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Stochastic Integral Equations for The Random Fields.

by

OGAWA Shigeyoshi

1. One simple aspect of the stochastic integral equation is that it transforms a funda-
mental process like the Brownian motion into another process of more compound natures.
Standing at this viewpoint, we are inevitably led to consider a stochastic integral equation
for the processes with multidimensional variables, namely for the random fields. Since
there is no natural order in the multidimensional space RP, we readily see that such
equations should be treated in the framework of the noncausal stochastic calculus (cf.,
[1]). What we are going to show in this note is the first attempt on this subject. We
will limit our discussions in the case of linear equations of Fredholm type and we will
show some results concerning the question of existence and uniqueness of solutions.

In what follows, we fix a probability space and we understand by the random
fields, such as f (t, (,iJ) or L(t,s,w) (t = (tl, t2~ . .. ~ tp)~ 
the real functions, measurable in (t, w) or in (t, s, w) with respect to an appropriate
a-field like F x BRp (or ~’ x BRp x BRp respectively), such that ; ;

/ f 2(t, w)dt  +oo, 0394 0394 L2(t, s, w)dtds  +oo (P-a.s.)

where dt = dtl x ... x dtp, and A = [0,1]p the unit cube in RP.

2, Set Up. Let ((t, w) E RP x S~) be such that the derivative, 

= 

at 

aP 

a~ Z(t, w) is well defined as a generalized random field on the Schwartz
ti ... tp 

’

space S(RP), and let ~~n}~ 1 be a complete orthonormal system of functions in the
real Hilbert space ~2(0).

Definition 1. The stochastic integral of a random field I(t, c~), with respect to the

fundamental pair (Z, {03C6}n}), Q J(t, 03C9)d03C6Z(t), is defined as being the limit in proba-

bility of the series, ~ ( f , Z).
Tt==l

(Remark 1) (i) The functions of the basis are supposed to be arranged in a fixed
order and the summation ~ should be taken in this order.

n

(ii) Notice that, 0394f(t,03C9)d03C6Z(t) = lim / f(t,w)2f(t)dt where
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- ~, °

m~n

The linear stochastic integral equation we are going to study is as follows,

(1); x(t, 03C9) = f(t, 03C9) + 03B1 0394L(t, s,03C9)X(s)ds + 03B20394K(t, s,03C9)X(s)d03C6Z(s),

where f(t,03C9), L(t, s, w) and If (t, s, w) are some random fields and ex, {3 are constants.

For the simplicity of discussions, we will fix once for all, another c.o.n.s. in an

arbitrary way and we set the next assumption (A) which concerns a regularity of the
random kernels, I~, L.

(A); There exists a positive sequence such that,

(A,l) E l2 (P-a.s)~ , v 

(A,2) E l2 (P - a.s.) where = 

l’m,n = lm,n/~m, km,n = (Iy ‘Yrn lm,n v (L, 03C8m ® Y’n).

We will call such sequence the admissible weight.

It is worthwhile to notice that if ~En~, are admissible weights then the sequences,
{(~039B ~)n}, {(~ ~ ~)n}, given by (~ 039B ~)n = min{~n, ~n}, (~ ~ ~)n = max{~n,~n}, are

also admissible weights.

Example In the case that Z = the Brownian sheet and is such that all elements
are uniformly bounded on A, then any positive l2-sequence satisfies the condition (A,1).

Definition 2. We will say that a random field g(t, w) admits a sequence as the

weight (or shortly, if there exists an admissible weight ~En~, such that ;

(t,l) the integral gn = exists for all n E N

and E d2 (P - a.s.).

(t,2) lim {~n(n-0394g(t,03C9)03C8n(t)dZ03C6m(t))}2 = 0,

We will denote by S( l2) the totality of all such random fields that are {6}-smooth for
some admissible weight 

It is easy to check that if a S(d2)-field g(t, w) admits two sequences, as the
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weights, then it also admits the sequences {(E A r~)n~, ~(E V r~)n}, mentioned in Remark

1, as the weights.

(Remark 2). In the case that Z = the Brownian sheet and the all elements of 
are uniformly bounded, we see that L2(0) and that every admissible sequence
can be the weight for any g(t, w) E L2(0).

Associated to the notion of S(l2)-fields, we introduce a linear stochastic transformation,
T acting on 8(12), in such way that ; For a g(t, w) E S(d2) admitting a as the

weight, we set,

(2) (T9)(t) _ ~ where gn(c,v) = g(t, 
n A

We should notice that E .L2(0), (P - a.s.).

