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An extension of Krein’s inverse spectral theorem
to strings with nonreflecting left boundaries

by

Uwe Küchler and Kirsten Neumann

Humboldt-University at Berlin, Department of Mathematics
1086 Berlin, P.O.Box 1297, G.D.R.

Abstract: Krein’s inverse spectral theorem describes the spectral
measures ~ of the differential operators D D with boundary con-

dition f~(0) = 0, if m runs through all nondecreasing functions
on [O,~o). This result will be extended to boundary conditions of
the type af~(O) - f(0) = 0 (a e[0,oo)).
Other conditions as in Krein’s theorem appear.

Key words: gap-diffusions, quasidiffusions, generalized second order
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1. Introduction

It is well-known that every nondecreasing function m on 

performed with appropriate boundary conditions at zero and at

1 := sup supp m (a so-called string) generates a strong Markov pro-
cess (Xt) on supp m, where supp m denotes the set of points
where m increases. This process has as its (selfadjoint) infinites-
imal generator in L2(m) the generalized second order differential

operator DmDx together with the mentioned boundary conditions.

(Xt) is called a quasi- (or gap-) diffusion with speed measure m.

Examples are diffusions and birth- and death-processes. Several

probabilistic quantities of (Xt) as e.g. transition densities,

first hitting time densities, Levy-measures of the inverse local time
at zero, can be expressed in terms of spectral measures 03C4(m) of

D m D x under different boundary conditions, see e.g. Ito, McKean f2’],

Kuchler [71, [8], Kuchler, Salminen [9~.
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An essential result concerning these spectral measures is M.G. Krein’s

inverse spectral theorem, in a more extended form known as Krein’s

correspondence theorem, see Kac, Krein [3], Kotani, Watanabe [6).

Roughly speaking it states that the mapping m ~ ~ m) is a one-to-

one and onto correspondence between the strings m with the "reflect-

ing boundary condition f"(0) := f’(O-) = 0 and the set of all

measures T on that integrate (1 + N) ~ thereon, see

Theorem 2.2 below. What we are going to do is to study the situation

for the boundary conditions

af"(0) - f(0) = 0 , ,

where is fixed. (The case above corresponds to a = po . )

If a ("elastic killing boundary’), then there is still a

one-to-one and into correspondence (Theorem 2.4). If a = 0, then

m ----~ ~^m) maps the strings m with the "killing" boundary condition

f(0) = 0 onto the set of measures on that integrate
but not one-to-one. In Theorem 3.2 we shall describe the

preimages for every ~ which form one-parametric families.

As an application we get the description of all measures ~ that can

appear as the Levy-measure of the inverse local times at zero for
quasidiffusions (see Remark 3.6). This result was proved by other

(probabilistic) means in Knight [5]. Here we shall present an analyti-
cal approach.
Moreover, a generalization of Lemma 1 of Karlin, McGregors paper [4]
concerning birth- and death-processes to strings is given (see

Corollary 3.7).

2. Strings, spectral measures and Krein’s theorem

Here we shall summarize some facts from the theory of generalized
second order differential operators DmDx. For details the reader is

referred to Kac, Krein [3] or Dym, McKean (1~ , the latter’uses an-

other terminology.
By R and K we denote the real axis and the complex plane, respec-

tively. . R stands for K for K’R . Put R := 

and x := m , 1 ~ := 0. Let m be a nondecreasing right-continuous
extended real-valued function on R with m(x) = 0, xo. Define Em
to be the set of points where m increases and is finite:

( ~ Eo> o: m(x-E)  m(x+E) ~ oo V 



356

We shall assume Em ~ ~ and denote by the same letter m the measure

generated by the function m. Such a measure m is called a speed
measure.

Introduce c, 1 and r by

c 

1 r

r := sup .

We have and put h :=r-l if . Otherwise h is

irrelevant and for convenience we put h = 0 in this case. Note that

h = 0 if and If and 

then h must be greater than zero. The number r = 1 + h is called

the length of the string.
Sometimes we shall write cm, 1m’ ... to express that these numbers
come from m.

