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On Newton’s method for stochastic differential equations

SHIGETOKU KAWABATA AND TOSHIO YAMADA

1. Introduction.
The aim of this paper is to propose a formulation of Newton-Kantorovich’s method

for Ito-type stochastic differential equations. This note has three sources;
(1) Newton’s method on Banach space by L.V. Kantorovich[6],
(2) Chaplygin-Vidossich’s method for ordinary differential equations [3] [7],
(3) Newton’s method for random operators by A.Bharucha-Reid and R. Kannan

[2].
As is well known, S.A. Chaplygyn[3] introduced a process for the approximation of

solutions for non-linear Cauchy problems for ordinary differential equations;

(1.1) x~ = f (t, x), x(to) = xo

consisting of the iterative solution of a sequence of linear Cauchy problems;

(1.2) 
= f(t,un(t)) + fx(t,un(t))(un+1(t) - un(t))

un+1(t0) = x0.
At the end of seventies, G.Vidossich [7] has shown that the Chaplygin sequence is

exactly the Newton sequence for the operator;

(1.3) F(x)(t) = x(t) - x0 - tt0 f(s, x(s)) ds
For stochastic initial value problems;

( 1.4) 
= + b(t, x(t))dt, 0 - -  t  T

~ ~~~ 
x(o) _ ~,

one may propose heuristically an analogue of Chaplygin’s method in the following iterative
scheme;

Xo{t) = ~~
= x(0) + o xn(S)) dB(s) + 0 xn(S)) ds

(1.5) + Q Qx(Sa A’n(S))(xn+1(S) - xn(S)) dB(S)
Xn(s» ds

We shall show in this paper that the above sequence is the Newton sequence for the
stochastic operator;

(1.6) F(Z)(t) = Z(t)-Z(0)-t003C3(s,Z(s)) dB(s)

- t0 b(s, Z(s)) ds
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We will also discuss the local as well as the global convergence of the sequence to the so-
lution of the equation ( 1.4 ). Our investigation is motivated by the paper by Bharucha-
Reid and Kannan [2], where they have developed a probabilistic analogue of Newton-
Kantorovich’s method for solutions of random operator equations. Applications of their
theory are being considered by their school [I], although no explicit application to so-
lutions of Ito-type stochastic differential equations seems exist. To avoid complicated
notations, we deal in the present paper with one dimensional case only, but one may gen-
eralize the results obtained in this paper to multi-dimensional case without any difficulty.
2. Preliminaries.

Let o(t, x) and b(t, x) be defined on ~0, oo) x Rl and Borel measurable. We consider
following Ito-type stochastic differential equation;

(2.1) X(t) = X(0) + 0 u(s,X(s» dB(s) + o .

By a probability family space with an increasing family of u-fields which is denoted
as (S~, ~, P; ~t), we mean a probability space (S~, ~’, P) with right continuous increasing
system ~t of sub-u fields of ~, each containing all P-null sets.

Definition ( 2.1) By a solution of the equation ( 2.1 ), we mean a probability space
with an increasing family of o-fields (S~, .~, P; and a family of stochastic processes
{X(t), B(t)~ defined on it such that

(1) with probability one, X(t) and B(t) are continuous in t and .6(0) = 0,
(2) X(t) and B(t) are Ft-measurable,
(3) B(t) is a Ft-martingale such that

(2.2) E~(B(t) - B(s))2 = t - s, t > s,

(4) X(t) and B(t) satisfy

(2:3) X (t) = X (o) + 0 o(s, X(s)) dB(s) + o b(s, X(s)) ds,
where the integral by dB(s) is understood in the sense of Ito integral.

Condition A We say that u(t, x) and b(t, x) satisfy the Condition A, if

(1) o(t, x) and b(t, x) are continuous in (t, x) and differentiable with respect to
x, moreover Dxu(t, x) = ox(t, x) and Dxb(t, x) = bx(t, x) are continuous with
respect to x.

