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The Azéma Martingales as Components of
Quantum Independent Increment Processes

Michael Schiirmann

Inspired by the work of J. Azéma [3], M. Emery and P.A. Meyer, K.R. Parthasarathy
investigated the quantum stochastic differential equation

dX = (c—1)XdA +dAt +dA

for a real number c; see [7]. The solution of such an equation is called an Azéma
martingale. We demonstrate how an Azéma martingale can be regarded as a component
of a quantum independent stationary increment process in the sense of [2].

A classical stochastic process (X,;) taking values in a semi-group G and indexed by
pairs (s,t) € Ri, 's < t, is an increment process if

Xrs Xt = Xpt, r <5<
Xit = e, e the unit element of G.

To give sense to increments in the non-commutative case, we replace the group by a
*_bialgebra. This object is defined as follows. A coalgebra C is a (complex) vector space
on which two linear mappings

A:C—-C®C (comultiplication)
§6:C—-C (counit)
are given such that
(A®id)oA=(id®@A)o A (coassociativity law)
(6@id)cA=id=([d®§) oA (counit property).

A *-bialgebra is a *-algebra which is also a coalgebra in such a way that A and § are
*_algebra homomorphisms.

The vector space L(C, A) formed by the linear mappings from a coalgebra C to a
(complex, unital) algebra 4 is an algebra with the multiplication

RxS=Mo(R®S)oA

where M : A ® A — A denotes multiplication in A. The unit of L(C, 4) is given by
b +— 6(b)1. Especially, the algebraic dual space ¢* = L(C,C) of a coalgebra C is an
algebra (with unit §).

If the *-bialgebra B has an antipode, that is a linear operator S on B such that
S %id = id %S = 61 (i.e. S is the inverse of the identity with respect to ), then we call
B a *-Hopf algebra.
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EXAMPLES:

1) Let G be a semi-group. The semi-group algebra CG is a *-bialgebra if we define *
by antilinear extension of z* = z~! and A and § by linear extension of Az = z ® z,
5z=1,z€G. If G is a group CG is a *-Hopf algebra with S(z) = z™!.

2) Let G be a sub-semi-group of the semi-group Mc 4 of complex d x d-matrices. Then
we denote by G|d]| the *-algebra of complex-valued functions on G generated by the

functions £k, k,! =1,...,d, which map an element (amn)m,n=1,....d of G to ax. If we
set
d.
Db =) bkn ® &t
n=1
6(&kt) = Okt

we can extend A and § to *-algebra homomorphisms in a unique way. G[d] becomes a
*.bialgebra. We call G[d] the coefficient algebra of G.

3) Denote by Mc(d) the free algebra generated by indeterminates zx; and zy;, k,I =
1,...,d. The mappings *, A and § are given by extending

(zkt)" = 2kt
d
Az =) Tin ® Tni (1)
n=1

6zki = bpt (2)

in the unique way which makes * an involution and A and § *-algebra homorphisms.
Similarly, Mg(d) is defined as the free algebra generated by zx, k,I = 1,...,d, with
the involution given by (zx1)* = zx; and A and 6 again defined by (1) and (2). Mg(d)
is a quotient (i.e. a homomorphic image) of M¢(d) (it has the additional relations
Ty, = Zxt). If we make M (d) commutative we obtain the coefficient algebra My[d] of
My 4, K= Cor R. Any G[d] of Example 2 is a quotient of Mg[d] or at least of M¢|[d].
4) Denote by C(z;,...,z4) = C(d) the free algebra generated by indeterminates
Zy,...,Z4. We extend the mappings *, A and § with

(m)* ==z
Az =z7101+1Q® 1
;=0

to obtain a *-bialgebra which is a quotient of Mg(2d). The *-bialgebra C(d) is a *-Hopf
algebra with antipode S(z;, ... 21,) = (-1)"z, ...y, .
5) Divide M¢(d) by the ideal Jy generated by the elements

d
> Tknin — Oul,

n=1
d
Z z;kxn, — 81,

n=1
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Then Jy is a *-biideal. We denote the *-bialgebra M¢(d) / Jy by U(d). It can be shown
that U{(d) has no antipode.

