SÉMINAIRE DE PROBABILITÉS (STRASBOURG)

MICHEL WEBER

New sufficient conditions for the law of the iterated logarithm in Banach spaces

Séminaire de probabilités (Strasbourg), tome 25 (1991), p. 311-315 http://www.numdam.org/item?id=SPS_1991_25_311_0

© Springer-Verlag, Berlin Heidelberg New York, 1991, tous droits réservés.

L'accès aux archives du séminaire de probabilités (Strasbourg) (http://portail.mathdoc.fr/SemProba/) implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

New sufficient conditions for the law of the iterated logarithm in Banach spaces

Michel WEBER University of Strasbourg I (February 1990)

1. Introduction. Results.

Let E be a separable Banach space and let E' its topological dual and E_1 the closed unit ball of E'. Our purpose in this paper will be to state a "majorizing measure" type sufficient condition for checking the law of the iterated logarithm in Banach space. Let X, X_1, X_2, \ldots be a sequence of independent identically distributed random variables with values in E. We denote, as usual, $S_n(X) = X_1 + \cdots + X_n, n \geq 1$ and $a(n) = \sqrt{2n \log n}, n \geq 3$. We recall that the random variable X satisfies the bounded law of the iterated logarithm in E, (BLIL), (resp. compact law of the iterated logarithm in E, (CLIL)), when the sequence $\{S_n(X)/a(n), n \geq 3\}$ is bounded in E almost surely, (resp. relatively compact in E almost surely). By way of preliminary, we recall the reduction theorem of Ledoux-Talagrand, ([3], theorem 1.1).

THEOREM 1.1.

- a) (BLIL) X satisfies the bounded LIL if, and only if, the following three conditions hold
 - $(1.1) \quad \mathsf{E}(\|X\|^2 \log\log\|X\|) < \infty,$
 - (1.2) for each $f \in E'$, $E(\langle x, f \rangle^2) < \infty$,
 - (1.3) the sequence $\{S_n(X)/a(n), n \geq 3\}$ is bounded in E in probability.
- b) (CLIL) X satisfies the compact LIL if, and only if, the following three conditions hold
 - $(1.1) \quad E(\|X\|^2/\log\log\|X\|) < \infty,$
 - (1.4) $\{\langle X,f\rangle^2\,,\,f\in E_1\}$ is uniformly integrable,
 - (1.5) $S_n(X)/a(n) \to 0$ as $n \to \infty$, in probability.

This result, which reduces the problem from one of the almost sure behavior to one of the in-probability behavior, let in doubt the question of a possible condition (regarding X and E, instead of $S_n(X)$ and E) ensuring (1.3) or (1.5). Our goal here will be precisely of giving a such kind of condition. For, we introduce some useful notations:

Let $\phi_2(x) = e^{x^2} - 1$, and we consider the usual Orlicz norm associated to ϕ : given a probability $(\Omega, \mathcal{F}, \mu)$, we set for any element f of $L^{\phi_2}(\mu)$, $||f||_{\phi_{2,\mu}} = \inf\{c > 0 : \int_{\Omega} \phi_2(f(x).c^{-1})d\mu(x) \leq 1\}$.

We refer the reader to [2] for basic results on Orlicz spaces. Throughout this paper, we denote by $(\Omega_X, \mathcal{A}_X, P_X)$ the probability space of the sequence X, X_1, X_2, \ldots ; we set also for any integer $p \geq 1$, $a_p = a(2^p)$. We introduce the following homogeneous pseudo metrics:

$$(1.6) \forall p \ge 1, \forall f, g \in E', d_p(f, g) = d_p(0, f - g) = \|\langle X^{(p)}, f - g \rangle\|_{\phi_2, P_X}.$$

Where $X^{(p)} = X.I(||X|| \le a_p)$.

We set afterwards for any integer $p \ge 1$,

(1.7)
$$B_{p} = \{ f \in E' : d_{p}(0, f) \leq 1 \}$$

$$\mu_{p} = \inf_{\mu \in \mathbf{M}_{1}^{+}(B_{p})} \sup_{f \in B_{p}} \int_{0}^{1} \left(\frac{1}{\mu(B_{d_{p}}(f, u))} \right) du,$$

$$\text{where } B_{d_{p}}(f, u) = f + \{ g : d_{p}(0, g) \leq u \}$$

$$\Delta_{p} = \sup \{ d_{p}(0, f), f \in E'_{1} \}.$$

Our main result can be stated as follows.

