces. In this treatment one assumes that there exists already certain strong Markov pro-
cesses and then one investigates the related Dirichlet spaces. See the work of Dynkin [Dl]
[D2], Fitzsimmons [Fi2], Fitzsimmons and Getoor [FG], Fukushima [Fu 5], Bouleau-
Hirsch [BoH]. For other work on Dirichlet forms see also Dellacherie-Meyer [DM Chap.
XIII], Kunita-Watanabe [KW], Knight 
Our approach differs from all the above mentioned treatments. We construct directly a
strong Markov process along the same line of the construction used in [Fu3] Chapter 6.
By so doing we obtain necessary and sufficient conditions for the existence of a certain
right process (we call it an m-perfect process, see Def. 1.2 below) associated with a given
Dirichlet space without the assumption of Co-regularity. Our construction relies on the
refinement of the semigroup via quasi-continuous kernels (see [AMI]). In fact we construct
quasi-continuous kernels in a general framework, which can be used even in situations where
there are no underlying Dirichlet forms (this is related to previous work by Getoor [Gl]
and Dellacherie-Meyer [DM Chap. IX]). In this connection we mention another related
work of Kaneko [Ka] who constructed Hunt processes by quasi-continuous kernels with
respect to Cr,p-capacity.
Our work is also an extension of a result of Y. LeYan [Lel-2] who obtained a character-
ization of the semigroup associated with Hunt processes. In fact our argument for the
necessity of the condition (1.9) (see Th. 1.8 below) comes from an idea of [Lel-2]. Some
of our results have been announced in [AM2].
We now introduce some concepts and related results which are necessary for describing our
main result.
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Let X be a metrizable topological space with Borel sets X. A cemetery point X is

adjoined to X as an isolated point of Xo := X U {0}. . Let (Xt) = 
be a strong Markov process with state space (X, X) and life time ( := inf {t _> 0 Xt = ~}
(c.f. e.g. [BG]). We denote by the transition function of (Xt) and by (Ro)o>o the
resolvent of (Xt ), i.e.

pif (x) = (1.1)
and

R03B1f(x) = Ex[~0e-03B1tf(xt)dt] (1.2)

provided the above right hand sides make sense. CT A denotes the hitting time of a subset
A of Xo, i.e.

CT A = inf{t > 0 : : X . (1.3)

1.1 Definition (Xt ) is called a perfect process if it satisfies the following properties:
(i) Normal property:

V.r E ~A (1.4)

(ii) Right continuity: t ’2014~ Xt(w) is right continuous from

~0, oo) to Xo, , Pz a.s., b’x E . (1.5)

(iii) Left limit up to (: IimXa(w) =: exists in X
a1t

for all t E (0, ~(w)), Pz a.s. , , 1~x EX. . (1.6)

(iv) Strengthened fine continuity of resolvent: is Pz-indistinguishable
from

~x E X~ f E bX. (1.7)
Here and henceforth bX denotes all bounded X-measurable functions,

R1f(Xt)_I{t03B6}:=limR1f(Xs)I(t03B6) (we always make the convention that Zo_ = Zo
for an arbitrary process (Zt)t~0).

Remarks on the Definition 1.1

(i) A strong Markov process satisfying (1.4) and (1.5) is called a right process with Borel
transition semigroup ( see [Sh] Def. (8.1), see also (G2~ (9.7) ; but in [Sh] and [G2] it is also
assumed that X is a Radon space). 
(ii) A special standard process (see [G2] (9.10)), in particular, a Hunt process always
satisfies (1.6) and (1.7).
To sum up the above remarks, we have the following inclusions among different classes of
processes (c.f. [G2] pp. 55):
(Feller) C (Hunt) C (special standard) C (perfect) C (right).
In what follows we assume that m is a a-finite Borel measure on X.
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1.2 Definition

(i) (Xt) is said to be m-tight if there exists an increasing sequence of compact sets
of X such that

Px{lim03C3X-Kn ~ 03B6} = 1, m a.e. x ~ X (1.7)

(ii) (Xt) is called an m-perfect process if it is a perfect process and is m-tight.
Due to an idea of T.J. Lyons and M. Rockner [LR], we proved in [AMR1] the following
proposition.

1.3 Proposition Suppose that X is a polish space, then any strong Markov process
(Xt ) satisfying (1.5) and (1.6) is m-tight.
For the proof of Proposition 1.3 see 

Remark

(i) It is evident from Proposition 1.3 that any perfect process is an m-perfect process
provided the state space X is a Polish space.

(ii) We mention that for the special case of (Xt) being a standard process on a locally
compact metrizable space, the conclusion of Proposition 1.3 can be derived from [BG]
(9.3).

We now consider a Dirichlet form (£, .~’) on L2 (X, m) (see e.g. [Fu3] for the definition).
We set

£1(f~9) = £(f~9) + (f~9)~ d f~9 E .~’ . .
Here and henceforth (~, ~) denotes the inner product of L2(X, m), In the sequel we always
regard ~’ as a Hilbert space equipped with the inner product For a closed set F C -XB
we set

~’F={f 6 F : f = 0 m-a.e. on X - F} . . (1.9)
7F is then a closed subset of ~*.

1.4 Definition An increasing sequence of closed sets of X is called an £-nest
if is £1-dense in .~. 

-

k>1
A subset B C X is said to be £=polar if there exists an E-nest such that B C

n (X - Fk ). A function f on X is said ~-quasi-continuous if there exists an £-nest {Fk}
k>1
such that the restriction of f to Fk, is continuous on Fk for each k 2:: 1.
We remark that every E-polar set is m-negligible (see Prop. 2.7).
We denote by (Tt)t>o and the semigroup and resolvent on L2(X,m) associated
with (£, .~’) respectively. We set

?~l = {h: : h = G11 with f E L2(X,m), 0  f - 1 m.a.e. } (1.10)



377

?~ is non-empty because we assumed m to be u-finite. For h E ~l we now define the

h-weighted capacity Cap h as follows:

Cap h(G) = : f f >- h m.a.e. on G} (1.11)

for an open set G and

Cap h(B) = inf { Cap h(G) : G ~ B, G open } (1.12)

for an arbitrary set B eX.
In Section 2 we shall show that Cap h is a Choquet capacity enjoying countable sub-
additivity. The importance of Cap h is its connection to £-nest stated in the following
proposition.

1.5 Proposition An increasing sequence of closed sets {F~ } of X is an £-nest if and
only if for some h E ?~l (hence for all h E .

as 

For the proof of Proposition 1.5 see Prop. 2.5 of Section 2.
Denote by Cap the usual 1-capacity defined e.g. in [Fu3]. Obviously we have Cap ~(B) _
Cap (B) for every B C X. Consequently we have the following corollary of Proposition
1.5.