By ~ we denote the set of all real functions f on R having a

representation
x

f(x) = a + + ,~ (x-s)g(s)m(ds) (2.1)
0

for some measurable g on R and some reals ~, b.

Note that every f   is continuous and linear on the open intervals

of R ~ Em.
we define a generalized second order differential operator

DmDx by DmDxf = g, details can also be found in Kuchler [7], [8].

For every f ixed a the restriction Aa of DmDx to

da : ~ L2(m) E L2(m) ~ af-(0) - = 4~ (2.2)

(for a = oo we mean f (0) = 0) is a nonnegative selfadjoint opera-
tor in L2(m).
(By f+ and f - we denote the right- and left-hand-side derivative
of f, respectively.)
Note that L2(m) implies f(r) = 0 if r = 1 + h ~~. .

Because of the linearity of f on the intervals of this can

be written as a boundary condition + f(l) = 0 with f+(l) = 0

if h = oo . Otherwise, the boundary condition appearing in (2.2) can

also be included in L2(m) if we change m to the left of

- a into m(x) - - oo, 
In the following, m will be understood in this way.

This change of m charges -a with infinite mass. The original
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measure m on R remains unchanged by this procedure if a>0. In

case a = 0, the value of is not reconstructable. But this

does not disturb the corresponding spectral theory, as we will see

below. Thus we suppose m(0) =0 if we consider a = 0. Now m has

infinite mass at -a (and r if and thus f ~1 l2(m) -

implies also f(-a) = 0, i.e. af (0) - f(O) = 0.

Therefore, the selfadjoint operators Aa are characterized by the

(changed) function m, or by (m,a). We call the pair (m,a) a string
and denote it by 8 (m). If the length r = I + h is infinite, then

we say that the string is infinite. Depending on

1 + m(1-)  av or = ao the string Sa(m) is called regular or

singular. The resolvent operator R ~,, a := -,~I) 1 exists for

JL 6(- oo, 0) , and i t can be shown analogously to Dym, McKean [1‘] that

is given by 
I

= 
, f6L (m),

where

r ,~ , a (x,y) :s .

Here ~~ and ~ ~’ denote the sol utions of

D D f + ~, f = 0 
,

satisfying the boundary conditions

= 1, (~o (0~~.) = 1, (2.3)

= 0, a ~ ~0, oo); ~~-(0, ~1.) = 0, (2.4)

and

~~’-(0, ~l ) = -1, 
~ 

and (2.5)

h + ~’~(1, a.) = 0 . (2.6)

Note that ~~( ~, ~, ) is increasing and ~‘~ ( ~, ,~) is decreasing for

fixed ~ 0.
W denotes the Wronskian:

W = W (03BB) := 03A6~a03A6~ - 03A6~a03A6~-
Several times we will use that is the uniquely determined
solution of
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X

~(x‘ a ) - 1 + x - ~ ~ {x-s) ~ {s~ a )m(d8), x ~ LO,r) {2.7)a 
0

’ 

for a and of

x

~(x"~ ) _ (x-s) ~(s,,~ )m(ds), (2.s)
0

for a = 0.

Similarly, ~~’( ., ~, ) is the unique solution of
x

~ (x, ~, ) = ~ (o, ,~ ) - x (2.9)
0 

-

,

OEFINITION 2.1: Assume Sa(m) is a string with a E 

Then a measure ‘C on is called a spectral measure of

Sa(m), if
00 

~1’(x‘ ) 
r~1 ‘ a(x~Y) : o a N - ~, a d L(N), ,~ ~ 0~ E E . m

The set supp 03C4 is called the spectrum of S a (m).

As for the case of a = ov, treated in Kac, Krein [3] and Dym, McKean

~1~, one can show that for every string Sa{m) a unique spectral
measure 1;’ exists (on (0, GO) if a ~ 0). It will often be denoted

by (m). (We shall identify measures 03C4 on R and their generatinga +

function ~ >’~(~O,N~).)
Note that ~~ (., ~,), and therefore does not depend on the mass0 0

of m at zero. Thus, considering a string So(m) we shall always

suppose that m{o) = 0.

