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New sufficient conditions for the law
of the iterated logarithm in Banach spaces

Michel WEBER

University of Strasbourg I
’ ’ 

(February 1990)

1. Introduction. Results.

Let E be. a separable Banach space and let E’ its topological dual and Ei the closed
unit ball of E’. Our purpose in this paper will be to state a "’majorizing measure"
type sufficient condition for checking the law of the iterated logarithm in Banach
space. Let X, X2, ... be a sequence of independent identically distributed random
variables with values in E. We denote, as usual, Sn(X) = Xl + ... + Xn, n >_ 1
and a(n) = n > 3. We recall that the random variable X satisfies the
bounded law of the iterated logarithm in E, (BLIL), (resp. compact law of the iterated
logarithm in E, (CLIL)), when the sequence {Sn(X)/a(n), n ~ 3} is bounded in E
almost surely, (resp. relatively compact in E almost surely). By way of preliminary, we
recall the reduction theorem of Ledoux-Talagrand, ([3], theorem 1.1).
THEOREM 1.1.

a) (BLIL) X satisfies the bounded LIL if, and only if, the following three conditions
hold

(1.1) E(~X~2loglog~X~)  ~,

(1.2) for each f E E’, E( >2)  oo,

(1.3) the sequence 3} is bounded in E in probability.

b) (CLIL) X satisfies the compact LIL if, and only if, the following three conditions
hold

(1.1) 
(1.4) {(X, f ~z , f E E1 } is uniformly integrable,
(1.5) Sn(X)/a(n) --~ 0 as n --~ oo, in probability.
This result, which reduces the problem from one of the almost sure behavior to one of

the in-probability behavior, let in doubt the question of a possible condition (regarding
X and E, instead of Sn(X) and E) ensuring (1.3) or (1.5). Our goal here will be precisely
of giving a such kind of condition. For, we introduce some useful notations :

Let ~Z(~) = e~ 2014 1, and we consider the usual Orlicz norm associated to ~ : given
a probability (~, ,~, ~u), we set for any element f of L~s (~), ~~ f ~~~z,~ = inf {c > 0 : :
,~n ~2(f(x)~c 1)df~(x)  1}. . 

’ ~’"

We refer the reader to [2] for basic results on Orlicz spaces. Throughout this paper,
we denote by .4x, Px ) the probability space of the sequence X, Xl, X2 ... ; we set
also for any integer p > 1, ap = a(2p ). We introduce the following homogeneous pseudo
metrics :

(1.6) Vp ~ = = f _ 
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Where =  ap).
We set afterwards for any integer p > 1,

Bp = {f 

( 1.7) p = sup 10 (1 (Bdp(f,u))) du, 
,

where = f + {9’ ~ u}
~p = f ) ~ f E 

Our main result can be stated as follows.

THEOREM 1.2.

a) (BLIL~ In order that X satisfies the bounded LIL in E it is enough that conditions
(1.1), (1.2) and

(1.8) lim sup log p  oo,
F"’oo

are fulfilled.
b) ~CLIL~ In order that X satisfies the compact LIL in E, it is enough that conditions

(1.1), (1.4) and

(1.9) lim 0394p 2p/ log p = 0,

are fulfilled.

2. Preliminaries.

For proving theorem 1.2, we will use the following slight improvement of the well
known result of [1]. Its proof is very similar to those of theorem 1.5 in [5].
THEOREM 2.1. - Let X = {Xt, t E T } be a centered stochastic process, with basic

probability space A, P). . We assume that

(2.1) ds, t E T , Xt ~~~z~P ~ t),

where d is a pseudo-metric on T. Then for any Borel probability measure on T (i.e.

(2.2) p.s. sup IX$ - Xt I
(s,t)ETxT

diam(T, d)

-  
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(2.3) [
diam(T, d)

~ 

(2.4) !! sup Xs - X~~,p ~ CI(T, d),

where

diam(T, d) 
’

(2.5) I(T,d)=  inf sup 0 2 03C6-12(1 (Bd(t,u))) du;

and X = {(Xs - Xt)/d(s,t),s,t 6 0} and 0  C  oo is a numerical

constant.

3. Proof of theorem 1.2.

By a classical symmetrization argument, it is enough to prove theorem 1.2 for

symmetric random variables X. In that case, the sequence J~,J~i,J~2)... has same law
than the sequence 6iXi, 6:2X2,... where c, ~1, ~i, 62,... is a Rademacher sequence
defined on another probability space 

Let p be fixed, we denote again = {(X~/),/ C E’}. Then,

~) ~ )
= sup ~201420142014~ ~ sup 

But, -~(~)jj~p,. = ~’)~,~ = 

By virtue of theorem 2.1,

(3.2) 11 sup 

where 0  C  oo is a numerical constant, which may change from line to line. Set now
for any integer n ~ [2~,2~[,

(3.3) Vf E El , Un(f) = (~ ~(X~,/)~ . .n j=i 

Next we use the following elementary fact : if ~i(~) = then,

(3.4) there exists a number 0  C  oo such that !!/~)~,p~ ~ !t/!!~,P~ ~ C~/~j~~.
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Consequently, we get

(3.5) ~) suP  C’ 

Using then the triangular inequality for the l2-norms, we also have,

(3.6) sup 
|Un(f)-Un(g)| dp(f,g) 

~ sup |Un(f-g) dp(f,g)|(f~9)EEl p(f ~ ~’) (f~9)EEl p(f ~ g)
~ sup |Up(h)|,

hence, finally,

(3.7) ~ sup | Up(f-g) dp(f,g)| ~03C62,Px~ C p.

Let M > 0, and we set

A(M) = { sup 
|Un(f-g) dp(f,g)|

~ M p} .

~le have, from (3.7),  eCM2, and on A(M), denoting
n

~dn E E - 1 ~  > ~z~

and using a generalized version of the classical Kahane-Khintchine inequalities (see [4],
p. 277) for Rademacher averages,

(3.8) ~ 1Un(f - ~’)) - 

Hence, in virtue of theorem 2.1, on A{11l), we have

(3.9) ~~ sup  
fEE

Since, sup fEEi Gn( f ) _ II S n (X vn (p 
) ê ) ; we deduce for any p and integer n E (2p-1, 2p(,

P{~Sn(X)~ 2nllog n > M2} ~ P{ ~i~ 2p+1 : Xi ~ X(p)i

+Px{Ac(M)}dP~+A(M)P~{~Sn(X(p)~~ n > M2Clog p} dPx

~2pP{~X~>ap}
+exp(-CM2) + exp(

-MC

logp 0394p( p)2)2.
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Taking into account assumptions (1.1) and (1.8), we thus see, for any e > 0, that it
is possible to find a real M(e)  oo and integer N(e)  oo such that for any n ~ N(e)

P{~Sn(X)~ 2n llog n > M(~) }~~.

Hence the bounded LIL is established. We deduce the compact LIL by means of
theorem 1.1, and using a quite similar argumentation.
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