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A CONTINUOUS MARTINGALE IN THE PLANE

THAT MAY SPIRAL AWAY TO INFINITY 

by L. E. Dubins1, M. Emery and M. Yor

If Zt = is a continuous, complex-valued martingale, is it possible that, with
positive probability, both Pt and 03B8t tend to infinity when t ~ oo? If Z is a conformal
martingale, the answer is clearly no (for both Log pt and 03B8t are local martingales too).
But if conformality is not required, such a behavior is possible. This note gives an example
of a planar spiral curve a~ and a continuous martingale that never hits a but still has a
non-zero probability of escaping to infinity. 

The asymptotic behavior of a real continuous martingale is well known (and
can easily be obtained by time-changing it into a Brownian motion): almost every
path t ~ Mt(03C9), either has a finite limit or oscillates on the whole line

(lim inft~~ Mt(03C9) = -~ and lim supt~~ Mt(03C9) = +oo). As a consequence, if
M takes its values in a proper subset of the line R, it must converge a. s. to a
finite limit Moo.

In higher dimensions, things are much less clear: given a subset A of 
what are the convergence or divergence properties of continuous martingales2
taking their values in A? Some subsets allow explosions, in the sense that there
exists a A-valued continuous martingale tending to infinity a. s. in (that is,
it eventually leaves every compact of IR,’~); other force convergence, and every A-
valued continuous martingale has an almost surely finite limit (in A). Are these
stochastic properties of A related to its geometry, in other words, is it possible
to characterize geometrically sets that allow explosions or force convergence? We
don’t know; the aim of this note is to help clarify these matters by studying a
few examples.

1. Research supported in part by N.S.F. grant MCS80-02535.
2. Or continuous local martingales: this is equivalent by a change of time.
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We will start with sets that force convergence, simply called convergence sets
in the sequel. Obviously, all bounded sets are convergence sets and convergence
sets are stable by taking products, subsets, and images by affine transformations.

For convex sets, purely geometric characterizations of being a convergence set
are easy to obtain. In the next statement, n half-spaces of IR,’~ are said to be
independent if they can be written f > a; or a; where the Ii are n linearly
independent linear forms on equivalently, the hyperplanes f i = ai limiting
those half-spaces do not contain a common direction of line.

PROPOSITION 1. - Let A be a subset of . Each of the following conditions
implies the next one:

(i) A is included in the intersection of n linearly independent half-spaces;
(ii) A is a convergence set;
(iii) A does not contain a whole straight line.

If furthermore the set A is convex, these three conditions are equivalent.

PROOF. (i) =~ (ii). Since 1R+ is a convergence set in R, the product 1R+ is a

convergence set in The intersection of n linearly independent half-spaces,
obtained from IRn+ by an affine transformation, is a convergence set too, and so
is each of its subsets.

(ii) =~ (iii). A set containing a line carries a martingale with no limit, for
instance a Brownian motion on this line, so it cannot be a convergence set.

The proposition will be established by showing that (iii) and the supplementary
hypothesis that A is convex imply (i).

Let A be a convex subset of not containing any line; we claim that neither
does its closure A. For suppose A contains a line L. Let E be the smallest affine
sub-space of JRn containing A (and A); A contains 1 + dim E aflinely independent
points, so by convexity it contains also a whole simplex in E, and by replacing if
necessary the reference space JRn with E, we may suppose that A has a non-empty
interior. Let p be an interior point of A; we are going to show that A contains
the line L’ parallel to L passing by p, thus establishing the claim. Let indeed q
be another point on L’. Since there exists a sequence (xn) of points of
A such that dist(xn, L) -3 0 and that x,b tends to infinity in the direction going
from p to q. Since the line qxn tends to L’, the projection pn of p on this line
tends to p, and for some n large enough, p~z is in A and q is between Pn and xn;
by convexity, q is in A as claimed. So if A C E = does not contain any line,
A does not either. 

