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The Azéma Martingales as Components of
Quantum Independent Increment Processes

Michael Schürmann

Inspired by the work of J. Azema [3], M. Emery and P.A. Meyer, K.R. Parthasarathy
investigated the quantum stochastic differential equation

dX = (c - l)XdA + dAt + dA

for a real number c; see [7]. The solution of such an equation is called an Azema

martingale. We demonstrate how an Azema martingale can be regarded as a component
of a quantum independent stationary increment process in the sense of [2].
A classical stochastic process (Xst) taking values in a semi-group G and indexed by

pairs (s, t) E ~8+, ~s  t, is an increment process if

Xtt = e, e the unit element of G.

To give sense to increments in the non-commutative case, we replace the group by a

*-bialgebra. This object is defined as follows. A coalgebra C is a (complex) vector space
on which two linear mappings

A : C -~ C @ C (comultiplication)
8 : C --~ C (counit)

are given such that

(~ ® id) o A = (id ~ A) o A (coassociativity law)
(b ® id) o A = id = (id ~ 8) o A (counit property).

A *-bialgebra is a *-algebra which is also a coalgebra in such a way that A and 8 are

*-algebra homomorphisms.
The vector space formed by the linear mappings from a coalgebra C to a

(complex, unital) algebra A is an algebra with the multiplication

where ~VI : ~ ~ .If --~ ,~ denotes multiplication in A. The unit of is given by
b ~ b b 1. Especially, the algebraic dual space C* = L(C, C) of a coalgebra C is an

algebra (with unit 8).
If the *-bialgebra B has an antipode, that is a linear operator S on B such that

S * id = id * S = 51 (i.e. S is the inverse of the identity with respect to *), then we call
B a *-Hopf algebra.
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EXAMPLES:

1) Let G be a semi-group. The semi-group algebra CG is a *-bialgebra if we define *
by antilinear extension of x* = and A and 8 by linear extension of 6x = x ~ z,
~x = 1, x E G. If G is a group CG is a *-Hopf algebra with S(x) = 
2) Let G be a sub-semi-group of the semi-group of complex d x d-matrices. Then
we denote by G[d] the *-algebra of complex-valued functions on G generated by the
functions = 1,..., d, which map an element of G to If we
set

d

039403BEkl = 03A3 03BEkn ® 03BEnl
n=1

= 8kl

we can extend A and 03B4 to *-algebra homomorphisms in a unique way. G[d] becomes a
*-bialgebra. We call G[d] the coefficient algebra of G.
3) Denote by the free algebra generated by indeterminates xk~ and k, t =
1,..., d. The mappings *, A and 8 are given by extending

d

0394xkl _ 03A3 xkn ® xnt (1 )
n=1

03B4xkl _ 03B4kl (2)
in the unique way which makes * an involution and A and 03B4 *-algebra homorphisms.
Similarly, MR(d) is defined as the free algebra generated by k, 1 = 1, ... , d, with
the involution given by (Xkl)* = Xkl and 0394 and 8 again defined by (1) and (2). MR(d)
is a quotient (i.e. a homomorphic image) of (it has the additional relations
xkl = If we make commutative we obtain the coefficient algebra of

K = C or R. Any of Example 2 is a quotient of or at least of 

4) Denote by C(xl, ... , xd) = C(d) the free algebra generated by indeterminates
x1, ... , , xd. We extend the mappings *, 0394 and b with

(x~)* = x~

bx~ = 0

to obtain a *-bialgebra which is a quotient of MR(2d). The *-bialgebra C(d) is a *-Hopf
algebra with antipode ... 

= 
... 