If the string S {m) is regular, then ~{m) is given by

(m)a( ) = (m)s({ k}).1[0, k}).1[0, k ] ( ) (2.10)
k=0 

where denotes the sequence of solutions of

h ~~~+(1~N) + 0

and
1

= 0 2dm1 J - 1 .
We have
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0 ~ N0  1  ... and 03A3 -1n  ~.

The following theorem answers the question which measures may appear
as spectral measures for strings Its second part is

M.G. Krein’s inverse spectral theorem, (i) and (ii) together are

known as Krein’s correspondence (Kotani, Watanabe [6]).

THEOREM 2.2:

(i) For every string S~(m) its spectral measure ~ ~ ~(m)
satisfies

d( )  ~ . (2.11)
0- 1+N .

(ii) For every measure T on R with ’~(R+) > 0 and (2.11) there

exists one and only one string with cm = 0 having 03C4
as its spectral measure. 

’

Note that the condition cm = 0 in (ii) ensures the unicity of m.

Indeed, all "shifted" strings (c > o) have the same

spectral measure, compare Proposition 2.3 below.
For every string its characteristic function rm(.) is given
by (see Chapter 4 below)

0393m (03BB) := cm + ~0- d(m)~( ) -03BB = li
m 03A6~0(x,03BB) 03A6~0(x,03BB) 

, 03BBk . (2.12)

Because of the definition of the spectral measure we obtain

~~’(G~ ~) = r~ ~(G~G) - , ~,~0. (2.13)

Letting in (2.12) we get the formula

~ 0;; = r = 1 + h (2.14)

with the understanding that h = 0 if 1 + m(l-) = oo.

Krein’s theorem says that ~(’) determines S~(m) uniquely.
In Chapter 4 below we shall see that it holds

- 1 0393m(03BB) = 03BB m({0}) - r-1m - (1  - 1 -03BB)03C4(m)0(d ), 03BB~K_. (2.15)
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For every string S~(m) with c =0 we have

= [~OD]~ . (2.16)

Indeed, consider ~P~(~) for A~-o~ and compare (2.12) and
(2.15), then (2.16) is obvious. 

’

Finally, note that ~~B(o~)>0 if and only if the constant func-
tion ~(~0) 51 is an eigenfunction of D D . This holds if and
only if r = 1 + h = oo (or 1 = oo) and m(l-)6o. Moreover, in

this case we have

= [m(l)]~ . (2.17)

The next proposition shows how the spectral measure changes if m

suffers certain transformations.

PROPOSITION 2.3: Let S~(m) be a string with and

assume u,v6(0,oo), and . Define

:s v’m(u(x-w)) , , x~R,
~ a
a :.~ - w . .

Then, for the spectral measures := 03C4 and T := 03C4(m)a of

S and S (m), respectively, we have

(i) If a = oo, then for all w we have ? = oo and

= 
, ~~~*

(ii) If then ?6(0,oo) and

~(u) = v~(l - ~)~(~p) . , p~o.

(iii) If a e(0,o~), w = ~, then ? = 0 and

~(P) = ~~)B~P) ~ , ~0.

(iv) If a = w = 0, then

o( ) = v-1.u203C4o(v u. ) , 

To prove this proposition one calculates the relevant and  ~
in terms of ~~ and ~~, respectively, using (2.7 - 2.9). This

gives the relation between the resolvent kernels ?~ ~ and r~ ~.
Definition 2.1 leads to the assertion of Proposition 2.3. ’
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3. Results

In this chapter we shall formulate correspondence theorems for strings
S (m) with a ~ oo which extend Krein’s result. The proofs can be

found in Chapter 4.

