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REALISATION OF A CLASS OF MARKOV PROCESSES
THROUGH UNITARY EVOLUTIONS IN FOCK SPACE

by
K.R. Parthasarathy
Indian Statistical Institute
Delhi Centre, New Delhi-110016

1. Introduction: Pursuing the chain of ideas initiated in [1, 2, 3] and

further discussed in [4] we modify the notations of quantum stochastic calculus
in Fock space and demonstrate how a class of continuous as well as discrete
state space Markov processes can be realised through unitary operator evolutions

in the tensor product of an initial Hilbert space with a boson Fock space.

2. The basic results of quantum stochastic calculus in a new notation: Let

7 2
H = hoe T(L(R,) & k) (2.1)
-where ho and k are complex separable Hilbert spaces and for any Hilbert space H
I'(H) denotes the boson Fock space over H. Put
h=h 8 (e _o®heoece) (2.2)
(e} - 00 o

where e are unit vectors and ® indicates Hilbert space direct sum. Fix an
orthonormal basis {eilie S} in k and put S = S U {-»} U {»}. The basic noise

-~

i . .
processes {A.} of boson stochastic calculus in H can be expressed as

Ad

is Ale.><e.|’ ijes,
1 J
j_ _ .
A= A]e_w><ejl = Ay JE€ S
AT = A -a,ies
i Iei><ewl it ,

L
A__(t) =tI, t>0

where Ai, i,j € s are the conservation (or exchange) processes, Aj' j € S are
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the annihilation processes and Al , 1€ S are the creation processes. We adopt

the convention that A;w = Ai = 0.

Inspired by a conversation with V.P.Belavkin in Moscow in 1989 we

introduce a subalgebra I(h) C B(h) with a special involution as follows:

*

Ithy = {L|lLe B(h), LE£®e =L £®e, =0forall £€h}, (2.3)
b *
L = FL F (2.4)

where B(h) is the algebra of all bounded operators on h and F is the unique

unitary (flip) operator in h satisfying

Ff®e =f®e ,Ff®e =f0®e ,FfOu=£f06u
— ©o 0 -00

00
for all £ € hb’ u € k. Then I(h) is a subalgebra of B(h) and the correspondence
L > Lb is an involution under which I(h) is closed. To any L& I(h) we associate

the family {L;l i, j € S} of operators in ho by putting

i -
- P . 2.
<f, Lj g> <f®ei,Lg®ej>,l,J€ s, £,9€ ho (2.5)
Then by (2.3)

© i A -
Lj =L - = 0 for all i,j€ S,

Ll el = Hleo el ek

Hence by the basic results of quantum stochastic calculus (g.s.c.) there exists

a unique adapted process AL in H satisfying
A =0,d\ = J.1ran , 1e Ih. (2.6)
L L . . 1
i,jes
(See, for example, Proposition 27.1 in [4]). The following two propositions are

immediate from the methods of g.s.c. (Ch. IIL, [4]).

Proposition 2.1. The processes {ALlLe T(h)} defined by (2.6) satisfy the followin

t
(i) <fe(u), A (t)ge(v)> = f<f®(e_w+“(5))r Lg®(v(s)+e )>ds<e(u),e(v)>,
0
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N + t
1f - ) o4 ir;
(ii) A (£) ALb(t) then {AL,AL} is an adjoint pair;

(iii) dAL dAM = dALM.

In particular, A is independent of the orthonormal basis {ei[i € S} employed
in its definition.

Proposition 2.2. Let L€ I(h). Then there exists a unique unitary operator

valued adapted process UL satisfying the quantum stochastic differential

equation (g.s.d.e.)

0) = O = ’
UL( ) o, dUL (dAL) UL

if and only if

b b b b
L+L + L L =L+L + LL = 0. (2.7)

If hi) i = 1,2 are Hilbert spaces and X is a bounded operator in hl
we adopt the convention of denoting by the same symbol X, the operator X @ 1

in hl ® hz where 1 dnotes the identify operator in hz. For any L € I(h) and

X € B(ho) the operators XL and LX belong to I(h). Furthermore diL = dAXL'

(dAL)X = dALx

proposition 2.3. Let L€ I(h). Suppose (2.7) holds and U is the unitary

operator valued process defined. by Proposition 2.2. Then

d U* X U_=U*dADb b, U for all X € B(h ).
L L o

L L X+XL+L XL L
If
T (X) = IE_ U*(t t
t(‘) ° I‘( ) X UL( )
where ]EO denotes the boson vacuum conditional expectation map from B(H) onto