5) Divide Me (d) by the ideal Ju generated by the elements

d

E 
n=l

d

E xnkxnl - 
n=1
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Then Ju is a *-biideal. We denote the *-bialgebra M~ by U(d). It can be shown
that U(d) has no antipode.
6) By making U(d) commutative one obtains the coeficient algebra U[d] of the group Ud
of unitary d x d-matrices; see [5] where U(d) was called the non-commutative analogue
of the coefficient algebra of Ud and where a structure theorem for U(d) was proved. U[d]
is a *-Hopf algebra with the *-algebra homomorphism S(xkl) = xik as the antipode.
7) Consider in MR2> the ideal generated by the elements x11 - 1 and 3:21. This is a
*-biideal. We denote the quotient *-bialgebra by H4 (2). It is equal to the free algebra
C(x, y) generated by two indeterminates x and y with the involution x* = x, y* = y,
and A and 6 given by

Aa: ==fc0~+l~~~ 

5Y = 1.

8) By making Ho (2) commutative one obtains the coefficient algebra Ho ~2~ of the semi-
group

0 1 
The set of complex-valued *-algebra homomorphisms on Ho [2] equipped with * as the
multiplication is isomorphic to Ho.
9) A *-Hopf algebra H(2) containing Ho (2) as a sub-*-bialgebra is obtained if we divide
the *-bialgebra C(x, y, with

=1

x* = x~ y* = y~ (Y 1 )* = yw

by the *-biideal generated by the elements and y-1 y-1. An antipode is given
by extending S(z) = S(y) = = y, to a linear anti-homomorphism;
see [12].
10) We can make H(2) commutative to obtain the *-Hopf algebra H2. The set of

complex-valued *-algebra homomorphisms on H2 is isomorphic to the group

H = {(1 03B1):03B1,03B2~R,03B2~0},0 03B2)
but H2 is not equal to H[2] = Ho[2]. .
GENERAL THEORY:

Let ( jst ) be a quantum stochastic process in the sense of Accardi, Frigerio and Lewis
[I], indexed by pairs (s, t) E ~+, s  t. The jst are *-algebra homomorphisms from
a *-algebra B to a *-algebra A where there is also given a state ~ on A. Let B be a

*-bialgebra. We call (jst) a quantum independent stationary increment process if the
following conditions are fulfilled (see [2])
(a) jrs *jst = S  t; jtt = b1
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(bl) The algebras jst (B ) and commute for disjoint intervals (s, t) and (s’, t’).
(b2) The state $ factorizes on the sub-algebras A for n e N,

...  tn+1.
(c) The states $ o jst only depend on the difference t - s, i.e. ~ o jst = 
(d) lim = 03B4(b) for all b E B.

Two independent stationary increment processes are called equivalent if the numbers
... jsntn (bn)) are the same for both processes.

Let B be a *-Hopf algebra and let be a quantum stochastic process over B in
the sense of Accardi, Frigerio and Lewis. Then jst = (js o S) * jt satisfies (a), and ( jt) is
called a process with independent and stationary increments if (j3t) is an independent
stationary increment process.
An independent stationary increment process ( jst ) is, up to equivalence, determined

by its (infinitesimal) generator ~ which is the linear functional on B given by

_d b _. °
The set of generators coincides with the elements in B satisfying

= 0

03C8Kern 8 is positive

’~(b*) _ 

Given ~ satisfying these properties, one can make the following construction (see [9],
cf. [8,6]). Divide B by the null space of the positive semi-definite sesquilinear form

(b, c) = r~((b - b(b)1)* (c - b(c)1))
on B to obtain the pre-Hilbert space D. Denote B -+ D the canonical mapping
and define the *-representation p of B on D by

= - 

We can write down the quantum stochastic integral equations
t

= b(b) + *dh’)(b) (3)
s

on the Bose Fockspace F over L2(R+, H), H the completion of D, where b E 8, s  t,
and

= + b(b)1) + 
In short-hand differential notation

djst = jst * dI03C8t, jtt = s1.