THEOREM 1.2.

a) (BLIL) In order that X satisfies the bounded LIL in E it is enough that conditions (1.1), (1.2) and

(1.8)
$$\limsup_{p \to \infty} \Delta_p \mu_p^2 / \sqrt{\log p} < \infty,$$

are fulfilled.

b) (CLIL) In order that X satisfies the compact LIL in E, it is enough that conditions (1.1), (1.4) and

(1.9)
$$\lim_{p \to \infty} \Delta_p \mu_p^2 / \sqrt{\log p} = 0,$$

are fulfilled.

2. Preliminaries.

For proving theorem 1.2, we will use the following slight improvement of the well known result of [1]. Its proof is very similar to those of theorem 1.5 in [5].

THEOREM 2.1. — Let $X = \{X_t, t \in T\}$ be a centered stochastic process, with basic probability space (Ω, \mathcal{A}, P) . We assume that

(2.1)
$$\forall s, t \in T , ||X_s - X_t||_{\phi_2, P} \le d(s, t),$$

where d is a pseudo-metric on T. Then for any Borel probability measure on T (i.e. $\mu \in M_1^+(T)$).

(2.2) p.s.
$$\sup_{(s,t)\in T\times T} |X_s - X_t|$$

$$\leq C \|X\|_{\phi_2,\mu\otimes\mu} \sup_{t\in T} \int_0^{\dim(T,d)} \frac{1}{2} \phi_2^{-1} \left(\frac{1}{\mu(B_d(t,u))}\right) du$$

(2.3) p.s.
$$\forall s, t \in T$$
 $|X_s - X_t|$

$$\leq C \|X\|_{\phi_{2},\mu\otimes\mu} \sup_{t\in T} \int_{0}^{\operatorname{diam}(T,d)} \phi_{2}^{-1} \left(\frac{1}{\mu(B_{d}(t,u))}\right) du$$

(2.4)
$$\| \sup_{(s,t)\in T\times T} X_s - X_t \|_{\phi_2,P} \le CI(T,d),$$

where

(2.5)
$$I(T,d) = \inf_{\mu \in \mathbf{M}_{+}^{+}(T)} \sup_{t \in T} \int_{0}^{\underline{\operatorname{diam}}(T,d)} \phi_{2}^{-1} \left(\frac{1}{\mu(B_{d}(t,u))}\right) du;$$

and $\widetilde{X} = \{(X_s - X_t)/d(s,t), s, t \in T, d(s,t) \neq 0\}$ and $0 < C < \infty$ is a numerical constant.

3. Proof of theorem 1.2.

By a classical symmetrization argument, it is enough to prove theorem 1.2 for symmetric random variables X. In that case, the sequence X, X_1, X_2, \ldots has same law than the sequence $\varepsilon X, \varepsilon_1 X_1, \varepsilon_2 X_2, \ldots$ where $\varepsilon, \varepsilon_1, \varepsilon_1, \varepsilon_2, \ldots$ is a Rademacher sequence defined on another probability space $(\Omega_{\varepsilon}, A_{\varepsilon}, P_{\varepsilon})$.

Let p be fixed, we denote again $X^{(p)} = \{\langle X^{(p)}, f \rangle, f \in E' \}$. Then,

(3.1)
$$\sup_{(f,g)\in E_1'} \left| \frac{X^{(p)}(f) - X^{(p)}(g)}{d_p(f,g)} \right| = \sup_{(f,g)\in E_1'} \left| \frac{X^{(p)}(f-g)}{d_p(f,g)} \right| \le \sup_{d_p(0,h)\le 1} |\langle X^{(p)}, h \rangle|.$$

But, $||X^{(p)}(h) - X^{(p)}(h')||_{\phi_2, P_X} = ||X^{(p)}(h - h')||_{\phi_2, P_X} = d_p(h, h').$

By virtue of theorem 2.1,

(3.2)
$$\| \sup_{d_p(0,h)<1} \langle X^{(p)}, h \rangle \|_{\phi_2, P_X} \le C \mu p,$$

where $0 < C < \infty$ is a numerical constant, which may change from line to line. Set now for any integer $n \in [2^p, 2^{p+1}[$,

(3.3)
$$\forall f \in E_1' \ , \ \mathsf{U}_n(f) = \left(\frac{1}{n} \sum_{i=1}^n \langle X_i^{(p)}, f \rangle^2\right)^{1/2}.$$

Next we use the following elementary fact : if $\phi_1(x) = e^{|x|} - |x| - 1$, then, (3.4) there exists a number $0 < C < \infty$ such that $||f^2||_{\phi_1, P_X} \le ||f||_{\phi_2, P_X} \le C||f^2||_{\phi_1, P_X}$. Consequently, we get

(3.5)
$$\| \sup_{d_p(0,h)<1} \mathsf{U}_n(h) \|_{\phi_2,P_X} \le C \cdot \mu_p.$$