(2) there exist positive constants I~ and M such that,

(2.4) I o(t,  K(1 + 

(2.5) (b(t,  + x2),

(2.6) x)~ _ ~,

and

(2.7)  M.
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Remark 2.1. Since the inequalities ( 2.6 ) and ( 2.7 ) imply the global Lipschitz
condition for u(t, x) and b(t, x), then with the conditions ( 2.4 ) and ( 2.5 ), there exists
a solution X(t) of the equation ( 2.1 ) defined on [o, T], such that

(2.8) sup  +~,

where T  +00 is an arbitrally given positive number. Furthermore a solution with the
property ( 2.8 ) is pathwise unique. ( see for e.g., [4] and [5] ). In the following in this
paper, we assume  +oo .

3. The Gateaux derivative.
Let ,CT be the set of cp : [o, oo) x ~ -~ R, such that (i) cp is 0t-adapted and continuous

with respect to t, (ii) E[ sup  oo. Then ~CT is a Banach space with the
norm 

- -

~03C6~2 = E[ sup 

Consider the following operator F defined on ,CT;

(3.1) 
F(Z) = F(Z)(t) = ~’) ~ 

0  t  T, Z E ,CT

LEMMA(3.1). Under the condition A the operator F maps the space LT into itself.
PROOF: Let a process Z belong to LT. It is obvious by the definition of F that F(Z)(t)
0  t  T, is 0t-adapted and continuous in t. To prove that

E[ sup ~F(Z)(t)~2~  +00 holds,
OtT

we first observe that

E[ sup |F(Z)(t)|2] ~ 3E[ sup Z(0,03C9)|2]

(3.2) + 3E[ sup t 03C3(s, Z(s,03C9))dB(s)|2]d

+ 3E[ sup [ / b(s, Z(s, w)) holds.
~o

By Doob’s martingale inequlity and Schwarz’s inequlity, we get from the above (3.2)
that

E[ sup  6E[ sup 03C9)|2] + 

(3.3) + 12E[| 0 T u(s, Z(s, 03C9))
+ 3TE[T0 (b(s, Z(s, ds] ’
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holds.

Noting that

E[! = E[ T0 03C32(s, Z(s, ds ] , ,

we can conclude from (3.3) with (2.4) and (2.5) in the condition A that

E[ sup 6E[ sup IZ(t, w)~2]
. 

+ + 12KE[T0[1 + (Z(t, 03C9)|2] dt]
(3.4)

_ 6E[ sup IZ(t, c~)12] + w)12]
OtT

+ 1 + E[ sup 

+ 3KT2[ 1 + E[ sup IZ(t,  +00.

q.e.d.

Now we are in a position to introduce the Gateaux derivative of the operator F.
Definition 3.1 Let Z belong to ,CT . If for any h E ~CT,

]
u10 tt

exists in norm convergence sense in the space we call the limit the Gateaux derivative

of the operator F at Z. This limit element in ~CT will be denoted by

dF(Z; h) = dF(Z; h)(t), 0  t  T.

LEMMA3.2. For any Z E £T, there exists the Gateaux derivative of the operator F at Z
and it satisfies

dF(Z; h) = dF(Z; h)(t)
t

( 3.5. ) 
= h(t, cv) - w) - o Z( s, ~r) dB( s)

- o bx(s, Z(s, w))h(s, w) ds.
PROOF : By the definition of the operator F, we observe that

uf 1 F(Z + uh ) (t) - F(Z)(t) ]
’ 

= -[ 1 uh ( t, 03C9) - Z ( s, 03C9) + uh(s, w)) - o(s, Z(s, 03C9))] dB(s)

- Z(s, w) + b(s, Z(s,03C9))] ds]

= h(t, w) - lot Z(s, w))h(s, 03C9) dB(s)

- t0bx(s,Z(s, 03C9))h(s, 03C9) ds + R(t, 03C9), say.
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Note by the condition A that the functions vx(t, x) and bx(t, x) are continuous with
respect to x. Then we have

R(t, ~)
1 t

(3.6) 
- -u[ o Z(s, c~) + 9uh(s, ~r)) - c~) . 

t 

u o

+ o [bx(s, , Z(s, ~r) -I- w)) - bx(s, Z(s, , w))Juh(s, w) dsJ
where 9, 0  8  1, depends on (s, c~, h) . .