The operators jst (b) are defined on a dense linear sub-space of F which is the span of
certain exponential vectors; see [4]. In a formal algebraic sense, the jst constitute a
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version of an independent stationary increment process with generator ~. We believe
that this statement can be made rigorous for an arbitrary *-bialgebra by showing that
the linear span of

n E E  t~,bl,...,b,~ E B}

is in the domain of the closure of the operator jst (b). Only the restriction of jst to this
linear subspace of the Fock space can be the independent stationary increment process
in question, so that the representation (3) is an embedding theorem. For CG, C(d)
and U(d) a rigorous treatment of equation (3) can be found in [4,10], [11] and [9]. For

’ 

CG, G a group, the operators E G, are unitary and are representations of G
of type S (cf. [6]). For C(d) the operators are sums of creation, preservation,
annihilation and scalar processes [11]. For U(d) the operators are

increments (Us)t Ut of a solution Ut of a linear quantum stochastic differential equation
on Cd 0 1 with constant coefficients [9].
APPLICATION TO H(2) : .

We concentrate on Example 7. A generator 1/; on Ho (2) can always be constructed by
the following procedure. Assume that we are given a pre-Hilbert space D, two hermitian
operators pz and py on D, two vectors r~x and fJy in D and two real numbers 1/;z and

We then define the *-representation p of Ho (2) by extending p(x) = px, p(y) = py .
Next we define the linear mapping q : : Ho (2~ --> D by the equations

fJ(x) = fJx
. 

= + -

Finally, we define 03C8 E H02>* by .

= ’~y
’~~b)b(c) + b(b)~~(~) + (~l(a*)~ .

Then 1/1 is a generator, and the associated equations (3) for b = z and b = y are

dXst = Xst(dA~t(~y) + dAt(py - 1) + + (4)
+ dAt (~x) + dAt (Px) + dAt (~x) + 03C8xdt

Xss = 0,

and

dYst = + dAt (py -1) + + 03C8ydt) (5)
Yss = 1,

where we set Xat = jlJt(x) and Y9t = jst(y). By property (a) of an independent sta-
tionary increment process we obtain for r  s  t

Xrt = (jrs * = XrsYst + Xst
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and

Yrt = Yrs Yst .

Using this and property (bl) we have for s  t

X0sX0t = X0s(XosYst + 
= X0sYstX0s + XstXos
= X0tX0s

and
Y0sY0t = Y0sY0sYst

= Y0sYst Yos

. 

= Y0tY0s

showing that both Xt = Xot and Yt = Yot are commutative processes.
The equations for the Azéma martingales arise as the following special cases. Choose

D = C, p~ = 0, py = c E R, = 1, = 0 and ~x = ~y = o. This determines a

generator ~~~~ on H4 (2~. Equation (4) and (5) become
’ dXst = + Xss = 0 (6)

(where we put Qt = At + At) and

dYst = (c - 1)Ystdt, Yss = 1. (7)

Equation (7) is the one for the second quantization operator

Y8t = 

equation (6) is solved by Xst = Xt - XdYst and Xt satisfies the Azéma martingale
equation

dXt = (c - I)XtdAt + Xo = 0.

We have 

03C8(c) (xyx) = ~(x)~(yx)
= ~(x)(03C1(y)~(x) + ~(y)03B4(x)

= c.

But

(x2y~ = t?(~~~1 (xy)
= + 

=1~

which shows that for 1 the process (Xst Yst) cannot be reduced to an independent
stationary increment process over Ho ~2~.

In the case 0 we can extend the generator to a generator on H(2~ in the
only possible way by setting = r~(y-1 ) = 0, and ~~~1 (y-1 ) = o. Then
(Xt, Yt, is a process with independent stationary increments over H(2~.
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REMARK: Nothing has been said about the domains of our processes. However, for
the Yst are bounded and for -1  c  1 this is also true for Xst (see [7]).

For c = 1 we have Xst = Qst and this is actually the case of Brownian motion and the
*-bialgebra ~~1~. Also from [7] we know that for -1  c  1 the process Xt has the
chaos completeness property which means that the embedding of into (Xst , Yst ) is
an isomorphism.
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