We shall start with the case of a = 0. For this purpose we still

need a preparation.
Denote by ~ the set of all strings So(m) with m(o) ~ 0. We

introduce a relation N in 03A3 by defining if there

exists a real number t-1 rn such that the transformation

x ~ Ttx := x 1 - tx , xR

maps (O,rm) onto (O,rn) and such that

x

x 6 (O,r ) (3.i)
0+ 

t m

(indeed, t = rl - rl.) It is easy to see that N forms an equiva-

lence relation in 03A3. . Put 03A3 := 03A3/~ and for every string So(m)~03A3
denote by S(m) the element of 03A3 generated by S (m). For every

string S (m) and every 1 we define a new string by

rm := rm 1 + trm 
and

IIt(X) := r (l-ts)-2dm(Tts) , , xe(0,r~ ) ~ 

J
t 

0+ 
t mt } (3.2)(3.2)

mt(x) := ~ , xrmt . 

Obviously, we have

Cm 
= 

1 m 
= 

, t  - 1 rm , ( 3 . 3 )

and for every t > - 1 . .

Otherwise, if then, by definition, there exists a real

number t > - r~’ n such that m = nt. Observe rm t 
= a~ if and only

Thus we have proved the following
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LEMMA 3.1:

(i) For every string So(m) its equivalence class S(m) is equal

to {So(mt) I t ? - 1 J .
(ii) Every equivalence class S contains one and only one

infinite string S o (m).

Now we are ready to formulate the analogue of Krein’s correspondence
for strings so(m).

THEOREM 3.2:

(i) For every string S (m) its spectral measure ~’_ ’~(m) is
0 0

supported by (O,oo) and has the property

J a° 
~ ( 3 . 4 )

0+ N 1+Nl 
..

Moreover, it holds

00

J IJ ) 
= c_1 _ r_1 . ( 3.5 )

0+ N 
m m

(ii) If two strings So(m) and So(n) are equivalent (with respect

to N), then ~ (m) _ ~(n) .
(iii) For every measure ~ on (o, oo ) ( ~ ( (o, ~o ) ) > 0) wi th (3 .4)

and every r E (©,a~~ there exists one and only one string

So(m) with length r 
= rm having 03C4 as its spectral measure.

If So(m) and are strings with the lengths r and

r~, respectively, having the same spectral measure, then

= S o (m ) t holds with t = r 1, - r 1 . (mt was defined in

(3.2).)

This theorem can be reformulated in a shorter way as follows.

COROLLARY~ There is a one-to-one and onto correspondence between

the set 03A3 of equivalence classes S of strings So(m) and the

set of measures 2’ on (o, ~) satisfying (3.4), where ’~ is the

spectral measure ~(m) of every string S (m) from S.

Now let us turn to the case of (0, ~ ) .
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THEOREM 3.4 : Assume a E (0, ~o) . Then i t holds :

(i) For every string Sa(m) with cm = 0 and m(0)> 0 its spectral

measure  = (m)a is supported on (0,~) and has the property

a ( 1 + 1 2)  °0 (3.6)
0+ N rm a

(ii) If ~ is a measure on (O,oo) with nonzero mass, then there

exists a string with cm = 0 having  as its spectral
measure if and only if

Ao

g(v) := f d’~~ ~ a . (3.7)
0+ N 

.

In this case, Sa(m) is uniquely determined.

Moreover, if and Sa, (m’ ) with a, a’ 6 (0, w ),

cm = cm. = 0, have the same spectral measure, then

m (x a’) = a) ’ , 

with t := a -T - a 1, where m t was defined in (3.2).

Consider a speed measure m on [0, oo) with c = 0, and

form strings S~(m), sa(m) and for some a E (0, ~).
(Note that disappears if we construct So(m).)
Then we have 

PROPOSITION 3.5: Between the spectral measures ’~a and ~’o
of with a and respectively, the fol-

lowing equation holds: :
oa

~~,m(0) - (1 - 
m 

0+ N N~ o

.[~0+ dts( ) -03BB]. [a + ~0- d~( ) -03BB ] = -a , 03BB K_ . (3.8)

This generalizes a formula which was used by Knight ~5], p. 60.