To complete the proof it suffices to show that

(3.~) lim E[ sup ~R(t, = 0, holds.
u.~~ otT

By a similar way as in the proof of Lemma (3.1), we observe that

E[ sup ~R(t, c~)~2J
0tT

 2E[ sup ( (v~(s, Z(s, w) + 9uh(s, w)) - ox(s, Z(s w)))0tT °

h(s,w) 

+ 2E[ sup | [ Z(s, w) + 9uh(s, w)) - bx(s, Z(s, 03C9))h(s, w) 
(3.8) otT o

° 

 8E[ / Z(s w) + 9uh(s, w)) - vx(s, , Z(s, (s, c~) dsJ0

- I- 2E[( o Z(s, w) + 8uh(s, ~r)) - bx(s, Z(s, w))~2 ds)

(T0 h2 (s, 03C9) ds)]
= Jl + J2 , say.

Since the function ox and the function bx both are continuous with respect to x, it
follows that

lu 1 o[ vx(s, Z(s, 03C9) + 8uh(s, w)) - vx(s, Z(s, 03C9)) J = 0
and also

lu 1 o [ Z(s, w) + 9uh(s, 03C9)) - bx(s, Z(s, 03C9))] = 0
hold. Furthermore, we know by the condition A that

 M and  ~I hold.

Hence, Lebesgue’s convergence theorem implies

lim[ J1 + J2 ] = 0.

Thus by (3.8)
lim E[ sup ~ R(t, c~) ~ 2J = 0.

p_t_T
The lemma is proved. 
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4. Stochastic analogue of Newton’s method for stochastic differential equa-
tions. 

’

First of all, we will discuss the existence of the inverse the Gateaux derivative of F at
Z which will be denoted by 
LEMMA 4.1. . Let Z be a given element in Let ~p belong to ,C~ such that = 0.

Then, there exists one and only one element h in ~CT such that,

(4.1) = dF(Z; h)(t);

i. e.,

(4.2) ~p(t, ~r) = h(t, w) - / o Z(s, w))h(s, W) dB(s)

- o .

PROOF: : Since the linear stochastic differential equation (4.2) satisfies the global Lipshitz
condition for its diffusion coefficient as well as for its drift coefficient, then the existence
and the pathwise uniqueness hold for the equation (4.2). . From this fact, the lemma follows
immediately. 

~ 

q.e.d.

LEMMA 4.2. Let 03C6 belong to LT, such that = 0. Then, there exists a positive
constant L  +oo, which is independent of Z and also of t E [0, T],such that

(4.3,) _ 3~03C6~2teLt, 0  t  T
where stands for E[ sup c~)12J.

PROOF: Let h(t, w) be

h(t, w) = 0  t  T.

Then by (4.2), we get

~h~2t = E[ sup  3E[ sup 
0st 

( 4.4) + 3E[ sup I o a O"x(u, Z(u, w))h(u, w) dB(uW]~ ~ 0 ~0 .

+ 3E[ sup bx(u, Z(u, w))h(u, w) du|2]
0

It follows from (4.4) that

+ 12E[t0 03C32x(s, Z(s, w))h2(s, 03C9) ds]
.

+ 3E[(t0b2x( s, Z (s, 03C9)) ds)t0 h2( s, 03C9) ds]

(4.5)
~ 3~03C6~2t + 12M2E[t0h2(s, 03C9) ds] + 3M2TE[t0h2(s, 03C9) ds]

~ 3~03C6~2t + Lt0~h~2s ds,
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where we have used (2.6) and (2.7) in the condition A, and L stands for 12M2 + 3M2T.
By Gronwall’s inequality, it follows from (4.5) that

~h~2t = ~ dF-1(Z)(03C6)~2t ~ 3~03C6~2teLt, 0 ~ t ~ T.

q.e.d.

We are now in a position to introduce the Newton sequence for the operator F.
Let

(4.6) 
xo(t) = ~)~ 

-1~~~~ 
= Xn(t) - n = 1,2,...