B(ho) then {Tt[t > 0} is a uniformly continuous one parameter semigroup of

operators on the Banach space B(ho) whose infinitesimal generator [ is given by

ar, (%)
L) = -5l -

<f, L(X)g> =<f ®e__, (be + XL + LbXL)g ® e > for all f,g€ ho.
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Proof: Propositions 1-3 are the basic results of g.s.c. and we refer to

Chapter III, [4]. ]

3. Construction of some classical Markov flows through unitary evolutions

Let G be a locally compact second countable group acting on a separable o-finite
measure space (X,F,u) with G-invariant measure p. (Obvious generalizations can
be worked out when p is only quasi invariant). Define ho = Lz(u) and
k = LZ(G) with respect to a left invariant Haar measure. Express any element
fehs= ho & (Ce © kec e ) as a column vector
£ (x)
f= fo(x,g) X€ X , g€ G.

f+(x)

Let A(x,g) be any complex valued measurable function on X X G satisfying

2
ess. supu f IA(x,g)l dg < » (3.1)
G

where dg indicates integration with respect to the left invariant Haar measure.

Define the operator L, associated with A in h by

A
. 2
-] (XGg) £ (x,9) + 1 [AG,9)]| £ 00 )dg
G
- -1 -1
L)\£= f»o(g J‘x, g) - fo(x,g) + Alg “x,9) f+(g x)
0

Then (3.1) implies that LA € B(h). Furthermore the following holds:

(i) L, € (h);

A
2
[ (\Gg) £ (g x,9) - 4 [Aex,9)| £, G0} dg
G .
)
Lt = £ (g%,9) = £ (x,9) = AG,9) £, ()

0

b b _ b b _
(iii) L)\ L)\+LX+LA—LX L}‘+L>‘+ L)‘ 0.

Using Proposition 2.2 construct the unitary operator valued process UA = UL in
A
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H satisfying
u,(0) =1, duy = (A, )y,.
A
Consider the Evans-Hudson flow {jtlt > 0} induced by Uy

*
3 X = Ul(t) X UA(t), XE B(ho).

1f {eili.e s} is any fixed orthonormal basis in LZ(G) then the structure maps

{O;Ii,je S} of the flow {jt} are given by

i b b i
ej(x) = (L)\X + XL, + L, XL)\)J.
with the convention 6, = Bim = 0. Denote by A° the abelian von Neumann algebra

Lw(u) where any function ¢ € If%u) is interpretedas the operator of multiplication

by ¢ in Lz(u) = hb Then a routine computation yields the followingze; leaves

Ao invariant and

o (0) () = [ ¢lgx)e, (ge, (g)dg - 6% ¢(x), i,j€ S,
J G 1 J J

e;“(¢)(x) = [ X9 6(gx) - 6(x)] e (9)dg, F€ S,
G

ei(‘b) x) = [ Ax,q) e; (9)[¢#(gx) - ¢(x)] dg, 1€ S,
G

2" ) = [ kg |2eten) - ¢(x)1ag.
G

It now follows from [2,3] (and also Section 27, 28 in [4]) that
(Jg(#), 3. (0)] =0 for all s,t > O, ¢,¥€ Ao'
In other words {jtlA , t > 0} is a classical Markov flow in the Accardi-Frigerio-
o

Lewis' formalism with infinitesimal generator L given by
-00 2
Loy x) = o (0)(x) = [|Atx,9)| [o(gx) - ¢(x)]dg.
G

Thus A(x,g) can be interpreted as the rate of change of amplitude density from

the state x to the state gx.

When G and X are finite this result reduces to the description in [1, 3].

If G and X are countable we obtain the picture of a Markov flow in [2].



36

References

(1]

(2]

(31

[4]

Meyer, P.A.: Chaines de Markov finies et representation chaotique,

Strasbourg preprint (1989).

Mohari, A., Sinha, K.B.: Quantum stochastic flows with infinite degrees
of freedom and countable state Markov processess, Seankhya, Ser. A,

52, 43-57 (1990).

Paithasarathy,K.R., Sinha, K.B. Markov chains as Evans-Hudson diffusions
in Fock space, Indian Statistical Institute preprint (1989) Delhi, (To

appear in Seminaire Strasbourg).

Parthasarathy, K.R. An Introduction to Quantum Stochastic Calculus,
Indian Statistical Institute, Delhi (1990).