1.6 Corollary Every set B C X with Cap (B) = 0 is an f-polar set. Every nest
{F’k} in the sense of [Fu3] is an £-nest. Every quasi-continuous function in the sense of
[Fu3] is an £-quasi-continuous function.
Let (Xt) be a Markov process with transition function (Pt)i>o. We say that is

associated with £, if 
~

Tt! = Pt f m.a.e. , V f E L2(X, m), t > 0 (1.13)
The main result of this paper is the following.

1.7 Theorem Let (£,.~) be a Dirichlet form on Then the following con-
ditions (i) - (iii) are necessary and sufficient conditions for the existence of an m-perfect
process (Xt ) associated with S.
(i) There exists an £-nest consisting of compact sets. (1.14)

(ii) There exists an £1-dense subset of F consisting of £-quasi-continuous functions.
(1.15)

(iii) There exists a countable subset Bo of ~o and an £-polar set N such that

E Bo} n (X - N) . ° (1.16)
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Remarks on Theorem 1.7

(i) Concerning the existence of a certain reasonable Markov process associated with a
given Dirichlet form, it is often assumed in the literature that:

There exists an £1-dense subset .~’ of F consisting of continuous functions. (1.17)

We remark that (1.17) is not necessary for the existence of an m-perfect process. It is even
not necessary for the existence of a diffusion process. Here is a counter example. Let (E, 7)
be a regular Dirichlet form on a locally compact space X such that each single-point set of
X is a set of zero capacity (e.g. the classical Dirichlet form associated with the,Laplacian
on 1Rd with d > 2). Let p. be a smooth measure which is nowhere Radon in the sense that
~c(G) _ +00 for all non-empty open set G eX. (For the existence of such nowhere Radon
smooth measures see [AM4]). We now consider the perturbed form (E~‘,.~~‘) defined as
follows: .

_ .~ n L2(X, m), , ’

~ (f,g) = ~(f,g) + xfg (dx) ~f,g ~ F .

It has been proved that (~ ,F ) is again a Dirichlet form ([AM7] Th. 3.2). We can check
that (E~‘, satisfies all the conditions (1.14) - (1.16) ([AM7]). Hence Theorem 1.8 is
applicable and there exists an m-perfect process associated with Moreover, if
(£,.~) satisfies local property, then so does (£~‘,~’~‘) and there exists a diffusion process
associated with (see (ii) below). On the other hand, it is evident that (1.17) fails
to be true for (£u, In fact, there is even no continuous functions (except the null
function) in the domain because p. is nowhere Radon.
(ii) The application of Theorem 1.8 to infinite dimensional spaces and to quantum field

theory will be discussed in subsequent papers. Here we mention that an m-perfect
process is a diffusion (i.e. Pz{Xt is continuous in t E [0, ()} = 1, for q.e.x E X) if and
only if the associated Dirichlet form (£, .~’) satisfies the local property in the sense of
[Fu3]. Hence Theorem 1.7 extends the results of the existence of diffusion processes for
Dirichlet forms in infinite dimensional spaces ((AH1-3~, (A "2j, (Ku~), on one hand.
On the other hand Theorem 1.7 provides us with a mathematical tool for constructing
strong Markov processes with discontinuous sample paths, having also applications in
quantum field theory.

(iii) By requiring F0 (in (1.15)) consisting of strictly ~-quasi-continuous functions we ob-
tain necessary and sufficient conditions for the existence of Hunt processes associated
with Dirichlet forms. See [AM8] for details in this connection.

(iv) By introducing a dual h-weighted capacity and employing the Ray-Knight compact-
ification method, it is possible to obtain an analogue result of Theorem 1.7 for non-
symmetric Dirichlet forms satisfying the sector condition. This will be discussed in
subsequent papers.

Before concluding this introduction, we present some more concepts and related results.
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1.8 Definition (c.f. [Fu5])
(i) Let be the semigroup associated with a Dirichlet form (~ ~*) and be the

transition semi group of a perfect process (Xt ). We say that (Xt ) is properly associated
with ~, if
Pt f is an E-quasicontinuous version of Ti f for all t > 0 and f E m) (1.18)

(ii) Let (Xt) be a perfect process with state space (X, X ) and life time (, and let SEX.
We say that S is (Xt )-invariant if

Va: ~ 5’ . .

(iii) Let (Xt ) and (Yt ) be two perfect processes on (X, X). We say that (Xt ) and are

m-equivalent if there is a set S ~ X with m(X - S) = 0 such that
(a) S is both (Xt )-invariant and (Yt)-invariant;
(b) The transition semigroups of (Xt ) and (Yi) restricted to S are the same.
We now state the following results, to be further discussed below.

1.9 Proposition Let (Xt ) be an m-perfect process. If (Xt ) is associated with (E, ~’),
then (Xt ) is properly associated with (£, .~’).

1.10 Proposition Let (Xt) and (Yt) be two symmetric m-perfect processes on (X, X).
Then (Xt) and (Yi) are m-equivalent if and only if they are associated with a common
Dirichlet form (E, ~’).
The above two propositions can be proved by employing the results of Proposition 7.3 in
Section 7 and following the argument of [Fu5]. We omit their detailed proofs in this paper.
By virtue of Proposition 1.10 and Proposition 1.11 we can strenghten the statement of
Theorem 1.8 as follows.

1.11 Theorem There is a one to one correspondence between the family of m -
equivalence classes of symmetric m-perfect processes and the family of Dirichlet forms
satisfying conditions (1.14) - (1.16). The correspondence is given by the relationship (1.18).

Titles of the remaining sections
2. h-weighted capacity
3. ~-quasicontinuity
4. Sumciency of the conditions (1.14) - (1.16)
5. Necessity of the condition (1.14)
6. Necessity of the condition (1.15)
7. Necessity of the condition (1.16)

Appendix: Construction of the process
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2. h-weighted capacities

Throughout Sections 2 - 4 we assume that a Dirichlet form (~, ~) is given on L~(J~ m). Let
(Tt)t>o be the associated semi group and the corresponding resolvent. Following
[Fu3], we say that an element u E L2(X, m) is a-excessive if u satisfies

u ~ 0, u m.a.e., Vt > 0 . . (2.1)

In the following three lemmas we state some results on a-excessive functions without proof.
These results are well known in the context of regular Dirichlet spaces, but their proofs in
fact do not rely on the regularity assumption. See [Fu3] Section 3 for details.

2.1 Lemma (c.f. [Fu3], Theorem 3.2.1) The following statements are equivalent to
each other (for u and a > 0).
(i) u is a-excessive.
(ii) u > 0, u m.a.e., > 0.

(iii) Ea(u, v) > 0, dv E .~’, v > 0 m.a.e..

2.2 Lemma ([Fu3] Lemma 3.3.2) Let ui and u2 be a-excessive functions in m), ,
a > 0. If u1 ~ u2 m.a.e. and u2 E F, then ul E F and ul )  u2).
For an a-excession function h E .~ and B C X an open set, we put

= {f E .~ : f >- h m.a.e. on B} (2.2)

2.3 Lemma (c.f. [Fu3] Lemma 3.1.1, see also [R] Lemma 3.1) Let h E ,~ be a-
excessive, a > 0 and B C X be open. Then we have the following assertions.
(i) There exists a unique element hB E such that

: .