We call Xn(t), n =1, 2, ..., the Newton sequence for the operator F.
It follows from (4.6) that the sequence satisfies that

. 

= Xo(t) + o Xn(s)) dB(s)

(4.7) + t0 b(s, Xn(s))ds + t0 03C3x(s,Xn(s))(Xn+1(s)- Xn(s)) dB(s)
+ t0bx(s,Xn(s))(Xn+ 1(s)-Xn(s))ds

Thus the Newton sequence introduced in the above (4.6) is exactly the same sequence
as the stochastic analogue of Chaplygin sequence (1.5) discussed in the introduction.

The following theorem concerns the convergence in local sense of the Newton sequence
to the solution of the stochastic differential equation (2.1). .
THEOREM 4.1. . Let X(t) be the solution of the equation (2.1). Choose a positive number
6 such that,

(4.8) 120bM2 eL03B4 = a  1

holds. Then,

(4.9) li m E[ sup = 0

holds with error bound,

[E[ sup X(t)|2]]1/2
(4.10) 

~ 03B2n 1-03B2[E[ sup |X1(t)-X0(t)|2]]1/2 ,

where ,~ = .

PROOF: we will devide the proof in two steps. Without loss of generality, we can suppose
that 6  1 holds. 

’

First step. In this step we will show that

(4.11) ~Xn+1-Xn~203B4 ~ 03B1~Xn - Xn-1~203B4
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holds.

By the definition of the Newton sequence (4.6), we know

(4.12) Xn+1(t) - °

Hence, Lemma 4.2 implies that

(4.13) ~Xn+1 - Xn~203B4 ~ 3eL03B4~F(Xn)~203B4

holds.

For n > 1, we observe by (4.6)

~’(Xn)(t) _ ~’’(Xn)(t) -’ "f’ 

_ F(Xn-1)U) - dF(Xn_1; Xn - 

Hence, we have

t t

~’’~Xn)~t) = % % 0 t 
0

+ / 0 b(s, Xn_1(s)) ds - o b(s, Xn(s)) ds0
’ % Xn-1(S))(Xn(S) - Xn-1(S)) dB(S)

+t0bx(s, Xn-1(s))(Xn(s)- Xn-1(s)) ds+ 0 0 bzS, Xn-1S»xnS> - Xn-1S» dS
t

. 

- / Xn-1(s))(Xn(s) - Xn-1(s)) d$(s)
0

+ t0bx(s, Xn-1(s))(Xn(s)- Xn-1(s)) ds

- t0 03C3x( s, Xn-1( s) + 03B8( Xn( s)- Xn-1(s)))(Xn(s) - Xn-1(s)) dB(s)

- £ Xn-1(S) -I- 8~(Xn(S) - ds

where 0  8, 8’  1.
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Thus, we have

llf(xn)lll
 2E[ SUp [ Ux(S, Xn-I(S) + Xn-I (S))))

(xn (S) ~ xn-I (S) ) 

+ 2Ej sup|t0(bx(s,Xn-1(s)) - bx(s, xn-I(S) + xn(S))))

xn S> - xn-i S» ds|2]
 Xn-i(S)) - Xn-I (S) + 

(Xn(S) - dS] 
.

+ xn-IS) + xn-IS))))~ dS

£ dS]

Hence, by (2.6) and (2.7) in the condition A, we observe that

(4.14) ~F(Xn)~203B4~32M203B4~Xn-Xn-1~203B4 + 8M203B42~Xn-Xn-1~203B44.14 
~ 40M203B4~Xn - Xn-1~203B4, (0 ~ 03B4 ~ 1).

Combine (4.13) with (4.14). Then, we can conclude that (4.l l) holds.
Second step. Put Q = J&#x26;. The inequality (4.l l) implies

(4.15) ~Xn+1- Xn~03B4 ~ 03B2~Xn - Xn-1~03B4

From this it follows immediately

(4.16) ~Xn+1 - Xn~03B4 ~ 03B2n~X1 - X0~03B4

Since [[ [[5 is the norm of the Banach space £5, we get from (4. 16) that

~Xn+p - Xn~03B4 ~ (03B2n+p-1 + ... + 03B2n))~X1 - X0~03B4
(4.17)

~ 03B2n 1-03B2~X1 - X0~03B4.
Hence, the sequence Xn n = 1, 2, ... , is a Cauchy sequence in the Banach space £5.

