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ON ALMOST SURE CONVERGENCE OF MODIFIED EULER-PEANO
APPROXIMATION OF SOLUTION TO AN S.D.E. DRIVEN BY A

SEMIMARTINGALE

RAJEEVA L. KARANDIKAR

Indian Statistical New Delhi

7,SJS Sansanwal Marg,New Delhi 110018,INDIA .

1 Introduction

We consider the equation

Zt = H= + / o i b(e-, ~, Z)dX, (1.1)

where X is an IRd-valued semimartingale, His an, IRm-valued r.c.l.L process and where
b (0, oo) x ~ x D([0, oo), --~ 2R~ is a functional assumed to satisfy

~b(a~ w, P1) " pz)~ ~ (1.2)

for an increasing process A. Here ( ~ ~ denotes Euclidian norm (on or and
:= Bichteler [1] had shown that the ~n-Euler-Peano approximation to (1.1)
_

converges almost surely, oo. Bichteler pointed out that when b(t, w, p) = J(p(t»
and f is a Lipschitz function, so that the equation is

Zt = H, + 0 f (Z,_)dX, (1.3)

the Eular-Peano scheme yields a pathwise formula for the solution Z i. c, the path Z(t w)
for a fixed w can be obtained as an explicit functional of the paths w) and w).
This is important for statistical applications. In this article we show that a modified
Eular-Peano scheme yields a pathwise formula for (1.1) as well. It is well known that
Picards successive approximation method converges a.s. , see Bichteler [1), Karandilcar
~3,4), Schwartz [7], Meyer 18). In Karandikar [3,4] a modiflcation is suggested that yields
pathwise formula. However, in Picard’s method, to get the n~ approximation, we need
to compute 1’~, 2’~, ... ,(n - 1)~ approximation. However in the Euler-Peano method,
to compute c - approximation , we do not need to compute c’- approximation for any
other a’.

The suggested approximation: Fix ~ > 0. The ~-approximation Y = Y~ of Z is
defined as follows.

Let stop times z; and processes Wi be defined inductively by:

To = 0 and H~ = Ho (1.4)
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and having defined Ts, WJ for j  i, let

: -~- - ~ ~

or W’) - b(T;, ~, W’)~ > e~ (1.5~

and

W= for t  T;+a

= W!t + H~~t - Hr; + b(T,~’~ X.,) for t ~ . (1.6)

Thus, Wi+l is a process that has jumps at Ti, ..., T;+1 and is constant on the intervals
~o, TI~~’ , ., ?’+!~,’ " Let us piece together these processes W’, S =
1,2,... to define a step process S ~ S. as follows.

St = W,~ for T~  t  ~

Now define Y by Yo = Ho and

Yt + H, - Hr, + W~~(Xt - for T;  t C Tf+1. . (1.~

The main result of this article is the following.
Let  oo. Then converges uniformly in t E ~0, T] a.s. for every T. Further,

define Z" ~ Y’~. Then Zr also converges uniformly in t E E0, T~ to Z, a.s. for every T
as well as for any locally bounded predictable process /, , f o f dZ" -~ f ~ f dZ uniformly in
t e [0, T~ a.s. for every T.

Let us note that the w-path Y~(t, w) is defined explicitly as a functional of the w-
paths H(t, w), X(t, w) and b(t, w, p). Thus Z" = Y~n is defined ’pathwise’ and hence so
is Z, as Z" converges a.s. to Z.

Also, note that we need to evaluate b(t, w, p) only for piecewise constant fucntions
p. This could be important, say when

wf 03C1) = (1.8)
o

for a Lipschitz function 6 and an increasing process U.
Another pathwise formula for solution Z of (1.2) was obtained in (4J, and it was also

shown there that Euler-Peano method yields a.s, approximation.
However, unless b satisfies an additional condition, it does not yield a pathwise

formula. The functional ~b given by (1.8) does not satisfy this additional condition.
The main tool in proving the result stated above is the notion of ‘dominating process’

which is a modification of Metivier-Pellaumail’s notion of ’control process’. This was
introduced in [4] and it was shown that along with the Metivier-Pellaumail inequality,
it is a very effective tool for studying approximation questions in stochastic analysis.
It is a tool for establishing convergence in Emery topology as well as a.s. convergence.
In section 2, we will discuss ‘dominating processes’. The proof of the main theorem is

given in section 3. 
’
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All processes we conaider are defined on a fixed complete probability spate F, P)
and are adapted to a filtration (Ft) assumed to satisfy usual conditions. The notions of
predictable, stoptime, martingale etc. will be with reference to this filtration.

v~ will denote the class of r.c.l.l. increasing (Y) with 0. Also,

v={Y=Y~-Y~~ 

For U E v, will denote total variation of s - Us(w) on [0,t]. Note that v.
will denote the class of locally square integrable martingales. For M e 

(M,  M, M > will respectively denote the quadratic variation process and pre-
dictable quadratic variation process of M.