(ii) u) > 0, Vu E .~’, u > 0 m.a.e. on B. In particular, hB is a-excessive.
(iii) 0 ~ hB  h m.a.e. and hB = h m.a.e. on B.
(iv) hB is the unique element of ,Ch,B satisfying

hB) >- 0, Vu E .

Let X be defined by (1.10). For h e x, we consider now the h-weighted capacity Cap h
defined by (1.11) and (1.12).
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2.4 Proposition Cap h is a Choquet capacity, i.e.

(i) A C B===~ Cap ~(A)  Cap h(B) , ,

(ii) 
, 

An ~ ~ Cap h(U An) = sup Cap h(An) , ,

(iii) An compact, An ~ ~ Cap h (~An) = int Cap .

Moreover, Cap h is count ably subadditive, i.e., , 
’

(iv) Cap h U An) ~ 03A3 Cap h(An)
Proof Apply Lemma 2.3 and follow the argument of [Fu3] Lemma 3.1.2 and Theorem
3.1.1. ’

2.5 Proposition
(i) An increasing sequence Fk of closed sets is an £-nest if and only if Cap Fk) 1 0.
(ii) A subset N C X is an £-polar set if and only if Cap = 0.

Proof The assertion (ii) is a direct consequence of the assertion (i). We now prove
(i). Let ~Fk} be an increasing sequence of closed sets and be specified by (1.9). Then
every element u is uniquely decomposed by u = (u - uk) + uk with (u - uk) E 
and uk being orthogonal to with respect to the inner product £l. . It is easy to check
that is an ~1-Cauchy sequence. Denote by Hoc the limit of in F. Then

Ei = 0, dv E (2.3)
k

In particular, for h E M we have hk = with being specified by Lemma 2.3.
Suppose now ~Fk } is an S-nest. Then dense in .~’ with respect to £1-norm.
Consequently by (2.3) we know the limit hoo of {hk} is zero, which in turn implies

Cap Fk) _ hk) ~ ~ ~
Conversely, suppose that Cap h(X - Fk) J. 0. Then for an arbitrary u E .~’, we have

[ Cap h~X - °

On the other hand, suppose that h = Gi f with 0  f  1, f E m), we have

~1(hks u) = ~i (uk, h) = X ukfm(dx)

Therefore if u E Gi g for some nonnegative g E m), then by Fatou’s lemma,

u~fm(dx) ~ lim inf ukfm(dx) = 0 .

Consequently u~ = 0 m.a.e. and (u - uk) converges to u in £1-norm. From this we
conclude that is a form core of ,~’ and hence complete the proof..
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2.6 . Corollary Let hl, h2 ~E x. Then Cap h~ and Cap hz are equivalent in the sense
that for any decreasing sequence of subsets {Ak} of X, Cap h1 (Ak ) ~, 0 if and only if
Cap 0.

Proof This Corollary is a clear consequence of Prop. 2.5..
The following proposition shows that any £-polar set is m-negligible.

2.7 Proposition Let {Fk} be an £-nest. Then

m(X - U Fk) = 0
k>1

Proof By the definition of £-nest, U is £1-dense in ~ where is defined by
k>1

(1.4), which in turn implies that dense in L2(X,m). From (1.4) we know that
f = 0 m.a.e. on N := (X - U Fk) for each and consequently f = 0 m.a.e. on
N for each f E L~(X, m). Thus m(N) = 0 because m is u-finite on J~. ’

3. £-quasicontinuity
Given an £-nest { Fk }, we introduce the notation

C({Fk}) = { f : f|Fk is continuous for each k} . . (3.1)

A function f is £-quasi-continuous if and only if there exists an £-nest {Fk } such that
f E C({F’k}).

3.1 Proposition ([Fu3] Th. 3.1.2(i)) Let S be a countable family of £-quasi-continuous
functions. Then there exists an £-nest {F’k} such that S C C({Fk}).

Proof The proposition follows easily by applying Theorem 2.5 and following the
argument of [Fu3] Th. 3.1.2(i). *
The following proposition is an analogue of [Fu3] Lemma 3.1.5. But our proof is slightly
different from that of [Fu3] because we make no assumption that ~’ contains an £1-dense
subset consisting of continuous functions.
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3.2 Proposition Let / be ~-quasi-continuous. Then for h e H,

Cap ,{j: ~ X : LfMt > ~ ~ > 0 . (3.2)

Proof Let be an £-nest such that / e C({Fjk}). For A > 0, we set

~ ={)/!> A} U(X - Fk) .

Then Cjb is an open set and Gk ~ {|f| > 03BB}. Let

fk = |f| 03BB + h(x-Fk) .

Then fk and fk ~ ~ m.a.e. on Hence

Cap ~) ~ ~(A.A) ~ ( B/-~(/~) + ~/Cap,(~-F,)) 
2

Letting we obtain

Cap ,{)/! > Cap ~~(~/) . .
t

We say that fn converges to / ~-quasi-uniformly if there exists an £-nest Fk such that fn
converges to / uniformly on each ~. .

3.3 Proposition (c.f. [Fu3] Th. 3.1.4) Let {/n} be a sequence of ~-quasi-continuous
functions such that /n and /~ converges to / ~ ~* in There exists then a

subsequence {/n,} c {/n} and an ~-quasi-continuous function / such that / = / m.a.e.
and /n. converges to / ~-quasi-uniformly.

Proof Apply Propositions 3.1, 3.2 and 2.5, and follow the argument of [Fu3] Th.
3.1.4..

3.4 Proposition Let h e M be ~-quasi-continuous, {Fk} be an ¿-nest such that
h ~ C({jF~}), and {~} be a decreasing sequence of positive numbers such that ~ J, 0.
There exists then an £-nest such that ~ C J~ on each 2~.
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Proof We set Fk = { h > bk } n Fk. Then {Fk} is an increasing sequence of closed
sets. Let

gk = (h n + , Vk > 1

Then gk E .~’ and 9k  h m.a.e. on X - Fk. We have

Cap h(~’ - _ 9k) - 2£1 (h n ~k, h n + 2 Cap h(~’ - .

Hence by Prop. 2.5 {Fk} is an £-nest with the required properties. 8
The following Corollary is immediate.

3.5 Corollary Let h be ~-quasi-continuous. Then {h = 0} is an £-polar set. []
Following [Fu3], we say that an £-nest {Fk} is regular if for each k, supp . m) = Fk. .

3.6 Proposition (c.f. [Fu3] Lemma 3.1.3) Let {Fk} be an £-nest. Suppose that for
each k, the relative topology of Fk is secondly countable. Set Fk = supp . m). Then
{Fk} is a regular E-nest.