Put k(t) 0  t  6 the limit of the sequence Xn n = 1, 2, .... Since the process Xn(t)
satisfies

Xn(t) = X(0) + / 0 t u(s, Xn-i(s)) dB(s) + / 0 t b(s, Xn-i (s)) ds
+ t003C3x(s,Xn-1(s))(Xn(s)- Xn-1(s)) dB(s)

+ t0bx(s, Xn-1(s))(Xn(s)- Xn-1(s)) ds 0 ~ t ~ 03B4 ,
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then, the limit process X(t) satisfies the equation (2.1);

(t) = X(0) + t0 Q(S, x(S)) dB(s) + b(s, X (s)) ds , 0  t  s.

Since the Pathwise uniqueness holds for the equation (2.1), we observe that

(4.18) X(t) = X(t) holds.

Hence we get (4.9). (4.10) follows from (4.17) and (4.18). q.e.d.

5. The convergence in the large of the Newton sequence.
In this section we assume for the coefficients the following condition B.

Condition B : We say that the coefficients u(t, x) and b(t, x) satisfy the Condition B
, if they satisfy the Condition A and moreover there exists a positive constant N  +00,
such that

(5.1) x)~  N

hold for all t and x.
Under the condition B, we have the following theorem which concerns the convergence

in the large.
THEOREM 5.1. . Let T be a fixed positive number. Then the Newton sequence Xn(t) n =
1, 2, ... defined by (4.6) converges in the large to the solution X(t) of the equation ~2.I~
in the following sense; .

(5.2) lim E[ sup IXn(t) - = 0,
OtT

if and only if

(5.3) sup E[ sup  +oo
n OtT

holds.

PROOF: The necessity is obvious. To prove the sufficiency, we will devide the proof in
several steps. In the proof K2  oo stands for sup E~ sup 

n 

First step : Let Tl be defined by 
- -

(5.4) Ti = sup~t; t E ~0, T~ and ~h~ E~ sup = U}.

Then Theorem 4.1 implies

(5.5) 0  6 ~ Ti  T.

Second step : In the present step, we will show that

(5.6) E( sup = 0
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holds.

Let E > 0 be an arbitrary positive number. Choose So such that

0  So  min(Tl,1)
(5.7) ( 80M2K2 + 20N2 )S0  10

By the definition of Ti, we get

Ef sup = 0.

Hence, for sufficiently large Nl, we observe that

(5.8) E[ sup  ~ , ra > Nl
, -sa 1~

holds.
On the other hand, we have

(5.9) E[ sup  3Ii + 3I2 + 3I3,

where

Ii = E[ sup IXn(t) - .

Tl -So tTI

12 = - So) - X {Ti - 
13 = E[ sup IX(t) - X tTi - So)12].

First, we will deal with Ii. We have

Xn(t) X"(Ti ’S’o) = tTi -S003C3(s,Xn-1(s))dB(s)

(5.10) + tT1 -sa 6(s, Xn-1 (s)) ds + tT1-S003C3x(s, Xn-1 (s))yn(s) dB(s)

+ T -So bx{s, Xn_i(s))Y"(s) ds,
where Yn(t) = Xn(t) - Xn_1(t).

By Doob’s martingale inequality with Schwarz’s inequality, it follows from (5.10) that

E[ sup - X"(Tl - 

-  16E 
-So 

|03C3(s, Xn-1(s))|2 ds] + 4S oE[ [T1T1-S0|b(s, Xn-1(s))|2 ds]

+ 16E[ TtT1-S0-So ds] 
.