Z will denote the class of predictable process f that are locally bounded.
The following is a consequence of Metivier-Pellaumail inequality ~b~.
Let M E and T be a stop time. Then

~tj~_+  M, M >t_}. ~1.9)

2 Dominating process of a semimartingale
Definition :Let X be a øemimørting.le. A process V e 03BD+ ia said !o bc a dominating
process of X, written aa X « Y, if for some decomposition

~Z.1)

of X, Y’ defined b~

V 1:= Y - 2« M, M >t +IM, 

ia an increasing process.
Recall that every semimartingale X admits a decomposition as in (2.1 ). Hence,

every semimartingale admits a dominating process Y. One can take

Vt ;= 2( M, M >c +(M, Mjt)’~’ + 
where M, A are as in (2.1). Also, given finitely many semimartingal Xi, ..., Xd, one can
choose a common dominating process: : V = Y’ + ~ ~ + Vd, where X’ ~ Y’.

The following is an easy consequence of (1.9). Let X be a semimartingale and let
X Y. Then for all atop times T, J

 2EV2 (2.2)

The following lemma can be proved easily. (See ~4)).
LEMMA 2.1 (a) Le! X, Y be semimartingales and let X U, Y Y. Let Z = X +Y.
Thea

3 W such that Z. W and W,  tlt + V V t. (2,3)
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(b). Let f E I and X U ae above. Let

03B8t(f,U) := 2{(t0|f|2dU2)1/2 + t0 |f|dU}. (2.4)

TAeu

3 D such that ( /dX) D and D,  8t( f U). (2.5)
The following notions of convergence play an important role in a.s. convergence results.

For processes f ", f say that f " ~ f if
. 

,

~ ~ f " - f ~:’  oo V t a.s.

n=i

For semimartingales X", X, say that X" ~ X if
00

3 {X" - X ) Vn and 03A3(Vnt)2  oo V t a.s..

It is clear that f " f implies that - ~ o a.8. for every t.
The following properties one proved in i4~. Here, X", X are semimartingles and

f ", f E Z.
X implies X~ °~ X (2.g~

f n + X implies f dX. (2.7)
It is proved in ~4j that semimartingales X" converge to X in Emery topology (see

~2~) if and only 3 V’~ : (X" - X) ~ V~ with v" - 0 in probability for every t. Thus
X’~ -i X impliea X" - X in Emery toplogy. Moreover, Y" - Y in Emery topology
implies that for a suitable subsequence X ~ = Y"~, one has X ~ ~ Y. This enables one
to prove results on Emery topology via .

Using (2.1) and (2.4), one gets the following. Let f E I, X ~ V and T be a stop
time. Then

E~ 2E8;_( f, V) (2.8)

Further, 
E f dX ~’_  4E 1 + VT_) 

T _ 

~ f ~~d(V~ + V) {2.9)E[ / ( + E-) / o r- ] f[~d(V’ + V) (2.9)

If X = {XI, , . , , is an 1Ra valued semimartingale, X~ ~ Y, and f = ( f’J), where
fij ~ I, 1 ~ i ~ m, 1 ~j ~ d, Y = fdX is defied by Y = (Y1,...,Ym)’ and

Yi = fijdXj.

Now

y = 03A3E|03A3fijdXj|203C3-
;a> jy

, ,

 2d ~ ~ V j
~=~ 3=1

 V).
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where = One also can use the bound V)  3|f|*tVt to get

E|fdX|*203C3- ~ 2d9 E|fij|*203C3-V203C3-
.  . (2.10)

Or one can use (2.9) to get

F) / 4dE(1 + ~) ~ )/t~(V + V). (2.11)

3 The main result .

We need to assume that (1.2) holds for an adapted process A and that for each p E
D(~a, oo), b(a, w, p) is an adapted, r.c.l.l. process. Thus, for an r.c.l.L adapted
process Z,

:= b(t, w, Z(w)) ~3.1)
is itself an r.c.l.l, adapted process.