Proof The proof is easily obtained by applying Theorem 2.5 and following the argu-
ment of [Fu3] Lemma 3.1.3. *

Also the following Proposition is easily shown:

3.7 Proposition (c.f. [Fu3] Lemma 3.1.4) Let {F~ } be a regular E-nest and f E
C({Fk}). If f > 0 m.a.e. on an open set G, then f > 0 on

U Fk n G .k>1 /
8

4. S uffi ciency of the conditions (1.14)-(1.16)
Let us now assume that a Dirichlet form (E,.~) satisfying conditions (1.14) and (1.15) is
given on m). In particular, we fix an ~-nest {Xk } consisting of compact sets.
We shall say that a property holds E q.e. (abbreviation for E-quasi-everywhere), if it holds
outside an £-polar set.
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4.1 Lemma .

(i) Each element f ~ F admits an ~-quasi-continuous version.
(ii) Let / be ~-quasi-continuous and f ~ 0 m.a.e. on an open set G, then f ~ 0 S q.e. on

G.

Proof (i) follows from (1.14) and Proposition 3.3. To prove (ii), we assume that
/ 6 for some £-nest {F~}. . Set 2~ = Fk n Xk, then is an £-nest such that

each jF~ is secondly countable. By Proposition 3.6 we may construct a regular £-nest 
such that F"k ~ F’k C Fk. . Obviously f ~ C({F"k}). The desired assertion thus follows from
Proposition 3.7. *

Let us denote by Y = U ~ and Y = ~ ~ ~’ By Proposition 2.7, we have m(X - Y) = 0.
J~i

Hence we may identify £2(Y,m) with L~(J~,m) in an obvious way. 
’

4.2 Lemma

(i) The relative topology of Y is secondly countable.
(ii) (Y, Y) is a Lusinian measurable space.
(iii) ~(~y) is separable.
(iv) 7 equipped with the 03B51-norm is separable. 

Proof This follows easily from the fact that Y is a a-compact metrizable space. *

A nonnegative function k is called a kernel on X x y if k(x,.) is a measure on (Y, Y) for
each fixed :r ~ X and ~(’, ~4.) is X measurable for each fixed A 6 y. We shall write kl for

provided it makes sense.

Recall that and is the Markovian semi group and resolvent associated with
(~,.F) respectively.

4.3 Proposition For each t > 0, there exists a kernel P on J~ x Y such that
(i) tf is an ~-quasi-continuous version of ?/ for each / C L2(Y, m).
(ii) P~!/)~l, 
For each a > 0, there exists a kernel R~ on X x Y such that
(iii) 03B1f is an ~-quasi-continuous version of G03B1f for each f ~ L2(y, m).

The kernel J~ (resp. is unique in the sense that if there is another kernel
k on X x Y satisfying (i) (resp. (iii)), then k(x,.) = (resp. = 03B1(x,.)) for ~
q.e. a? ~ X.
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Proof We prove only the case of Tt. . By spectral calculus (c.f. [Fu3] Lemma 1.3.3)
Ttf for all f E L2(X, m) and

~(Ttf,Ttf) ~ 1 2t {(f,f) - Ttf,Ttf)}, , V f E 4.1

For each f E L2(X, m) ~ L2(Y, m), choose an ~-quasi-continuous version Ttf of Ttf. . By
(4.1), Proposition 3.2 and Lemma 4.1(ii) we see that it is a quasi-linear positive map from

m) to qC(X ) (qC(X) denotes the collection of all ~-quasi-continuous functions £q.e.
on X) in the sense of [AMI] Def. 1.2 (with respect to some h-weighted capacity). Applying
[AMI] Th. 4.2 we obtain a kernel k on X x y satisfying (i). Take a sequence of positive
functions f n in L2 (Y, m) such that 0 _ f n ~’ 1. We have k f n  1 £-q.e. by Lemma 4.1 (ii).
Hence we may find an £-polar set N such that 1 for all x E X - N and n >_ 1.
Set

N, A E Y,

Then Pt is a desired kernel. The £-q.e. uniqueness follows also from [AMI] Th. 4.2..

With the quasi-continuous Markovian kernels and Ri in hand, we can now follow
the argument used in [Fu3] Chap. 6 to construct an m-perfect process associated with a
given Dirichlet form satisfying conditions (1.14) - (1.16). We state the final result below
and postpone the detailed proof to the Appendix.

4.4 Proposition Let (£,.~’) be a Dirichlet form on L2(X, m) satisfying conditions
(1.14) - (1.16). There exists then an m-perfect process (Xt) associated with £ in the sense
of (1.13).

5. Necessity of the condition (1.14)
For proving the necessity of the conditions (1.14) - (1.16), in Section 5 - 7 we assume that
an m-perfect process (X t ) :_ with life time ( is associated with a
given Dirichlet form {£,.~) on L2(X,m)..
We fix a function cp E L2(X, m) n m) such that 0  c~ _ 1. Set = 

and 

= Ex[~0e-103C6(Xt)dt] , ~x ~ X (5.1)

For an arbitrary subset B C -XB we have defined

q B ( "’) = inf~t > 0 : Xt(w) E B} 
~ 

(1.3)
We now set for B C X

(5.2)
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5.1 Lemma (c.f [AM5]) Let B be an open subset of J~’, then UB E ~’ and

_ (~P~n)~ du E .~~--B (5.3)

(R,ecall .~’X_B is defined by (1.9)).

Proof Let us define for a nonnegative Borel function f :

V nf ( x ) = E z [~0 e-t-nt0 IB(Xs)ds f(Xt )dt] 5.4

Then Y"cp(x) T UB(x) pointwise. By virtue of the Markovian property and Fubini’s The-
orem we have

Ex [~0 e-t03C6(Xt)dt - nEz [~0 e-t(Vn03C6)IB(Xt)dt ] (5.5)

Consequently Vn03C6 E F and

£1 _ (~~ - v;~) (5.s)

By the symmetry property we have

_ ~) (5.7)

Writing Bt = f o IB )ds , we have for j > k,

~ / o E~’~ / o 
( / 0 e-(j-k)Bs ( / s kdBs]

= Ez / l dt .~ 0 ~ 0 ~ ~
Noticing that

:

1 > e-kBt / e-(j-k)Bs kdBs ~ 0 when j > k ~ oo,0

we conclude home (5.?) that

(k(Vkcp)IB, -~ 0 when j > k -~ oo.

Thus from (5.6) we see that n_>1 forms an ~1-Cauchy sequence which implies UB E F.
Moreover, from (5.5) we see that

~1 ~) _ (~P~’~)~ d~ E ~X -B.

Letting n -~ oo we obtain (5.3).
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5.2 Lemma Let B be an open subset of X. Set

(5.8)
Then B is a version of hB being specified by Lemma 2.3.