To prove (i) it suffices to verify that the whole dual E’ of ]Rn is linearly
spanned by the set A’ = {fEE’ : 3aER b’xEA f (x) > a~ of all linear forms that
are bounded below on A. If A is empty, the result is trivial; else, let x be an
element of A. Consider an arbitrary non-zero linear form § on E’; since E" = E,
there is a non-zero vector y E IRn such that = f(y) for all f in E’. As A
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contains no line, there exists a real A such that x + Ay does not belong to A,
hence, by the Hahn-Banach theorem, there exists a g E E’ separating the point
x + Ay from the closed convex set A: g(x + Ay)  infz~A g(z). In particular, g is
bounded below on A, so g is in A’, and g(x + Ay)  g(x), so = g(y) # 0.
This shows that § does not vanish identically on A’ and, § being arbitrary, A’ is
not contained in any hyperplane. t

But if the convexness assumption is dropped, we don’t lmow any geometric
characterization of all convergence sets. There exist sets containing no straight
line that are not convergence sets, for instance the subset of C = IR2 consisting of
0 and of all complex numbers with argument 0, 27r /3 or 47r /3; a non convergent
martingale on this set is the Walsh martingale, whose modulus is that of a real
Brownian motion, the argument of each excursion being chosen at random among
0, 27T/3 and 47T/3 (see [4J page 44). On the other hand, there are convergence
sets that are not contained in any half-space.

PROPOSITION 2. - Let f : --3 (o, oo) be continuous, increasing, unbounded
and such that f (9 + 2~r)  c f (8) for a constant c and all e > 0. Denote by u
the spiral with equation p ‘-- f (e) in polar coordinates. Every continuous planar
martingale that never hits: Q is convergent; in other words, the complementary
IR2 - 7 is a convergence set.

Examples of such curves are the logarithmic spirals p = ea° and all the spirals
with a sub-exponential growth, for instance the Archimedes spirals p = a0 + b.

PROOF. Define a continuous function 6~ on the complementary set A = or

by 8(z) = 0 if the segment [0, z] does not meet 03C3 and e is the determination of
the argument 6 such that 2(n 2014 l)7r ~ 0  2n7r if [0, z] Her has n ~ 0 points. The
inequality p  f (e + 27r) holds identically on A; if 8 > 0 one has also f (B)  p.

Let X be a continuous martingale with values in A; denote by R = poX its
modulus and set 0 = Define an increasing sequence of stopping times by

To = inf{t : 8t > 0} ; ; = inf{t : 8t = OTn + 7r} .
For the probability = IP [0393|Tn  oo] and the filtration gf = :FTn+t, the
stopped process Y’~ = is a martingale, with modulus bounded by
the Gn0-measurable random variable f (OT" + 37r). So Yn~ exists and is finite,
a. s. for IPn, and verifies = XTn on {Tn  oo~. Identifying IR~
with the complex field C, this can be rewritten = 1. Now

is bounded above by

f(8Tn) - ,
and, on the event  oo~, is real and negative. So, letting
p =  one has on {Tn  oo}

1 = c2 ( 1- p) + 
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giving p  1- c-2 = e  1 and, by integration,  ~|Tn  ~. This

implies IP [Tn  ~]  en, and T?z must be infinite for some a. s. finite value of n.
Consequently, ,0 is almost surely bounded; as R  f (0 + 27r) , almost every path
of X is bounded, and hence convergent. fl

If the requirement that f increases at most exponentially is dropped, the result
is no longer true; when the spiral grows fast enough, its complementary set is no
longer a convergence set.

PROPOSITION 3. - Consider in the plane a spiral ~ with equation p = f (o),
where f : ~80, oo) - (o, oo) is C2, strictly increasing, unbounded and such that
f 2 + 2 f’2 - f f " > 0 (locally, ~y is between its tangent and the origin~.

Suppose that f’/ f is bounded away from zero and that for some a  7r

dooo.
0o f (e + a,) - f (e) 

~~ ~ ~

Then the set of all points having some polar coordinates p and e verifying
9 > 90, f (o)  p  f (8 + 03B1 + 03C0) is not a convergence set.