+ 4SoE[ T -So ds].
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Hence, by the condition B, we observe that

E( sup Xn(Tl - 

(5.11) _  16N2S0 + 4N2S0 + 16M2(T T _S ‘ E sup ds )

+ 4M2So Ti E( sup ds
Ti-So OtT

Here, note that by the condition (5.3) that

E~ sup  2E~ sup 
5.12 ) 

+ 2El - 1  4K2 . +oo, n = 1 , 2, ...
otT

Then the inequalities (5.11) and (5.12) imply that

11  80 M2 K2S0 + 20N2S0.

Hence, by (5.7),

(5.13) I1 ~ ~10

holds.

Second, for I2, we can choose a number N2 such that

(5.14) I2 = E[|Xn(T1 - S0) - X(T1 - S0)|2] ~ ~ 10, n ~ N2

holds.

Finaly for I3 , it is easily seen that

I3 ~ 8E[T1T1-S003C32(s,X(s)) ds]+2S0E[T1T1-S0 b2(s,X(s)) ds]

 8N2 So + 2N2 So.

Hence by (5.7) we get

(5.15) I3 ~ ~ 10.

From the inequalities (5.8),(5.9),(5.13),(5.14) and (5.15), we can conclude that

(5.6) lim E[ sup IXn(t) - X(t)|2] = 0

holds.

Third step : In this step, we shall show that Tl = T, using the method of reduction
to absurdity.

Assume T and let us find a contradiction.
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By what has been proved in the second step, we can choose 
a sequence of positive

numbers an, , r~ =1, 2, ... such that

an ~. ~ (n "’ °°)
(5.1fi) . 

 an.

We will devide the step in two substeps.

(s): First, we will find a positive number h > 0 such that

T~ + h  T,
(5.17) lim E~ sup = 0, where Yn(t) = Xn(t) - Xn_1(t),

n’-~°° Ti tTi+h

holds.

By the definition of Yn (t) , we have for Tl  t  T,

= Xn(TI) - Xn-1(Tl)

- I- / Xn-2(s))) dB(s)
Ti

~ ~~~~’ ~~ ~ ~~~~ ~~~’ ~~ ~~~~~~ ~~ ’
- I- 

T~ 
(b(S~ Xn-~(s)) ’ Xn-2(S))) ds 

’

+ t Xn-1(s))Yn(s) dB(s) - t 4’x(s, Xn-2(s))Yn-1(s) dB(s)Ti Ti
t t

- I- tT1bx(s, Xn-1(S))Yn(s) ds - bx(S, Xn-Z(S))Yn_1(s) dS

Thus, we get from the above that

E( sup 
Ti st

 .

- ~- ~.E Sup [ s (Q(u~ - ~n-2(~))~ dB(u [~] 
.

Tl st T

+ 7E sup ) 
s 

(b(u, Xn-1 (u)) " X n-2 (ul )) du|2]
Ti st Ti

+ 7E sup ( T 
s 

du|2]
Ti st 1

Ti st Ti

+ 7E~ sup ( ~ Xn_1 (u))Yn(u) dB(u)~2~ .

Tl st Ti

+ 7E[ sup |[ T 
s 

(Ox(u, Xn-2 (u))Yn-1 U) 
Ti st Ti



134

Hence, by Doob’s martingale inequality with Schwarz’s inequality, we observe that

E[ sup  7E[[Xn(Ti) - 
Ti st t

+ 28E[ / t [u(u, Xn-i (u)) - u(u, Xn-2 (u) ) [ ~ du]Ti

(5.18) + 7(t - Ti )E[ / t [b(u, Xn-i (u)) - b(u, Xn-2(u))[ ~ du]Ti

+ 7(t - Ti )M~E[ /~ du] + 7(t - Ti)M~E[ /~ du]Ti Ti
+ 28M~E[ /~ du] + 28M~E[ /~ du]Ti Ti

holds, where we have used the inequlities (2.6) and (2.7) in the condition A.
Note, by the condition A again, that

(5.19) [b(u, Xn-i(u)) - b(u, Xn-2(u))[  M[Xn-i(u) - Xn-2(u)[

and

(5.20) [u(u, Xn-i(u)) - u(u, Xn-2(u))[  M[Xn-i(u) - Xn-2(u)[

holds.