Proof By the strong Markovian property we see that

= 

where UB is defined by (5.2). Thus B ~ F and

= 0, Vu e 7x -B. (5.9)
It is obvious that B = h on B, which together with (5.9) and Lemma 2.3 (iv) implies
~i (~B - hB) =0. t

5.3 Proposition Let B be an open subset of X. Then

= E~ 

Proof

= = = CaPh(B).
Notice that up to now we didn’t use m-tightness of (J~). We now make use of m-tightness
to prove the necessity of the condition (1.14). *

5.4 Proposition (~,~) satisfies (1.14)

Proof Let be an increasing sequence of compact sets of X satisfying

Pz ( = 1, m - ~ ~ (5.9)

Set Gk = X - Xk, then

( = 1, m - 6 X

which implies j. 0 m.a.e. and consequently

0.

The proof is completed by applying Proposition 2.5. ’
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6. Necessity of the condition (1.15)
Let ~, h be specified as at the beginning of the previous section. For our purpose we

now introduce another stopping time TA:

(6.1)

(we make the convention that inf ~ = oo).
It is easy to check that TA :5 y~ A ( and if A is an open set, then TA = y~ A (.
A subset A C X is called finely olar if there exists a Borel set .4 D A such that 
()=0. We shall show in the next section that the concepts of "finely polar" and "£-polar"
are equivalent provideed (Xi ) is m-tight. In this section we want to avoid employing m-
tightness of (Xt ). Nevertheless, we can see immediately that a finely polar set is necessarily

, m-negligible, because Pp(TA  () = 0 implies  () = 0 and is m-symmetric.
Let us define for f E bX,

~f~ = E, sup (|f(Xt)| v |f(Xt-|)] (6.2)

Obviously for a Borel set A C X, we have

~IA~ " E> [~Ae-s03C6(Xs)ds] . (fi.3)

6.1 Lemma

(i) Let A be an open set of X, then Caph(A) = 
’

(ii) Let f E bX. If (~ f ~~ = 0, then f = 0 except for a finely polar set.

Proof (i) follows from (6.3), Lemma 5.3 and the fact that TA = a~A A ( for an open set
A. To prove (ii), let (~ f ~~ = 0 and define An = > ~}. Then (6.3) shows that

E [~Ane-103C6(Xs0ds] ~ n~f~ = 0,

which implies Pp{TAn  (} = 0.
We have

P>  ~}-O.
n>1 .

.

Set

C = (f E bX : : is right continuous and f (Xt_) is left continuous on [0, ~’)P~ a.s.}" 

(6.4)
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6.2 Lemma Let C C. If fn(x) ~, 0 for all x E .~’ - N, with some finely polar set
N, then ~~ f" ~~ ~, 0.

Proof Let w ~ 03A9 be such that is right continuous and is left
continuous on [0, ((w)) for 1 and such that TN(w) = ~’(w). For an, arbitrary T > 0,
we have

sup (~fn(~’t)~ ~ ~fn(xt-)~) (w) ~. 0, n i oo.BJ /
Consequently

lim sup ~fn~ ~ e-T sup f1(x),
a:

which proves the lemma.

[]

Denote by bC the set of all bounded continuous functions on X. Then bC is a subset of
C. Let C be the ][ . (~ short closure of bC.

6.3 Lemma C C C.

Proof Applying Daniell’s theorem ([DM] III.35) we see from Lemma 6.1 that any
positive bounded linear functional on (C, ~~ . ~~) admits an integral representation with
some finite Borel measure on X. From the fact that C is a vector lattice and (  Igl
implies  we have that any bounded linear functional on C is a difference of two
positive bounded linear functionals on C. Consequently each bounded linear functional on
C admits an integral representation in terms of some finite signed Borel measure on X. If
the lemma were not true, then by a version of the Hahn-Banach Theorem (see e.g. [Scha]
Chap. II 3.2) there would be a non-zero bounded linear functional on C vanishing on bC,
which would contradict the integral representation..

We are now in a position to prove the necessity of the condition (1.15).

6.4 Proposition (~,,~) satisfies (1.15).
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Proof Let F’0 = : f E Then ~1-dense in F and F’0 ~ .
The proposition will be proved by showing that for each f E C, there exists an £-quasi-
continuous function  ~  such that = 0. Let f E C. By Lemma 6.2 we can take
a sequence ~ f n } C bC such that III -~ 0. Without loss of generality we assume that

is uniformly bounded and  2-z". Let

An = ~2 : ~fn(x) - > 2 n1
Bn = Um>n Am

We have from Lemma 6.1 (i),

L 03A3 ~IAm ~
m>n m>n

m>n

It is easy to see that { f n } converges uniformly on each ~X - Bn ). Let f (x) = limn on

Bn) and = on Bn. Then / is ¿-quasi-continuous. Moreover,
one can check that =0 and consequently / is an £-quasi-continuous version of f
by Lemma 6.1 (ii)..

Remark In proving Proposition 6.4 we did not make use of m-tightness of (Xt).

7. Necessity of the condition (1.16)
Let (Xt ) be the same as in the previous section.

7.1 Lemma Let be a decreasing sequence of open sets of X such that
An = B. Then 

-

lim An = B, P-za.s., ~x ~ X.

Proof Let us set ~ = limn TAn. Then ~ _ TB. On the other hand set no =
{03C9 ~ 03A9 : Xt(w) is right continuous and has left limit on [0, 03B6(03C9))}. Let 03C9 E If

 03B6(03C9) and TAn (w) = ~(03C9) for some n ~ 1, then (w) E B. If Too("’)  ((w) and
 for all n > 1, then E B. In both cases we have B(03C9) ~ ~(03C9).

Hence ~ = TB a.s.

[]

In what follows we make full use of m-tightness of (Xt ).
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7.2 Proposition
Caph(A) _ VA E X. (7.1)

Proof In Lemma 6.1 we proved (7.1) for any open set A. Since X is a metric space,
for an arbitrary closed set A we can always find a decreasing sequence of open sets {An}
such that An = A. Thus by virtue of (6.3) and Lemma 7.1 we see that (7.1) holds
also for any closed set A.

Let Y = Xn. Then Y is a u-compact metric space. Caph restricted to the subsets
of Y is still a Choquet capacity. Let A be an arbitrary Borel set of A. By Choquet
Theorem (c.f. [DM] III 28. ) we can find an increasing sequence of compact sets 
such that Kn cAn Y and limn = Caph(A n Y). On account of the fact that
Caph(X - Y) = 0, we see from the above that

~IA~ ~ lim ~IKn ~ = Capk(A)

which proves the Proposition because the inverse inequality is always true.
[]

7.3 Proposition
(i) A set A C X is finely polar if and only if A is £-polar.
(ii) Any element f E C is £-quasi-continuous.
(iii) For each closed set A eX, there exists an [-quasi-continuous function uA such

that uA = 0 on A and uA > 0 on X - A.

