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1. Introduction. Results.

Let E be a separable Banach space and let E’ its topological dual and E; the closed
unit ball of E'. Our purpose in this paper will be to state a “‘majorizing measure”
type sufficient condition for checking the law of the iterated logarithm in Banach
space. Let X, X1, X>,,... be a sequence of independent identically distributed random
variables with values in E. We denote, as usual, Sp(X) = X1 + -+ Xy, n > 1
and a(n) = y/2nllogn, n > 3. We recall that the random variable X satisfies the
bounded law of the iterated logarithm in E, (BLIL), (resp. compact law of the iterated
logarithm in E, (CLIL)), when the sequence {Sn(X)/a(n), n > 3} is bounded in E
almost surely, (resp. relatively compact in E almost surely). By way of preliminary, we
recall the reduction theorem of Ledoux-Talagrand, ([3], theorem 1.1).

THEOREM 1.1. .
a) (BLIL) X satisfies the bounded LIL if, and only if, the following three conditions
hold

(1.1) E(IX|*loglog|| X ||) < oo,

(1.2) for each f € E'\E(< z,f >?) < oo,

(1.3) “the sequence {Sn(X)/a(n),n > 3} is bounded in E in probability.

b) (CLIL) X satisfies the compact LIL if, and only if, the following three conditions
hold

(1.1)  E(IX]?/loglog || X]|) < oo,

(1.4) {(X,f)?, f € E1} is uniformly integrable,

(1.5) Sn(X)/a(n) — 0 as n — oo, in probability.

This result, which reduces the problem from one of the almost sure behavior to one of
the in-probability behavior, let in doubt the question of a possible condition (regarding

X and E, instead of S,(X) and E) ensuring (1.3) or (1.5). Our goal here will be precisely
of giving a such kind of condition. For, we introduce some useful notations :

Let ¢2(z) = e’ — 1, and we consider the usual Orlicz norm associated to ¢ : given
a probability (Q,F,u), we set for any element f of L*(u), | fll¢,, = inf{c > 0 :
Ja $2(f(2).c™!)du(z) < 1}.

We refer the reader to [2] for basic results on Orlicz spaces. Throughout this paper,
we denote by (2x, Ax, Px) the probability space of the sequence X, X;, X, .. .; we set

also for any integer p > 1, a, = a(2?). We introduce the following homogeneous pseudo
metrics :

(1.6) Vp 2 1,Yf,g € E',dy(f,9) = dp(0,f — g) = (XD, f — 9)l|g5, Py -
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Where X® = X.I(||X|| < ap).
We set afterwards for any integer p > 1,

B, ={f € E":dy(0,f) <1}

1

1
1.7 = inf sup/ (—————-——) du,
(1.7) B = Mt s, reb, Jo \u(Ba,(f,u))

where By, (f,u) = f+ {g: dy(0,9) < u}
A, = SuP{dp(O, f), fe Ei}

Our main result can be stated as follows.

THEOREM 1.2.
a) (BLIL) In order that X satisfies the bounded LIL in E it is enough that conditions
(1.1), (1.2) and

(1.8) li;nsotip Aypi/+/logp < oo,

are fulfilled.

b) (CLIL) In order that X satisfies the compact LIL in E, it is enough that conditions
(1.1), (1.4) and

(1.9) Jim_ &ppip//logp =0,

are fulfilled.

2. Preliminaries.

For proving theorem 1.2, we will use the following slight improvement of the well
known result of [1]. Its proof is very similar to those of theorem 1.5 in [5].

THEOREM 2.1. — Let X = {Xi,t € T} be a centered stochastic process, with basic
probability space (2, A, P). We assume that
(2'1) Vs,teT, "X’ - Xl”d’z,P < d(sat)7

where d is a pseudo-metric on T. Then for any Borel probability measure on T (i.e.
p € M7 (T)).