Then, the inequalities (5. 18),(5. 19) and (5.20) imply that

E[ sup 
T1~s~t

(5.21)  7E[[Xn(Ti) - X(Ti) [~] + (56M~ + 14(t - Ti)M~)E[ /~ du]

+ (7(t - + 28M~)E[ /~ du]Ti
Choose h > 0, such that

(5.22) q = (56M~h +  l

Note that

(5.23) E[)Xn(Tl ) - Xn-1(T1)|2]  2an + 2an-1  4an-1

Then the (5.21) implies for Ti  t  Ti + h,

E[ sup 
T1~s~t

(5.24)  28an-1 + (56M2 + 
+ (28M~ + 7M~h) / t E[ sup 

where [[ [p[[ stands for E[ sup |03C6(t)|2].
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Hence, by Gronwall’s inequality, we observe that

E~ sup 
(5.25) Tl ,,t

 + (56M2h + 

Put .

(5.26) ’yn = 

Then we get from the above inequality (5.25) that

(5.27) |||Yn||| = sup |Yn(s)|2] ~ (03B3n-1 + ~|||Yn-1|||)
Ti ,,Tl +h

holds. Now we are in a position to prove

(5.17) lim E[ SuP = lim |||Yn||| = 0.n-+oo 
T, tTl +h 

n-+oo

Let E > 0 be an arbitrary positive number. Choose an positive integer Nl such that,

(5.28) 03B3n-1 _ E (1- n > Ni,

holds.

We have by (5.27) that

|||YN1+m||| ~ 03B3N1+m-1 + ~|||YN1+m-1|||
_ + + ~2|||YN1+m-2|||

(5.29)  + ~2 + ... + + ~m+1|||YN1-1|||
~03B3N1-1 1-~+4K2~m+1.

Choose a positive integerN2 such that

(5.30) 4K2~m+1  ~ 2, m > N2,

holds. Hence we can conclude that

|||Yn|||  E, n >- Nl + N2, .

holds.

( ii) : Here we will show that

(5.31) lim E~ sup X(t)~~~ = 0.
Ti tTl +h

holds.
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Note that (5.16) and (5.17) hold. Then we can choose a sequence of positive numbers
~n, n =1, 2, ... such that

o(~ -~ ~)

5.32 5E[IXn(Tl) - 
+ + sup  6n

T15t5TI +h
holds.

By the definition of the processes Xn and X, we have

E~ sup 

 

+ 5E~ sup [ 
T1~s~t 

(5.33) + 5E~ sup [ 
TI585t Ti

+ 5E[ sup I 
T1~s~t T1

+ 5E[ sup I (bx(u, Xn-i(u))Yn(u) du|2], Tl _ t _ Tl + h.+ 5E[ sup [ sT1(bx(u, Xn-i (u))Yn(u) Ti  t  Ti + h.

By (2.6) and (2.7) in the condition A, it follows from the above (5.33) that

E~ sup 
T1585t

 

+ 20M2 / sup - X (u)~2~ ds
Ti Tl us

(5.34) 
+ 5hM 2 t E[ sup Ti TI5u58

+ 20hM2E[ sup . 

+ 5M2h2 E[ sup Ti _ t  Tl + h.
T1~u~T1+h

Note that

E[ sup 
T1~u~s

_ 2E~ sup + 2E~ sup X(u)~2~, Tl _ S _ Tl + h.
Ti uTl+h TI5u58

Then, we observe from (5.34) that

E~ sup X(s)~2~
T1585t .

 - X (Tl)~2~ + 40M2 / sup ds
JT1 T1~u~s

+ lOM2h / E( sup ds
Ti TI5u58
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+ (40M2h + 10M2h2 + 20M2h + sup 
T, 

_ 6n + (40M2 + 10M2h)t-E[ sup X(u)|2] ds, Ti  t  Tl + h.
Ti 

- _

Hence, by Gronwall’s inequality, we have

E~ sup X (s~~2~  Tl  t _ Tl + h.
Ti ,  t

Thus we can conclude that

lim E( sup X(t)~2~ = 0.
Ti tT1+h

But this contradicts the definition of Tl. q.e.d.
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