Proof (i) follows from (7.1) and (6.3). (ii) follows from (i) and the proof of Proposition
6.4. We now prove (iii). Let B be an open set of X and uB be defined by (5.2). We see
from the proof of Lemma 5.1 that uB is [-quasi-continuous, because = limn Vncp(x),
and is an ~1-Cauchy sequence of £-quasi-continuous functions. Let now A be
a closed set. We define

uA(x) = Ex A0e-s03C6(Xs)ds . (7.2)

Let {Bn} be a decreasing sequence of open sets such that Bn = A. By Lemma 7.1
we have = limn It is easy to check from (5.3) that is a ~1-Cauchy
sequence. Hence uA is £-quasi-continuous and uA Obviously we have uA = 0 on A
and UA > 0 on X-A.

7.4 Proposition (£, ~’) satisfies (1.16).
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Proof Let be a countable family of open sets such that K : ~ ~ 1}
forms a basis for the relative topology of Y := Xn. Let Bo = 1 ~ ~ 1}.
Then Bo satisfies condition (1.16). 

-

z

Appendix. Construction of the process

This Appendix is devoted to the proof of Proposition 4.4.

Throughout this Appendix we assume that a Dirichlet form (~,F) satisfying (1.14) -

(1.16) is given on L2(X,m). We shall freely employ the notations used in Section 4.

Let 0 be a countable family of open sets of X such that X ~ 0 and

{~4 n Y : A ~ 0} forms a basis of the relative topology of Y . (A.I)

Set 
n

. Oi = {~L: ~ = U ~ 0,~ ~ 1} (A.2)
I=I

We fix an element h 6 X. For each A ~ 03981, choose an ~-quasi-continuous version A of
hA, where /~ is specified by Lemma 2.3. In particular, we write ~ for 
Let Bo be a countable set of ~-quasi-continuous functions in F satisfying (1.16). Without
loss of generality we assume that all elements of Bo are bounded and

u e Bo} D y. (A.3)

By virtue of Lemma 4.2 (iv), we assume also that Bo is 03B51-dense in 7.

We denote by Q and Q+ the set of all rational numbers and all positive rational numbers
respectively.

A.I Lemma There exists a countable subset of bounded ~-quasi-continuous func-
tions ~ C ~ such that
(i) A ~61).
(ii) 
(iii) ~ is an algebra over Q.
(iv) / E F implies |f| ~  and / A 1 ~ R’.

Proof Apply [Fu3] Lemma 6.1.1..
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A.2 Lemma There exists a regular £-nest {Fk} with Y1 := F; satisfying the
following properties. 
(i) H c C({Fk}). Fn C Xk, ~k ~ 1.

(ii) inf { h( x): x E Fk} > 0, 1.

(iii) 0  h(x), dx E Yl, A E O1 I
hA(x) = h(x), dx E An Yl, A E O1

(iv) There exists a sequence C Q+ , tk J. 0 such that
tku(x) ~ u(x), ~u E , x E Yi ;

-~ u(x), Vu E H, x E Yl. .
(v) tsu(x) = t+su(x), ~u H x Y ts e .
(vi) t1u(x) =  ~x E Yl, , t E Q+, u E H+(H+ :=

{uEH: : u>0});
(vii) hA(x), dx E Yl, A E O1
(viii) hB(x), dx E Yi, A, B E O1, , A C B.

Proof By spectral calculus (c.f. [Fu3] Lemma 1.1.3.) we have Ttu -~ u and t (Gi u - e-t

G1Ttu) -3 u in £1-norm when u and t ,~ 0. Hence by Proposition 3.3 and Lemma
4.1 (ii), and taking the fact that H is countable into account, we may take a sequence
{tk } C Q+, tk ,~ 0, and an £-polar set N such that (iv) holds for every u E H and
x E X - N. Let be an £-nest such that N C Fi,k}. By virtue of
Prop. 3.4 we may take an £-nest such that  ~ 1 k on F2,k for each k >_ 1. Let
{F3,k}k~1 be an £-nest such that  C C ({F3,k}). Let

F’k = (Fi,k) ~Xk, k > 1.
__~ /

Finally, by Proposition 3.6 we can find a regular £-nest {F~ } such that Fk C Fk for each k.
Applying Proposition 3.7 we can check that {Fk} is an £-nest with the required properties.

[]

A.3 Lemma

(i) There exists a Borel set 1’2 C Yi such that X - YZ is an £-polar set and
.

(ii) Let

Pi(x, A) = {t(x,A), ~x ~ Y2, A ~ y (A.4)
0 , ~x ~ Y - Y2, A ~ y

Then is a Markovian transition function on (Y, Y). That is, Pt is a Marko-
vian kernel on (Y, y) and

, fEbY (A.5)
(by denotes all bounded Y-measurable functions.)
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Proof The Lemma follows by using Proposition 2.7, Lemma 4.1 (ii), (A.3) and following
the argument of [Fu3] Lemma 6.1.4.

[]

We now proceed to construct Markov process. Let Yo = Y and yo = Q { y, {0394}}.
Here A is adjoint to Y as an isolated point. We define

= + (1- dx E Y, A E yo 
A.6

, VA E yo 
( ° )

is then a Markovian transition function on yo) with =1, b’x E
Yo. Set no = and consider the following objects:

Ot : ~ 03A9a. defined by 0398t03C9 = for w = {03C9}Q+ and t E Q+; (A.7)
= dw E t E Q+ ;(A.8)
M = E Q+}~ M~ = : s  t, s E Q+}~ Vt E Q+. (A.9)

Let M) M0t,X0t, 0, be a Markov process with state space (Y0394, y0394), time param-
eter Q+ and transition function . Let

Sll = (w E UA, Vt E Q+} (A.10).

It is easy to check that

=1, ’dx E Yz (A.11)

Let us set, for any t > 0,

Mt = n = (A.12)

where N = {r = 0, V:r E Y2}.
Any function f on Y is extended to Yo by setting f(A) = 0. For A E O1, we set
Zf = E Q+. In particular, ZX = 

A.4 Lemma Let A e O1, x E Yz.
(i) is a supermartingale
(ii) limtk ~Q+,tk~t Ez = Ez , Vt E Q+
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Proof (i) follows the Markov property of (X°), (A.ll) and Lemma A.2 (vii). (ii)
follows from (i) and Lemma A.2 (iv) ..
For Z= defined as above, we set Zt (w) - if the limit exists and

= 0 otherwise. By virtue of Lemma A.4 is then a right continuous
nonnegative supermartingale. Moreover, if we set

S~i = (w E is right continuous with left limits}, (A.13)

then (c.f. ([Me] VI, T3)
’ 

=1, dx E Yz, A ~ 03981. (A.14)
For an arbitrary subset A C Y, we define

= inf{t E Q+ : X°(w) E A}. ° (A.15)

A.5 Lemma Let x E Y2 and A E O1, then

Ez _ ~%z .

