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On Filtrations of Brownian polynomials

A. Goswami and B.V. Rao
Indian Statistical Institute, Calcutta

In [3] Lane considered, among other things, the filtra-
t

tions of the processes / for a certain class of
o

functions h on the real line. He showed that in many instances

the filtration of such a process is either that of the Brownian

motion itself or that of an appropriate reflected Brownian motion.

In this note we make a rather curious observation regarding the

filtrations of the process es Hn(Bt,t). This also helps us to

describe the filtrations of a large class of polynomials in

(Bt,t). We conclude with an extremal property of these

martingales.

Let (.~- , P ) be a complete probability space and

be a standard Brownian motion defined on the space.

For each n > 1 recall that the nth Hermite polynomial in

~(x,t ) is defined by

~t) ~ ex2/2t 

It is wellknown and easily verifiable that DxHn = Hn-1 and

(D~ ~ ~ Dxx) H~ = 0 for each n ~ 1.

Let Yn(t) = and (~ t) its canonical filtration .

Here and in what follows canonical filtration of a process

means the right continuous modification of the natural fil-

tration of the process augmented by P-null sets of the process.

In particular ~~ ~ t) is the Brownian filtration and (~~) is

the filtration of the reflected Brownian motion 
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Theorem 1 : 1. For each (-~)= (~) or (~~)
according as n is odd or even.

2. Let P(x,t) be any nonconstant polynomial in

(x,t) satisfying (D~ + ? D~) P = 0. Assume that the

coefficient of x~- is zero where n is the degree of P

in x. Then the canonical filtration of P(B,t) is either

(~~) or (~~) according as an odd power of x is present

ijn P or not.

The following simple lemma will be used repeatedly in

the proof of the theorem.

Lemma. Let (M.) be a continuous martingale. Then, (i) M>

is adapted to the canonical filtration of JM). . (ii) if more-

over Mt = / hsdBs then jh) ’ is JMJ ’ adapted.
o

Proof of the Lemma, (i) is a direct consequence of the fact

that in the Doob-Meyer decomposition of a submartingale, the

increasing process is adapted to the canonical filtration of

the submartingale. To prove (ii) note that by (i) is

adapted to )MJ and nence so also is (h"). 
°

t
Proof of the Theorem : 1. By Ito’s formula ) = Yn-1(s)dBs.
By the lemma it follows that ~ is (~) adapted. In turn
~n-1~ " ~ ~n-2~~s’ ~~ ~~~ !~n-2! ’ ~ ’ ~~Pt~ ~~
hence (’~~) adapted. Proceeding in this way we observe that
|B| is (nt) adapted. In other words (2t)~ (nt). In case
n is even the proof is complete since involves only

even powers of x. In case n is odd , Y (t) = 

where Q is a polynomial in (x,t) involving only even powers

of x. (Q(B,t)) is adapted to (~) and hence to (~?)* But
for fixed t, is nonzero almost surely so that B

is (~ ?) adapted. The proof is complete.
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2. Denote by (’~t) the canonical filtration of the
process Let the degree of P in x be n .

Denoting derivative w.r.t. x by , we see that P, P ,...

are all solutions of (D + 1 u = 0, so that

P(k) (Bt , t) 
= toP(k+1)

( Bs , s )dBs. Further 
P(n-1)

(x,t) = c . x

by the assumption on P where c is a nonzero constant.

Now proceeding as in 1 above we get that ( 2 ) C ( ~ ) o In
case P has only even powers of x, the proof is complete.

Otherwise, write P = Ql + x.Q2 where both Ql and Q2
involve only even powers of x to complete the proof.

Remark 1. For each n > 1, if (nt) is the natural filtra-- N

tion of the (Y ) process augmented by P -null sets of n~
then ( nt) = ( nt) . I n ot her words ( nt ) is itself right

continuous. This is because the same is known to be true for

n=l and 2. A routine argument now completes the proof.

Remark 2. . The assumption in the second part of the theorem -

namely, that the coefficient of xn-1 be zero - is essential.

To see this let P(x,t) = x2 - x - t. Clearly the canonical

filtration of (P(B ,t ) ) can not be ( 2 ). It is not (’~ )
either.The quickest way to see this is to take ~ to be

C[0,~) and B the coordinate process. If T is the hitting

time of  by B then P(B ,t) does not distinguish between

the paths u and w~ where u* is the usual ref lection of

w at ~’ . The measure preserving nature of the map u ~ u

can now be used to complete the proof.

Remark 3. It is curious to note that the theorem is not valid

for arbitrary nonconstant solutions u of (Dt + 2 1 Dxx)u = 0.
The function u(x,t) = sin x is such a function and it

also has a series expansion in terms of Hermite polynomials
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given by u = E (-1 )kH . This is verified by- using the

generating function for Hermite polynomials [1°~, Of course,
the filtration of (u(Bt,t» is same as that of the process

sin B, which is neither ( 1 ) nor ( 2 ). However it is of

interest to note that its canonical filtration is a Brownian

filtration. Indeed if Mt = et/2 sin Bt then to e-s/2 1-e-sM2s 
dMg

is a Brownian motion and its canonical filtration is same as

that of M .

Remark 4. The theorem is a truely infinite time dimensional

theorem. That is to say, for n odd (resp. even) the a-field

a(Bt 1 ,...,Bt ) k (resp. a(ISt 1 ~,,.,,~Bt k ~)) 
is strictly larger

than for any finite set of time points

tl  t2  ... and for any n ~ 3 .

As a consequence of Theorem 1, we have the following result

which is perhaps known, but we have not found in the literature.

Theorem 2. 1. Yn has martingale representation property.

That is, every (’~ t) marti ngale is a stochastic integral

w. r. t. Yn .

2. Yn is a n extremal martingale. That is, the law

n of Yn is an extreme point of the convex set of all pro-

babilities on C[0,~) making the coordinate process a martingale.

3. For n ~ m, 

Proof. 1. Let n be odd. Then is (’~ t) adapted and

dB = = dY so that any ( ~ n ) martingale, being an integralYn-1 n t

worot. B is also a n integral w.r.t. Yn. Let n be even.

Then, dYn = Yn-ldB = Zn-ldY2 where = and

P(x, t ) = 1 x Since H n-1 involves only odd powers of

x, P is a polynomial involving only even powers of x. 

’ 

Zn-1
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being C~?) adapted, we deduce that dY2 = dYn. Now,

any (~~) martingale is a (~ ~) martingale and hence an in-
tegral w.r.t. Y~ and so in turn is an integral w.r.t. Y .
Incidentally, the fact that any (2t) martingale is an Y2
integral follows from observing that Mt = / sgn is

a Brownian motion, its canonical filtration is (2t) and
-~. °

2. can be deduced using Theorem 11.2, p.338 and

3. using Theorem 11.4, p.340 of Jacod [2].
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