An example of a function meeting these requirements is f (8) = e"e’+~ with
a and e strictly positive.

Notice that, for  ~i  2~, this set is included in the complementary of the
spiral p = f (8 +,~) so the latter cannot be a convergence set either. Remark also
that this does not leave much hope of finding a purely geometric characterization
of convergence sets as in the convex case, for such a characterization should be
able to discriminate between a logarithmic and a faster growing spiral.

The proof will use a real-valued Brownian motion starting from 0 and
its current maximum St = supst Bs. We start with a lemma, borrowed from

2’, page 92. 
’ 

~

LEMMA 1. - Let y : [0, ~) ~ IRn be a curve of class C2, or, more generally,
an absolutely continuous curve with locally bounded Lebesgue derivative y . The
IRn -valued process

Zt = - (s~ - 
is a continuous local martingale, verifying dZt = dBt. In particular, if tlae
speed is bounded, Z is a martingale.. ,
PROOF. Suppose first that, is C2. Since and have finite variation
and since the increasing process f (S - B) dS vanishes identically, 

Zt = 03B3(0) + t0 03B3(Su)dSu - t0 03B3(Su) d(S - B)u - t0 (Su - Bu)(Su) dSu,

yielding Zt = 03B3(0) + fo dBu. By a monotone class argument, this formula
is still valid when y is only locally bounded; it implies that Z is continuous. fl
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Notice that the point Zt lives on the tangent to 03B3 at when B = S,
Z = is on the curve itself; during an "excursion" of B away from S, Sand
y(S) are constant, and Z performs a similar excursion away from y(S) on the
tangent line to the curve, in the backward direction.

PROOF OF PROPOSITION 3. Denote by A the set of all points having some
polar coordinates p and 0 verifying 8 > 00, f (8)  p  + a). Parametrize
7 by its arc-length s, with s = 0 corresponding to 0 = 00 + 1f. Lemma 1
provides us with a martingale Z that has no limit at infinity; the proposition
will be proved if we show that Z has a positive probability of never leaving the
set A, since the stopped process Z~T (with T the hitting time of A~) will be a
continuous martingale in A with no a. s. limit at infinity. Let 6 be the spiral

p = + a + 7r), obtained from y by
the rotation with angle - ( a + 7r). Denote
by M the generic point of ’Y, and by N
the intersection of the tangent to 03B3 at

M with b, more precisely the intersection
point closest to M in the direction such
that MN is a negative multiple of ~y; if

8 > 80 + 7r, the whole segment MN is
included in A. Now, the distance between
M and N depends on the position of M
on ’Y, so it can be considered as a function

g(s) of the arc-length parameter s(M)
on ~. Since, when = s(M), the point Z~ is on the line MN at a distance

Bi from M, it suffices to verify that IP [V~ ~ 0, ~ 2014 Bi ~ is not zero;
this will prove that Z has a positive probability of never leaving A, and the
proposition will be established.

LEMMA 2. 2014 If g: [0?oo) ~ [0?oo] is a Borel function,

= exp (-~"-~) ’ .
In particular, IP[t ~ 0, St - jB  > 0 x/ and 

This result is due to Knight ([3], Corollary 1.3). It implies the proposition
because g( s ) = dist(M,N) satisfies Indeed, the estimate

g(s) = MN ~ ON - OM ~ OP - OM = f(03B8 + 03B1) - f(03B8) yields

and this is finite owing to the ad hoc hypotheses on f. )!
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Knight states his result as the following corollary, obtained when applying
Lemma 2 to the function equal to g on [0, x] and identically infinite after x.
COROLLARY OF LEMMA 2. - For x ~ 0, let Tx denote the stopping time
inf(t St > x~ = inf(t Bt > ~}. . If g : -~ is a Borel function,

IP[t ~ [0, Tx], St - Bt ~ g(St)] = exp(-x0ds g(s))
.