Proof For w E Of n ~i satisfying TA(w)  oo, we may select c Q+, t~ ~, TA(w)
such that

Applying Lemma A.2 (iii) we obtain Z ~ (w) = Z ~ (w), which in turn implies the Lemma
by virtue of (A.14)..

A.6 Lemma

(i) Let then

Ez ~Z A IIrA ~00}, _ Yx E 12. (A.16)

(ii) Let A be an arbitrary open set of X and hA be an arbitrary £-quasi-continuous
version of hA, then

Ez ~Zr,,I{TA00}~ _ E Y2. (A.17)
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Proof Following the argument of [Fu3] Lemma 6.2.1 it can be shown that

~ [~{~oo)] ~ V~ ~ ~~ 6 61 (A.18)

The assertion (A.16) follows then from (A.18) and Lemma A.5. The assertion (A.17)
follows from (A.16) by a similar argument of [Fu3] Lemma 6.2.2..

The following two lemmas are useful in proving the regularity of sample paths. We state
them in a general context for their own interest.

A.7 Lemma Let (.XB~) be a measurable space such that each single-point set is
measurable, and let H be a family of real valued functions on X such that o~(/ : / ~ H) D
X. Then H separates the points of X.

Proof Suppose that /(:r) = f(y) for all f ~ H. We must have {x,y} ~ Ax :=
But Ax is an atom of X and {x} ~ X. Hence {x,y) C {x}. That =

y..

A.8 Lemma Let (X, X) be a measurable space. be a family of bounded X-
measurable functions such that J? satisfies Lemma A.I (iii) and (iv), and such that F
contains a strictly positive element. Suppose that ~ and v are two finite measures on
(X,~) satisfying

= v/ e ~.

Then p and v coincide on r(/ : f ~ j~).

Proof If / E jt, a ~ Q+, then / A a C jt. Let

/n == ~(/ - / A a) A 1, then ~ and 

The proof of the lemma is completed by applying the monotone class theorem.
.

Let us introduce the following objects.

~ = := 6 Q+ : : ~ ~ ~ - (A.20)
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where { Fk } is specified by Lemma A.2.

, 
(A.21)

03B6 = inf{t ~ Q+ : X0t = 0394} (A.22)
~1= mf . {t > 0 : : Z~ = 0 or ZX = 0} (A.23)

~n ={~ ~ Z~ = 0, (1} (A.24)
~12 = n {w E possesses both the right

uEH+

and left limits at each t ~ 0), (A.25)

where jH+ = {u ~ JET : M ~ 0}.

03A913 ={03C9 E (03C9) ~ 03B61(03C9)}. (A.26)
03A92=03A911 ~ 03A912 n 03A913. (A.27)

The following is the key lemma concerning the regularity of sample paths.

A.9 Lemma (c.f. [Fu3] Lemma 6.2.3)
(i) There exists a Borel set Y3 such that X - Y3 is an £-polar set and Px(S22) =

1, dxEY3
(ii) The following properties hold for w E ~2

(iia) (w) = ~1 (w)
(iib) possesses at every t  ~(w) the left and right limits inside Yl and
X?(~) = A for all ((~) ~ ~ ~ Q+.

(iii) Set 
,

Xt(w) = lim X~ (w), Vw E 112 t > 0 (A.28)
, 

-

then

Px(Xt = X°, ~t E Q+) = 1 and Px(Xo = x) = 1, dx E Y3. (A.29)

Proof (i) For u E is a nonnegative bounded su-

permartingale for each x E Y2. Hence by [Me] Px(03A911 n 03A912) = 1 for all x E Y2. Set
Gk = X - Fk. From the proof of Theorem 2.5 (i) we know that ~, 0 which

together with (A.17) implies that there exists a Borel set Y3 C YZ such that X - Y3 is

£-polar and Px(03A913) = 1 for all x 6 Y3.
(iia) follows from Lemma A.2 (ii) and the definitions of (A.10) and (A.24).
For proving (iib) , we observe that {1u : u E H+ } separates the points of Yi by virtue
of Lemma A.2 (iv) and Lemma A.7. Let t  ~’(w). By (iia) and (A.26), E

Q+, s  C Fk for some tl > t a,nd k > 1. Following the argument of [Fu3] Lemma 6.2.3
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(i) we obtain the first assertion of (iib). The last assertion of (iib) follows from (A.24),
(A.10) and Lemma A.2 (ii).
(iii) can be proved by applying Lemma A.8 with a similar argument of [Fu3] Lemma 6.2.3
(ii) and (iii).

[]

Let (X=) be defined by (A.28) and Y3 be specified by Lemma A.9. We define for x 

Ptf(x) ~ (A.30)

R1f(x) =Ex[~0 e-s f(Xs)ds], (A.31)

provided the right hand sides make sense.

A.10 Lemma

(i) Pt f is an ~-quasi-continuous version of Ptf, d f E L2(X, m).
(ii) R1f is an E-quasi-continuous version of G1 f , V f E L2(X,m)
(iii) There exists a Borel set Y4 C 1’3 such that X - Y4 is S-polar and

Rlf(x) = Rlf(x), df E H, x E Y4 (A.32)
Here Rl is specified by Proposition 4.3 (iii) and ~f is specified by Lemma A.1.

Proof

(i) By (A.29) we have for all f E L2(X, m),

Ptf = E = E. [f(X0t)] = tf, dt E Q+ , x E Y3 (A.33)

Let t E R+ be arbitrary. Then for all f E if, x = =

Ex = which shows that Ptf is ~-quasi-continuous

for all f E F. Suppose that F E X, m(F’)  oo, then by monotone class theorem we
see from the above that Pt(fIF) is an ~-quasi-continuous version of Pt ( f IF ) for all
f E bX. Using monotone convergence theorem we complete the proof of (i).

(ii) From (i) it is easy to see that R1f = R1f m.a.e. for all f E L2(X, m). Consequently

Ptk Ri f (x) = Ptk Ri f (x) ~ - q.e.,

since both sides are ~-quasi-continuous versions of a same element in .~.
Let ~tk} be specified by Lemma A.2 (iv). We obtain by letting tk 1 0, for all f E B’

=Rif(x) £-q.e.

From this (ii) follows.
(iii) This holds by virtue of the fact that if is countable.

[]
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A.11 Lemma There exists a Borel set S C Y4 and an M-measurable set ft’ C S~2
such that

(i) X - S is an £-polar set; .

(ii) Pz(O’) = 1, dx E 8;
(iii) If w E S1’, then Xi(w) E S and E S for all 0 ~ t  ((w).