6) By making U(d) commutative one obtains the coeﬁcxent algebra U[d] of the group Uy
of unitary d x d-matrices; see [5] where U(d) was called the non-commutative analogue
of the coefficient algebra of Uy and where a structure theorem for U(d) was proved. Ul[d]
is a *-Hopf algebra with the *-algebra homomorphism S(zx;) = zj;, as the antipode.
7) Consider in Mg(2) the ideal generated by the elements z;; — 1 and z3;. This is a
*-biideal. We denote the quotient *-bialgebra by Ho(2). It is equal to the free algebra
C(z,y) generated by two indeterminates z and y with the involution z* = z, y* =y,
and A and § given by

Arz=z®y+1Q®«z, 6z=0

Ay=y®y, fy=1.

8) By making Ho(2) commutative one obtains the coefficient algebra Hy[2] of the semi-

group
Hy = {((1) Z) ta,f €R}.

The set of complex-valued *-algebra homomorphisms on Hp|[2] equipped with % as the
multiplication is isomorphic to Hp.

9) A *-Hopf algebra H(2) containing Ho(2) as a sub-*-bialgebra is obtained if we divide
the *-bialgebra C(z,y,y~!) with

Az=z®y+1Q®z, 6z=0
Ay=y®y, by=1
Ay t=y eyt fyi=1

=z 9=y (y)=y"

by the *-biideal generated by the elements yy~' —1 and y~!y—1. An antipode is given
by extending S(z) = zy~ !, S(y) = y~!, S(y~!) = y, to a linear anti-homomorphism;
see [12].

10) We can make H(2) commutative to obtain the *-Hopf algebra Hz. The set of
complex-valued *-algebra homomorphisms on H; is isomorphic to the group

H= {( ﬁ) o, B ER,B #0},

but H, is not equal to H|[2] = Ho|[2].
GENERAL THEORY:

Let (st) be a quantum stochastic process in the sense of Accardi, Frigerio and Lewis
(1], indexed by pairs (s,t) € R}, s < t. The j, are *-algebra homomorphisms from
a *-algebra B to a *-algebra A where there is also given a state ® on A. Let B be a
*_bialgebra. We call (j,t) a quantum independent stationary increment process if the
following conditions are fulfilled (see [2])

(a) Jrs *Jst = Jrt, T <8< H; Jue =61
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(b1) The algebras j,:(B) and j,¢/(B) commute for disjoint intervals (s,t) and (s’,t').
(b2) The state ® factorizes on the sub-algebras ji,¢,(8), ..., ft,t,4, (B) of A for n €N,
tl < - < tn+1.
(c) The states ® o j, only depend on the difference t — s, i.e. ® 07y = p_s.
(d) %:iﬁ)l we(b) = 6(b) for all b € B.

Two independent stationary increment processes are called equivalent if the numbers
®(J5,¢,(b1) .. - Jsnt, (bn)) are the same for both processes.

Let B be a *-Hopf algebra and let (j¢);cr, be 2 quantum stochastic process over B in
the sense of Accardi, Frigerio and Lewis. Then jy = (j, o S) * j; satisfies (a), and () is
called a process with independent and stationary increments if (j,¢) is an independent
stationary increment process.

An independent stationary increment process (j,¢) is, up to equivalence, determined
by its (infinitesimal) generator 4 which is the linear functional on B given by

Wb) = S0 ®lemo-

The set of generators coincides with the elements in B satisfying

P(1)=0
y¥[Kern § is positive
¥(6*) = 9(b).

Given 9 satisfying these properties, one can make the following construction (see [9],
cf. [8,6]). Divide B by the null space of the positive semi-definite sesquilinear form

(bsc) = $((b — 8(6)1)*(c — 8(c)1))

on B to obtain the pre-Hilbert space D. Denote by  : B — D the canonical mapping
and define the *-representation p of 8 on D by

p(B)n(e) = n(be) - n()5(c)-

We can write down the quantum stochastic integral equations
t
e (®) = 66) + [ Gur %)) (3

on the Bose Fockspace ¥ over L?(R4, H), H the completion of D, where b € 8, s < t,
and
1Y (6) = A}(1(5)) + Ae(p(b) — 6(5)1) + Ac(n(6*)) + (b)t.

In short-hand differential notation
djgt = jor xdIY, i = 61.