Using then the triangular inequality for the l_2 -norms, we also have,

(3.6)
$$\sup_{(f,g)\in E_1'} \frac{|\mathsf{U}_n(f)-\mathsf{U}_n(g)|}{d_p(f,g)} \le \sup_{(f,g)\in E_1'} \left| \frac{\mathsf{U}_n(f-g)}{d_p(f,g)} \right| \\ \le \sup_{d_p(0,h)<1} |\mathsf{U}_p(h)|,$$

hence, finally,

(3.7)
$$\|\sup_{(f,g)\in E_1'} \left| \frac{\bigcup_p (f-g)}{d_p(f,g)} \right| \|_{\phi_2,P_X} \le C\mu_p.$$

Let M > 0, and we set

$$A(M) = \left\{ \sup_{(f,g) \in E_1'} \left| \frac{\mathsf{U}_n(f-g)}{d_p(f,g)} \right| \le M \mu_p \right\}.$$

We have, from (3.7), $P_X\{A^c(M)\} \leq \overline{e}^{CM^2}$, and on A(M), denoting

$$\forall n \in [2^{p-1}, 2^p[, \forall f \in E_1', G_n(f) = \frac{1}{\sqrt{n}} \sum_{i=1}^n \langle X_i^{(p)}, f \rangle \varepsilon_i,$$

and using a generalized version of the classical Kahane-Khintchine inequalities (see [4], p. 277) for Rademacher averages,

(3.8)
$$||G_n(f) - G_n(g)||_{\phi_2, P_{\epsilon}} \le |U_n(f - g)| \le M \mu_p d_p(f, g).$$

Hence, in virtue of theorem 2.1, on A(M), we have

(3.9)
$$\|\sup_{f \in E'_1} G_n(f)\|_{\phi_2, P_{\epsilon}} \le MC(\mu_p)^2 \Delta_p.$$

Since, $\sup_{f \in E_1'} G_n(f) = \left\| \frac{S_n(X^{(p)} \varepsilon)}{\sqrt{n}} \right\|$; we deduce for any p and integer $n \in [2^{p-1}, 2^p]$,

$$P\left\{\frac{\|S_{n}(X)\|}{\sqrt{2^{n} \log n}} > M^{2}\right\} \leq P\{\exists i \leq 2^{p+1} : X_{i} \neq X_{i}^{(p)} + \int P_{X}\{A^{c}(M)\}dP_{\varepsilon} + \int_{A(M)} P_{\varepsilon}\left\{\frac{\|S_{n}(X^{(p)}\varepsilon)\|}{\sqrt{n}} > M^{2}C\sqrt{\log p}\right\}dP_{X}$$
$$\leq 2^{p}P\{\|X\| > a_{p}\} + \exp(-CM^{2}) + \exp\left(-\frac{MC\sqrt{\log p}}{\Delta_{p}(\mu_{p})^{2}}\right)2.$$

Taking into account assumptions (1.1) and (1.8), we thus see, for any $\varepsilon > 0$, that it is possible to find a real $M(\varepsilon) < \infty$ and integer $N(\varepsilon) < \infty$ such that for any $n \ge N(\varepsilon)$

$$P\left\{\frac{\|S_n(X)\|}{\sqrt{2n\operatorname{llog} n}} > M(\varepsilon)\right\} \le \varepsilon.$$

Hence the bounded LIL is established. We deduce the compact LIL by means of theorem 1.1, and using a quite similar argumentation.

References:

- [1] GARSIA, A, RODEMICH, E., RUMSEY Jr. H, A real variable lemma and the continuity of paths of Gaussian processes, Indiana U. Math. J.V., 20, 565-578, (1970).
- [2] Krasnoselski, M.A., Rutisky, J.B., Convex functions and Orlicz spaces, Dehli Pub. Hindustan Corp. (1962).
- [3] LEDOUX, M., TALAGRAND, M., Characterization of the law of the iterated logarithm in Banach spaces, Ann. Prob. 16, 1242-1264, (1988).
- [4] MARCUS, M., PISIER, G., Characterizations of almost surely continuous p-stable random Fourier series and strongly stationary processes, Act. Math., 152, 245-301.
- [5] NANOPOULOS, C., NOBELIS, P., Étude de la régularité des fonctions aléatoires et de leurs propriétés limites, Sem. de Prob. XII, Lect. Notee in Math. 649, 567-690, (1977).
- [6] WEBER, M., The law of the iterated logarithm for subsequences in Banach spaces, Prob. in Banach spaces VII, Progress in Prob. 2.1, p. 269–288, Birkhaüser, (1990).

I.R.M.A.

Unité de Recherche associée au C.N.R.S., 1 7, rue René Descartes, 67084 STRASBOURG CEDEX