Consider a string and add to m some point mass mo > 0 at

zero if necessary, i.e. if cm > 0. As we know, this does not touch

the spectral measure of S (m). Now, let 1(t,0), be the

local time at zero of the quasidiffusion generated by S~(m). Since
this notion makes sense. Then (1-1(t,0), t  0) is an

increasing process with independent stationary increments and it holds



364

Eoexp(03BB1-1(t,0) = exp(- t m(03BB) , 03BB0, t  0.

(See e.g. Knight [5] or Küchler [8].)
0, (2.15) implies

no oo

- 1 ~ r 1 _ J (1 _ e Y) J m B .ÀJ m 0 0+ 
°

Thus, by Theorem 3.2,(ii) and Lemma 3.1,(i) the Lévy-measure n of

1 _ 1(.,0), given by
oo

dn(y) :_ ~ , yER , (3.9)
0+ 

o +

is the same for all 1.
t r

This means that the inverse local times at zero of the quasidiffu-
sions corresponding to differ in their killing rate
k = 1 rm + t only.

Now Theorem 3.2 implies

COROLLARY 3.6: For every nontrivial measure 2’ on (O,o~) with

(3.4), every and every constant k  0 there exists a

quasidiffusion with speed measure m, a reflecting boundary at zero
and length 1 k of the string S~(m) such that 1-1(,,0) has the

Lévy-measure (3.9).

This result was proved by other means in Knight ~5~.
As an example consider a birth- and death-process on the set of non-

negative integers with the intensities No>. 0~ ~,i> 0~ Ni+1~ 0,
i ~ 0. Then

_oo
:_ ~ 

i =o C ’ 1

_
with x := 0 , x. :_ ~ -=- , ,

i  1
o i 

j=1 Pj

and a := h  0 define a string Sa(m). (Necessarily, h = 0

if m is singular.) We have
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pmpxf(xi) _ - 

Qf(xi-1) .mi -1 =

m x 

0394xi 0394xi- 1

_ ‘~i f (xi+1) - ( ~’i + Ni )f (xi ) + i :1

with d u(x j ) := u(xj+1) - u(x j ).
Moreover,

- ---x-,- - f 
- 

( xo )
DmDxf(xo ) = mo and

the boundary condition

af (xo) - f (xo) = 0

is equivalent to

DmDxf(xo) = _c + No)f cxo) + 

Thus, we have

03A6 ~a (x i, 03BB) = Q i ( 03BB) , i  0, 03BB R

in the terminology of Karlin, McGregor [4~.
The spectral measure (m) of Sa (m) is a solution of the Stieltjesa a

moment problem connected with the Jacobi-matrix (aij) with

aij := 03BBi 11(j-i) + ci, j’0).

Indeed, for .~ --~ - oo we have

~~-~lR~~af - --~ 0 , f 

Consequently,

~-~,R~~af~9~L 2 cm) --~ ~f~9~L 2 cm) ~ 
Choosing f = g = we obtain

lim - 03BBr03BB,a(xi,xj) =03A6 ~a
(xi, )03A6 ~a (xj, )d (m)a ( ) = 03B4ij mi , i,j  0.

Conpare this equation with Theorem 1 of Karlin, McGregor ~4~, p. 494
to get the assertion.
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Now, Lemma 1 of Karlin, McGregor ~4~ can be generalized to strings as
follows.

COROILARY 3.7: Given a string Soo(m) with c = 0 and with the

spectral measure ’~ and assume a>0. Then there exists a string
S (m’) with c , = 0 having the same spectral measure  if and

only if

rm = lm + hma . . (3.10)

Proof: If ’~(~0~) > 0, then there does not exist such a string 
because, for a ~ 0o , the spectral measure is concentrated on (0, ~).
Otherwise, r = 0o, see the remarks before (2.17).