The operators j,(b) are defined on a dense linear sub-space of 7 which is the span of
certain exponential vectors; see [4]. In a formal algebraic sense, the j,; constitute a
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version of an independent stationary increment process with generator 9. We believe
that this statement can be made rigorous for an arbitrary *-bialgebra by showing that
the linear span of

{jhh(bl)"’j’ntn(bﬂ)n in €N, (S[,t[) € R?,_,S[ <tyby,..ybn € B}

is in the domain of the closure of the operator j,: (b). Only the restriction of j to this
linear subspace of the Fock space can be the independent stationary increment process
in question, so that the representation (3) is an embedding theorem. For CG, C(d)
and U(d) a rigorous treatment of equation (3) can be found in [4,10], [11] and [9]. For
" CG, G a group, the operators j,(z), z € G, are unitary and are representations of G
of type S (cf. [6]). For C(d) the operators j,(z;) are sums of creation, preservation,
annihilation and scalar processes [11]. For U(d) the operators (js¢(zxi))k,i=1,...,a are
increments (U,)'r U; of a solution U; of a linear quantum stochastic differential equation
on C* ® 7 with constant coefficients [9].

APPLICATION TO H(2): _

We concentrate on Example 7. A generator 4 on Ho(2) can always be constructed by
the following procedure. Assume that we are given a pre-Hilbert space D, two hermitian
operators p; and p, on D, two vectors ; and 7y in D and two real numbers 1, and
¥y. We then define the *-representation p of Hy(2) by extending p(z) = pz, p(¥) = py-
Next we define the linear mapping # : Ho{2) — D by the equations

n(z) =7z
n(y) =y
n(bc) = p(b)n(c) + n(b)5(c).
Finally, we define ¢ € Hy(2)* by
1/)($) =1z

Y(y) =y
B(be) = $(b)5(c) + 8(b)%(c) + (n(a*), n(b))-

Then % is a generator, and the associated equations (3) for b=z and b =y are

dX = Xot (dAI (ny) + dA¢(py — 1) + dAe(ny) + Pydt) (4)
+d A (na) + dAe(pa) + d A (ng) + odt
X, =0,
and
dY, = Yst(dAI (ny) +dA¢(py — 1) + dAe(ny) + ¥y di) (5)
Yas = 1;

where we set X,; = jut(z) and Yy = jue(y). By property (a) of an independent sta-
tionary increment process we obtain for r <s <t

Xet = (]'rs *jst)(z) = X,sYet + Xt
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and
Yo = Yrs Y.

Using this and property (bl) we have for s <t

XosXot = Xos(Xos Yot + Xot)
= XosYst Xos + Xt Xos
= Xot Xos

and
YOaYOt = YOSYOJ Yat

= YOsYat YOs
= YOCYOJ

showing that both X; = Xo; and Y; = Yo; are commutative processes.

The equations for the Azéma martingales arise as the following special cases. Choose
D=C, p;=0,p,=c€R,n: =1, 5y =0 and ¥, = ¢, = 0. This determines a
generator $(¢) on Hy(2). Equation (4) and (5) become

dX, = (¢ — 1) X, dAs +dQy, X, =0 (6)
(whefe we put Q; = A} + A;) and
dY, = (c — 1)YadA,, Yo, = 1. (7)
Equation (7) is the one for the second quantization operator

Yot = T(X[0,5] + €X[s,¢] + X[t,00))s

equation (6) is solved by X, = X; — X,Y, and X; satisfies the Azema martingale
equation

dXt = (C - l)ngAt + th, Xo =0.
We have

() (zyz) = n(z)n(yz)

= 1(z)(p(v)n(z) + n(v)6(z)

But -
¥ (z?y) = n(z)n(=y)

= 1(z)(p(z)n(y) + n(z)6(y)

=1,
which shows that for ¢ # 1 the process (X,¢,Y,:) cannot be reduced to an independent
stationary increment process over Hp|2].

In the case ¢ # 0 we can extend the generator %(¢) to a generator on H (2) in the

only possible way by setting p(y~') = ¢!, n(y~!) = 0, and 9(9(y~!) = 0. Then
(Xt,Y:, (Y:)™") is a process with independent stationary increments over H(2).
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REMARK: Nothing has been said about the domains of our processes. However, for
—1 < ¢ <1 the Y are bounded and for —1 < ¢ < 1 this is also true for X, (see [7]).
For ¢ = 1 we have X, = Q4 and this is actually the case of Brownian motion and the
*.bialgebra C(1). Also from [7] we know that for —1 < ¢ < 1 the process X; has the
chaos completeness property which means that the embedding of j, into (X, Yye) is
an isomorphism.
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