3, Results.

Theorem 1. For any f(t, w) E S(d2) the following equation

(3), X(t, w) = f (t, w) + / A s, ,

has the unique S(l2)-solution provided that the following condition (C) holds,

(C); the homogeneous equation, X (t, w) = Q does not

have nontrivial S(l2)-solutions.

(Proof) Let be an admissible weight for the random field f(t, w). First we

are going to show that the condition (C) is sufficient to assure the existence of a S( l2)-
solution X, which is unique in those admitting the same weight 

Let X be an {6}-smooth solution of (3). Then, since I~(t, s, w) = 
" 

m,n

we get the following relation (4) by virtue of the condition (t,2),

(4) X(t) = f(t) + ~, where xn(w) = o 
m,n 

’ ’~

Multiplying by and taking the stochastic integration over A on both sides of the
equation (4), we obtain, under the assumption (A,2) the next relation,

(5) xc = fr + ~ (dl E N)
m,n

or equivalently,
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(5)’ ’ = ~ll + L 
m,n 

So if we set, f~(t, s, w) = L 
l,n m 

’

then by virtue of the condition (t,1), we see that the kernel K(., ., w) is of Hilbert-
Schmidt type for almost all w and that the field, Y = (T X )(t, w) satisfies the following
random integral equation,

(6) Y(t) = (? f )(t) + / A If (t, s, w)Y(s)ds.
Conversely if we set xn = for an L2-solution Y of (6), then we see that the

satisfies the equation (5) and so the field X(t) defined through the relation (4)
becomes an S(l2)-solution of (3). As is easily seen, this correspondence between the
{6}-smooth solution of (3) and the L2-solution of (6) is one-to-one and onto. Thus the

question of the existence and the uniqueness of the {6}-smooth solution is reduced to the
same question about the L2-solutions of (6). Hence, by a simple application of The
Riesz-Schauder Theory, we confirm that the condition (C) is sufficient for the validity of
the prescribed result.

Next, we are going to show that this solution X which has the as the weight
is unique among all {~}- smooth fields. So let X’ be another S(l2)2014solution of (3)
having a different sequence ~r~~ as the weight. Then it satisfies a similar relation as (4)
from which we see the field f (t, co) is Since all S(l2)-fields f , X and
X’ are ((e A the field X’ and X must coincide with each other as the

unique S(l2)-solution admitting the same sequence as the weight. Q.E.D.

Corollary, If all elements of the c. o. n.s. are continuous and uniformly bounded
ouer A and if almost all sample of the field J(t, w) are continuous. Then the S(I2)-
solution of (3) is also almost surely sample-continuous.

(Proof) Evident from the equality (4) and the fact that, 
m,n 

 +00 (P - a.s.) Q.E.D.

Now we are to give a result for the general case (1) in the next,

Proposition; Let J( t, w) E then for almost all a, ,Q E Rl the equation (1~ has
a unique 

(Proof) We notice that the condition (A,2) implies ;

= 0 E S(d2) for any random field X .
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Let be a weight for the I(t, w). Then following the same discussion as in the
proof of Theorem 1, we see that any S(l2)-solution X admitting the as weight, if
exists, satisfies the following equation,

(7) = {T E( f + + 03B20394K(t,s,03C9)Y(s)ds

where Y(t, 03C9) = (T X )(t, w)..

Since the operator given by ;

is compact for almost all w, we know that for all (but with at most countable exception)
of ~Q the operator (I - is invertible and for such ,Q we get, by solving (7) in Y,
the following expression,

(8); = f~(t) + 

where

_ (I - ~I~) 1( and = f (~ - ~I~)-1(LX)}(t)~

On the other hand we have the next relation which can be derived in a same way as in
the derivation of the (4);

(9) X(t) = + 0153(LX)(t) + ~X )(t)
where

= s, w)Y(s)ds, s,w) = 
m,n

Substituting the relation (8) into (9), we find that the solution X, if exists, satisfies the
next .

(10) X(t) = f2(t) + 

where

= f(t) + and (L"Y)(t) _ ~(L + (Y E LZ(~))

The operator L" being compact for almost all w, the equation ( 10) has for almost all a
a unique Moreover, it is immediate to see, following the same argument
as in the proof of Theorem 1, that this solution does not depend on the choice of the
weight for the I(t, w). Q.E.D.
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