Assume ({0}) = 0. From (2.14) we know r 
11 

= d( ) . Now apply
Theorem 3.4(ii). 

m 
0 ~

4. Proofs

At first we shall collect some results of the spectral theory of

D D . For details see e.g. Kac, Krein ~31. Let us given a string

S~(m). The characteristic function ~’(~) of S~(m) is given by the
limit (see (2.12))

0393(03BB) = lim 03A6~0(x,03BB) 03A6~~(x,03BB) , 03BBk . (4.1)

In the regular case we have for 

0393(03BB) = 03A6~o(r,03BB) 03A6~~(r,03BB) = 03A6~,+0(1,03BB).h + 03A6~0(1,03BB 03A6~,+~(1,03BB).h + 03A6~~(1,03BB), (4.2)

and f or h = oo i t holds

0393(03BB) = 03A6~,+0(1,03BB) 03A6~,+~(1,03BB) . (4.3)

If S~(m) is singular, then besides of (4.1) it holds

0393(03BB) = lim (x, 03BB) , 03BBk. (4.4)
x’~r ~ ~ (x, ~, ) 

Moreover, we have the representation (see (2.12))

0393(03BB) = cm + ~0- d(m)~( ) -03BB 
, 03BBK_ . (4.5)
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In particular, by Krein’s Theorem 2.2 and the remarks after this

theorem, the string S~(m) is uniquely determined by F.

Assume S (m) is a string (a = 0 or = o~). Consider the right-con-
tinuous inverse function m of m. Then, by definition of 8 (m),
we have m~(x) s o, x0, if a = 0, and m~(x) s -oo, if a =~?.

Therefore, as the dual string S~(m) of S (m) (S~(m) of 

we define 8~(m) := S~(m~) := S~(m~), respectively).
All quantities connected with the dual string are superscripted by
~. Note that it holds

ld = m(l) , , hd = ~ , if m(l-) + heLO.oo), (4.6)

1~ = m(l-), h~ = if m(l-) + , h = oo, (4.7)

1~ = m(l-), if m(l-) + 1 = oo . (4.8)

Moreover, we have

(S~(m))~ . S~(m~) . S~(m) and

= S~) = . 

LEMMA 4.1: For all and all ~~K_ it holds with the

notation x :=: inf(Em n(x, oo ))