(2.2) ps. sup |X,-—X
(8,)€TXT

diam(T, d)

, 2 i)
<C|x du
<C| "'ﬁz»#@I‘ fgg/(; 2 (,U(Bd(tau))
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(2.3) ps.Vs,teT |Xs — Xi]

diam(T, d)
2 -1 1
B (ot
= " ”¢2:#®F?2¥ o 2 ,M(Bd(t,'u))
(24) | sup X,—Xlg,p <CI(T,d),
(8,t)ETXT
where
diam(T, d)
1
2.5 I(T,d)= inf su/ 2 ¢-1(—)du;
(25) (T:d) ueMT(T)teg 0 2\ u(Ba(t,u))

and X = {(Xs — X1)/d(s,t),s,t € T,d(s,t) # 0} and 0 < C < oo is a numerical
constant.

3. Proof of theorem 1.2.

By a classical symmetrization argument, it is enough to prove theorem 1.2 for
symmetric random variables X. In that case, the sequence X, X, X2,... has same law
than the sequence €X,€1X1,€62X2,... where €,61,€1,€2,... is a Rademacher sequence
defined on another probability space (2, Ac, Pe).

Let p be fixed, we denote again X?) = {(X®)| f), f € E'}. Then,

X@(f) - X(”)(G)‘
(8.1) (le)lgEg dy(£,9)

X®(f-g)
—_— 2 < sy X® 1.
dy(fy9) |~ d,(o,lggl A N

= sup
(f,9)EE]

But, [ X® (k) = XP(1)[lg,,px = | XP(h = B')|lg;,px = dy(h, H).
By virtue of theorem 2.1,

(32) " sup (X(p), h)”d’z.Px < C,Ltp,
d,(0,h)<1

where 0 < C < oo is a numerical constant, which may change from line to line. Set now
for any integer n € [27,2P1[
) 1 ) . 1/2
(33) VfEE, Un(f) = (=D (X", 1)
ot

Next we use the following elementary fact : if ¢1(z) = el*l — |z] — 1, then,

(3.4) there exists a number 0 < C < oo such that || f2|l¢,,Px < [fllgs,Px < ClFll61,Px-
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Consequently, we get

(3.5) I sup Ua(h)llg;,px < C - pip.
dy(0,h)<1

Using then the triangular inequality for the l2-norms, we also have,

(3.6) sup |Un(f) - Un(.‘])' < Un(f - 9)
(oee,  d(f9) (fo)ee; | dp(f,9)
< sup |Up(R)l,
dP(Ovh)Sl
hence, finally,
Up(f - g)|
3.7 sup |—te—t Py S Cup.
( ) ” (f0)EE, dp(f,g) "4’2 X Up
Let M > 0, and we set
AM)=4{ sup |————=|<Mpy,,.
) {(f.g)eE{ dp(f,9) P

We have, from (3.7), Px{A°(M)} < M’ and on A(M), denoting
Vn € [2-1,27,Vf € E}, Cu(f) = % S <xP,f>e,
n =1

and using a generalized version of the classical Kahane-Khintchine inequalities (see [4],
p. 277) for Rademacher averages,

(3.8) IGa(f) = Gn(9)llgs,p. S 1Un(f = 9)| £ Mppdy(f, 9)-

Hence, in virtue of theorem 2.1, on A(M), we have

(3.9) I sup Gu(F)llga,p. < MC(11p)*A,.
JEE]
. Sa(XPe) . -
Since, sup e g1 G.(f)= —\/ﬁ— ; we deduce for any p and integer n € [2P~1, 27|,

P {——"S”(X)" > Mz} < PRS2 X £ XD

c MM 2 lo, dP
+ [ P4 (M)}dPs+/A(M)PE{ 2=l oy gp} x
MC\/i‘ogp)Z

<SPPI > ay) + expl(~CM?) + exp -5
P\M'P
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Taking into account assumptions (1.1) and (1.8), we thus see, for any ¢ > 0, that it
is possible to find a real M(€) < oo and integer N(€) < oo such that for any n > N(¢)

1S (Xl
P {—2;\/-11-—0; > ]\4(6)} <e.

Hence the bounded LIL is established. We deduce the compact LIL by means of
theorem 1.1, and using a quite similar argumentation.
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