Proof Since X - Y4 is £-polar, there exists an 1 such that E4, k C
Fk n Set T4,k = inf{t E Q+ : v X° E X - ~4,k}, ~3 = (w E ~2 : : lim Tq,k(W) >_ ~(w)}.
By a similar argument as in proving Lemma A.9 (i), we may find a Borel set Y5 ~ Y4 such
that X - Ys is £-polar and = 1 for all x E Y5. In this way we have sequences
Y4 ~ ..., ~2 ~ ~3 ~ ~ ~ .~ Set S = and ~’ then satisfy (i)
- (iii) (c.f. [Fu3] Lemma 6.2.4). 

- -

[]

As before, we set ?A = S U {L1 } and So = YA n Moreover we set 

. S1 = (w E S~’ : = Vt E Q+} (A.34)
and denote the restriction (, to the
set 03A9 by the same notation again. Furthermore, we define at for t >_ 0 by setting 0398t03C9 =

{ ~ for w = 0~ is well defined for w E SI by virtue of Lemma

A.9 (iib). We now consider the process

(Xt) (A.35)

A.12 Lemma (Xt ) is a strong Markov process on (S, S) satisfying the conditions
(1.4) - (1.6).

Proof It is evident from the above construction that (Xi ) is a Markov process on
(S, S) satisfying (1.4) - (1.6). Also it is known from the construction that is

right continuous. Let P~ be the transition function of as specified by (A.30). We have
from (A.33),

Paf C ~% ({Fk},S), V f E H, s E Q+~ (A.36)
where C({Fk}, S) denotes the restriction to S of functions in C({Fk}). From (A.36) we
conclude that

lim Psf(Xv(w) = Psf(Xt(w)), ~s ~ Q+, f ~ , (A.37)

because (Xt) is right continuous and {Xs(03C9) : 0 ~ s ~ t} ~ Fk ~ S for some k ~ 1
provided t  ~(w). Again because (Xt ) is right continuous we have

t -3 Pi f (x) is right continuous for fixed f e H and xES. (A.38)
From (A.37) and (A.38) we obtain the strong Markov property by a similar argument of
[Fu3] Lemma 6.2.5 with  in place of and by virtue of Lemma A.8. []
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A.13 Lemma (Xt) satisfies the condition (1.7). That is, is Pz-
indistingushable from , dx E S, f E bX. (A.39)
Here Rl is specified by (A.31).

Proof It follows from (A.32) and Lemma A.11 (iii) that (A.39) is true for f E J~
and x E S. Let f E bX and x E S be arbitrary. We have the following martingale
decomposition:

e-tR1f(Xt) = M|f|i - t0 e-sf(Xs)ds Px - a.s. (A.40)

where is a right continuous Pz-martingale such that

M[f]t = Ex [~0 e-sf(Xs)ds|Mt] Px - a.s. (A.41)

Suppose that {fn} C bX is an increasing sequence of nonnegative functions satisfying
(A.39). Set f - limn fn. By virtue of (A.41) we can always find a subsequence such
that

lim sup = 0 Pz - a.s. (A.42)

Consequently we have

e-tR1f(Xt)_I{t03B6) = lim lim e-tR1fn2(X’t)I{t03B6}

=lim lim e-tR1fnk(Xt’)I{t03B6}

=e-tR1f(Xt-)I{t03B6} Px - a.s.

Thus the proof is completed by a monotone class argument.
[]

A.14 Lemma (Xt) is m-tight.

Proof Since X - S is polar, we can find an 1 such that Sk C -P~ n S
with being specified by Lemma A.2. Each Sk is compact since Fk is so. Let us set

= inf~t > o : xt ~ 

It can be shown that (for the notations see Lemma A.6)

= b’w E Q.
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Consequently by (A.17)

Ex q.e. xES. (A.42)

From (A.42) and the fact that (x) J, 0, £-q.e. we can prove the lemma.
[]

To sum up Lemma A.12 - A.14, we conclude that (Xt ) is an m-perfect process with
state space (S, S). By a similar argument as in [Fu3] Th. 4.13, we can now construct an
m-perfect process (Ji’~ ) = with state space (X, X) in such a way
that

(i) S is invariant and the restriction of (Ji’t) to S is (Xt). (A.36)
(ii) Each point x E X - S is a trap with respect to (Xi). (A.43)
(Xt) is then an m-perfect process associated with £. In fact, if we denote by Pt the
transition function of (~’i), then by Lemma A.10 (i) and the fact that X - S is £-polar,
we can show that

P= f is an £-quasi-continuous version of , Vt > 0, f E L2(A’, m) (A.44)

In this way the proof of Proposition 4.4 is completed.

Footnote

1 ) For further recent work, especially on the infinite dimensional case, see also [ABrR],
[AFHkL], [AHPRS1,2], [AK], [AKR], [AMR2], [AR61-5], [FaR], [R], [Sch], [Sol-3],
[Tak].

Acknowledgements
We are very indebted to Prof. Dr. Masatoshi Fukushima who greatly encouraged our
work, and carefully read the first version of the manuscripts of this paper and [AMI]
suggesting many improvements. We are also very grateful to Prof. Dr. H. Airault, Dr.
J. Brasche, Prof. Dr. R.K. Getoor, Prof. Dr. W. Hansen, Prof. Dr. M.L. Silverstein,
Prof. Dr. S. Watanabe, Prof. Dr. R. Williams, Prof. Dr. J.A. Yan, Dr. T. Zhang and
especially Prof. Dr. P.J. Fitzsimmons and Prof. Dr. Michael Rockner for very interesting
and stimulating discussions. The second named author would like to thank Prof. Dr. W.
Hansen and Prof. Dr. P.A. Meyer for their kind invitations to give talks in the Potential
Theory Seminar in Bielefeld resp. the Probability Theory Seminar in Strasbourg. We
also profited from meetings in Braga and Oberwolfach and are grateful to Professors Drs.
M. De Faria, L. Streit resp. H. Bauer and M. Fukushima for kind invitations. The first
named author would like to thank Prof. Dr. Hisao Watanabe and Prof. Dr. Takeyuki
Hida for a kind invitation to visit Japan, with the support of the Japan Society for the
Promotion of Science. During that visit he held seminars on topics related to this work at



403

Kyushu University (H. Watanabe, H. Kunita), Kumamoto (Hitsuda, Y. Oshima), Tokyo
(S. Kotani), Nagoya (T. Hida), Kyoto/Osaka (M. Fukushima, N. Ikeda, S. Kusuoka), and
received in this way much support and stimulation. Hospitality and / or financial support
by BiBoS, A. von Humboldt Stiftung, DFG and Chinese National Sciences Foundation is
also gratefully acknowledged. 

’

Added in proof: After we finished this work we learned at the Durham LMS-

Symposium (July ’90) from Prof. Dr. P.J. Fitzsimmons that every (nearly) m-symmetric
right process is an m-special standard process, see [Fil]. This fact implies, using the
inclusions between classes of processes mentioned before Def. 1.2, that our Theorem 1.7

gives a characterization of Dirichlet forms associated with symmetric Borel right processes.
We are most grateful to Professor Fitzsimmons for pointing out this fact to us.
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