$~~(m(x),~) . -~"~~~(x,~) . -~~"(x~), ,

~~~~(m(x),~) . ~~(x,~) ~ (x~-x)~(x,J() = $~,J(),
~~"(m(x),~)= ~~~(x,~).~~-(x~,~)
(~~(m(x),~) . -~(x,~) -~(x~-x)~~"(x,~) = -~(x~)

The equations remain valid for x s i with 1 := 1 + h in the case

1 + m(l-)~0o, 

The proof is similar to those of Proposition 2.3. Indeed we have to
show that the right-hand side of the first und third equation under
consideration satisfy the equations (2.8), (2.7) for ~~(m(x),~)
~"~ respectively. 
The corresponding equations for the derivatives ’~~(m(x),~),
a = O.Co follow from (2.7), (2.8) by differentiation (the details
are given in Neumann ~10]).
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COROLLARY 4.2: For every string S~(m) the characteristic functions

P( h ) and P ~( A ) of and respecti vel y, are connected
by

~’ ~(h ) = 
~ -l e K . (4.9)

Proof: If is regular and h e [0, Co), I then 1d  oo and

h~ = aJ. Thus

~ (À) = 
©§~~’+i~, > > 

= - 

§§li+h, A> 
= - 

~~ ~~~ . 

&#x26;lg~’~(i~,A) 
~ ~ 

2 §§(1+h,A) 
~ ~ 

&#x26;P(A)

If h = m, then l~ + h~ m and

= 
j+,d(~d~~d ° ’ a ) 

= - 
~~j °° +,+(~ , ) ’ 

z - 
~ 

.

A §§~+i, A > &#x26; P,A >

In the singular case the proof is obvious by r * 1, (4.4) and
Lemma 4,I.

(For the singular case, (4.9) is well known from Kac, Krein [3].)

For singular strings S,(m) the following lemma is known (Kac, Krein

[3j, p. 83):

LEMMA 4.3: For the spectral measures rt ~ ’~ ~ and of S (m)
and respectively, it hol ds 

~ 

= on R . (4,10)o &#x26; +

proof: we sketch the proof for the regular case I + m(I-)oo only.

Obviously, in this case we.have l~ + also.

The Spectrum of D mDx with left boundary condition af-(0) - f(0) &#x26; 0
consists of the zeros ( p~ : k Z 0 § of

* o 
’ 

if h  oJ and. a

§"~(i;) = o if h * © .
a

(See (2,10) above.)
Moreover, we have

I

= I 0 fi , k* o 4.ii>

(a = 0 or a = 00).
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Firstly, let us assume h ~ ~o. Then ld = m(1) and hd = o~ (see

(4.6)) and by 4.1 it holds

03A6~,d,+~(ld,03BB) = -03BB03A6~0(r,03BB). (4.12)

If h = oo, then it follows also from (4.7) that ld = m(1-), 
and from Lemma 4.1 we get

03A6~,d~(ld+hd, 03BB) = 03A6~,+0(1, 03BB). (4.13)

Thus we get that the spectra of S 0 (m) and outside of zero

are the same.

Now, the assertion (4.10) follows from (4.11) and the formula
x m(x)

’~ J ~.~~(y~ ~,)~2m(dy} = J y~’d(y~ ~. } 2md(dY), vt é K_. (4.14)
0 o 0 

~ m

(Use Lemma 4.1.)

Now we are ready to prove Theorem 3.2.

The property (3.4) immediately follows from (4.10) and (2.11). We have

: 
d d 

= ~ 
-1

cm = m (o) and m (o) ( [o, ) )] (see (2.1s) ) .

It is known that (m)~ 
d 

({0}) > 0 implies 1 0o with 

or with hd = oc . In both cases (2.17) implies

(md)~ ({0}) = md ld 1 = 1+h 1 = r 1 .
(Put h = 0 if m(1-) + 1 = Ov . )
Thus we get

c-1m = r-1m + ~0+ (m)o( ) ,

i.e., (3.5) holds. Therefore (i) is proved.
The crucial point to show (ii) and (iii) is (4.10). Indeed, introduce

for s >. 0 measures ~s on [0, oo ) by

s(d ) := y + (m) )(dJj) lI.(O,oo)(Jj) t Jj >

where E o denotes the measure concentrated with unit mass at zero.
d d

Note that (m)~ )(.) _ and (mu~ )({0}) = r-1. Then by Krein’s
Theorem 2.2 for every there exists a string with

ns(x)> 0 for x > o, i.e. cn = 0, having ~s as its spectral
measure. 

s
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From (2.17) it follows for s >0 that ns(ln ) = s 1 with s 1_ o0

if 5 = 0. s

Put q := nd, Then the original m is included for s = r 1s s 
(q ) m

and from (4.~10) we get that the spectral measures ~’o s. do not

depend on s ? 0 and are equal to If s > 0 then
s-1=6s({0})-1 = (ns (ls )) = rqs  ~ , (4.15

and if s = 0 we get no(lo-) = oo, i.e. iq = ~.
0

Thus, among all qs, s > 0 we find exactly one infinite string,
namely mo. Note that qs(0) = cn = _ 0.

s