He obtains it in [3] as a by-product of the explicit value of the Laplace
transform of the law of the total amount of time such that St - Bt  g(St).
But if one is interested in Lemma 2 only, it is possible to reach it more shortly;
here are two direct proofs of it.

FIRST PROOF OF LEMMA 2. Denote by fg the event {b’t > 0, St - B~  
If gn is a decreasing sequence of functions with limit g, the events rgn are

decreasing with intersection rg, and their probabilities tend to that of rg; so
by approximating g from above, we may suppose 1/g bounded and integrable.

Define = exp ds/g(s)] > 0 and Mt = h(St) [1- (st-Bt)lg(st)],
so that rg is the event , 0~. The function h’(x) = is
bounded and is a Lebesgue derivative of the increasing function h; by lemma 1,
M = h(S) - (S- B) h’ (S) is a continuous martingale. As it verifies M  hoS  1,
it has an a. s. limit Moo; on the random set {t : B~ = St}, it verifies M = hoS, so
Moo = = 1. Consequently, by stopping M at the first time when it becomes
strictly negative, one gets 

, Mt > 0~ = Mo = h(0) - 1

SECOND PROOF OF LEMMA 2. As above, we may suppose § = 1/g finite and
integrable. According to Levy’s equivalence, if L is the local time of B at the
origin, the IR2-valued processes (St-Bt, and have the same

law; the probability we are interested in is equal to that of the event
(Vt > 0, 7(L,)} = ~bt > 0, 1~. ’

As in lemma 1, Nt = is a continuous local martingale, equal to
~o dBS (see for instance proposition 5 of [2~ ). It has quadratic variation
(N,N)t = and local time where ~(x) - Now,
when read in its own time-scale, N becomes Brownian, that is, there exists a
Brownian motion /3 such that Nt = Furthermore, if f is the local time of
03B2 at 0, we get = whence (N, N~~ = inf{t : lt ~ 03A6(~)}. Calling

this quantity, we have
= 0, | ~ 1] = IP [sup|Nt|  1] = IP [ sup  1]

and it remains to prove that IP[supt~Tx|03B2t|  1] = e-x.
Letting T = inf{t : : = 1}, this just says that x] = e-x; now the

Markov property of (3 at time Tx implies that the law of Lr is exponential, and
= =1 gives the result. fl
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We now turn to sets that allow explosions: they carry a martingale whose
distance to the origin tends almost surely to infinity. We will restrict ourselves to
the two-dimensional case and deal with subsets of the plane.

PROPOSITION 4. - Let A be a subset of IR2. Each of the following conditions
implies the next one:

(i) Its complementary A~ is included in an angle strictly less than ~r;
(ii) A allows explosions;
(iii) A~ does not contain a whole straight line.

If furthermore Ac is convex, these three conditions are equivalent.
PROOF. (i) =~ (ii). If A~ is included in an angle strictly less than 7r, choose affine
coordinates (x, y) in the plane such A contains all points with x >_ 0 or y > 0.
Construct a martingale Zt = (Xi, Y ) in the following way: Zo = (0, 0); then,
keeping Y frozen at 0, move X Brownianly until it reaches the value 1; keep it at
this value and move Y Brownianly until it reaches the value 1 too; then freeze Y
again and let X wander until it reaches 2, etc. Clearly, this yields a martingale in
A escaping away to infinity. [Remark that this is an instance of Lemma 1, with
a stair-like curve y made of segments parallel to the axes; but we no longer need
an estimate such as Lemma 2 since we have an infinite length avilable on the
tangents.]

(ii) =~ (iii). If A~ contains a line (for instance the line x = 0), no continuous
martingale in A can tend a. s. to infinity, for its x-component is a real martingale
avoiding a point, hence convergent, and its y-component is not allowed to converge
a. s. to +00 or -oo.

When A~ is convex, (iii) ==~ (i) has been seen in Proposition 1. /

This proposition applies, for instance, to sets obtained as the image of a
half-plane by a homeomorphism of the whole plane onto itself. But even when
considering only such subsets, we don’t see how to characterize geometrically
those that allow explosions.
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