To finish the proof of Theorem 3.2 it suffices to identify the equiva-
lence class S(m) introduced in Chapter 3 with s > 0~.
We remark that the characteristic function (’s of qs satisfies

(see (4.9), (2.17))

~s(~1 ) ns ’~ 0- N -Jl 

. (s - rm -.À. md d(.À.) = (s - ) + .1~- I .À f; K . .
rm m rm m m (~) 

-

n

Let us calculate the characteristic function of with mt E S,
where mt was defined in Lemma 3.1.

LEMMA 4.4: For every t > - 1 the corresponding to m functions

rm ~ t
00 , tare given by

03A6~o,t(x, a, ) _ (1-tx)03A6~o(x 1-tx, 03BB) (4.17)

03A6~~,t(x,03BB) = (1-tx)03A6~~(1 1-tx, 03BB) + t(1-tx) 03A6~o(1 1-tx, 03BB) (4.18)

Proof: The left hand sides of (4.17) and (4.18) are the unique solu-

tions of (2.7) and (2.8) with m replaced by mt, respectively.
After scale transformations and some calculations it is seen that the

right-hand sides of (4.17) and (4.18) satisfy these equations. This

proves the 

COROLLARY 4.5: We have

1 0393mt(03BB) 
= lim 03A6~~,t(x,03BB) 03A6~0,t(x,03BB) = 1 0393m(03BB) + t , 03BB K_. (4.19)
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The proof follows immediately from (4.1), (4.17) and (4.18).

Now, compare (4.19) with (4.16). From Krein’s inverse spectral theorem

we get mt = qs for ~=s*~m ’ .
Thus Theorem 3.2 is proved.

As a consequence of (4.9), (4.10) we get the formula (2.15):

- 1 0393m(03BB) = 03BB0393md(03BB) = 03BB dt(md)( ) -03BB

= - 03C4(md)({0}) -  (1  - 1  - 03BB)d03C4(m)o( )
= - r-l - f (1  - 1  - 03BB)d03C4(m)o(d ) , 03BB~K_. (4.20)

Note, that we have supposed m(0) = 0. If some is added

to m at zero, the ter~ ~,m(~,0~) is added on the right-hand side

of (4.20).

The Corollary 3.3 follows immediately from the Theorem 3.2.

Proof of Theorem 3.4:

Let be a string with a E(O,oo) and cm = 0. Put w := a and

define S(x) :~ m(x-a), xeR. Obviously, it holds cm = a and

r + a.

If a and o denote the spectral measures of S (m) and S (Sf),
respectively, then we have by Proposition 2.3.(iii)

d~ a (N) ~ a2d~’ o (N) ~ , N > 0

From (3.5) it follows

dts( ) = a2do( ) = a 2(s -1- (r_+s) -1)= s(1 - s ),

0+ p 0+ p 
m a+rm

i.e. (3.6) and (3.7) hold.

Conversely, if a is fixed and 03C4 is a measure on (©,oo)
with «O/OO»>O and (3.7) then choose a number u E (0, on] with

~oo

d( )  = a(1 - a a+u) .
Put
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6(dN) := , 

and choose the string S o (m) with m(o) = 0 and lm = or~ having t~"
as its spectral measure (see Theorem 3.2.(iii)).
By the same theorem, f or every s E [o, ~a ) the s tr i ng with

:= (1 - sx)2m(--x-) , , 
= oo x > s-1

has the same spectral measure  as So(m).
It holds by (3.5)

oc~ o0

c-1 ms = d( )  + r 1 =  
, 

+ s = a 1(1 - =_) + s . °

Now choose s in such a way that cm = a holds, i.e. put
s = 

1 a + u.

By shifting ms to the left

m s (x) := m s (x + a)

we get a string with cm = 0 having ~ as its spectral~ ~ 
s

measure. The uniqueness follows from the uniqueness of So(m) with

1 m = co.

For the last part of Theorem 3.4.(ii) note that the strings

S (m’(.-a’) and S (m(.-a)2) have the common spectral measure o (a’) 0 a
(see Proposition 2.3.(iii)).
From Theorem 3.2.(iii) it follows

S (m ( e )) = S ((m(-= ~) ) with
o (a,)2 

~ 

o a2 t

t ~ ~ - _.1 ., .

r’ -a’ r-e

Proof of Proposition 3.5:
Choose and consider a string Then it holds

(see the definition of 

03BB,s’(0,0 = p 03A6 ~(0,03BB) 03A6~(0,03BB) + 1 1 1 a + 1 0393m(03BB) 
(4.21)
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and, by definition of the spectral measure (m)s,

r03BB,a,(0,0) = ~0 d(m)a,( ) -03BB  (4.22)

Now let be a 6(0, oo). Then (3.8) is a consequence of

- =.--- + 1 ~ ( e + ~‘ m ( ~, ) ) z -a , (4.23)
~~~ l ~ r~, a, 

(2.15), (4.21), (4.22) for a’ = a and a’ = oo.

Letting a  0 in (4.23) divided by a we get Knight’s formula.
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