It is easy to see that if T;  oo then T;  T;+1. Let Too = 

LEMMA 3.1 = 00 a.~.

PROOF : For an r.c.l.l. process B, define
(JB)t:=03A3Bri1[ri,i+1)(i). (3.2)

;=0

Note that for i > j, = Yr~ and hence

(JY)t = (JW’)t = Wt for t  T,+i. (3.3)

Thus we have for T;  t  

Y~ = Y~, + 8t - H.,.. + b(T;, .t JY)~X~ - X.,,).

or in other words,

JF(JY)_dX. , (3.4)

Moreover, by choice of ~~? }, ,
|JY - Y| ~ ~ (3.5)

- F(JY)I  ~. (3.6)
and on  oo 

’

. either ~~(JY),~~ - > e or ~Yr~+, - > ~. (3.7)
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Consider the equation
Yt = Ht + 

t0

JF (JY) _dX. (3.8)
Q

Writing G(B) = JF’(JB), one sees that (3.8) admits a unique solution (which is r.c.l.l.).
By (local) uniqueness of solution to (3.8), it follows that Yc = Yc on t  k, i.e.

P(Y",, = Y ~) =1.

(?n the eet ~  ~, at least one of the two limits lim F(JY),, and lim Yi does not
exist (because of (3.’T)), but both lim Y,; and lim F(JY),; exist as, F(JY) and Y are
r.c.l.l. Thus

 oo ) C_ {~ Ytn~; V! 

Hence  ~) = 0. .
Thus it follows that Y ie defined on (o, ~) and

c

Yt = Hc + / o JF(JY)_dX. 
_ 

(3.9)

LEMMA 3.Z Let V be a dominating process for X’,1  i  d. Lc!

T! = inf{t > 0 : Ac >, j o r Vt > j } .

Then 3 a constant CJ, depending only on j (and d) such that

E|Y -  Csaz

where Z is the solution !o (1.1) (and Y = Y‘).

PROOF : : From (3.5) and the Lipschitz condition (1.2), it follows that

f_  - 

 jE

Along with (3.8), this gives

 - F(JY)It;- + i~’(J~~ - 
 ~ + j~
- ~ j + (~.lo)

Prom (3.9) it follows that
c t

Zt - Y= = / JF(JY)_dX - / .F(Z)_dXp o

= t0 JF(JY_dX - t0 F(Y)_dX
c c

+ 0 F(Y)_dX - o 
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Thus for any P  T~

2E~ (JF(JY) - 
+2E( (F{Y) - 

~ 36d(j + 1)2~2. j2 + 8d(1 + j)E 

where U = Yz + Y. Thus for constants Kl, K2 (depending only on j, d), we get

E|Z - Y|*203C3- ~ K1~2 + K2E03C3-0|Z - YI:’ dU (3.11)

for all 03C3 ~ j-. Since + j, using an analogue of Gronwalls lemma (Lemma
29.1 in [4] ) we get that for a constant C; depending on j, K~, K2 and hence on j, d only,

EIZ -  C~~z

(Here C~ can be explicitly evaluated)..
We are now in a position to prove the main result.
For a sequence {~~}, let Z" = Y‘~, where Y~ is defined in the introduction. Our

main result is

THEOREM 3.3 Suppose 03A3~2n  oo. Then

|Zn - Z|*t ~ 0 a.s. for all i (3.12)

Further, for anp f e I,

] f dZ" - f dZ‘t - 0 a.s. for a11 t. (3.13)

PROOF :By Lemma 3.2,
 

Thus

E03A3 |Zn -Z|*2j- ~ Cj 03A3~2n ~.

Hence 
n=1

Hence
~ jZn - Z!~ ~ 00 a.8..

This implies Z" -°~ Z and in turn (3.12). For (3.13), let us write .~" = where we
write J. for J defined earlier. Then

Z" - Z = F‘’(Zn)j-dX + (F(Z") - (3.I4 )
Now (3.10) implies

F(Z") °~ o
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and Z" -°. Z and (1.3) implies

F( Z") - F(Z) °~ o.

Now (3.12) and (2.7) implies that Z~ -~ Z. Then using (2.6) once again, we get
J f dZ" -°-~ J f dZ and hence (3,12). 1

Remark:Since ~S‘~ - Y‘A~ ~ c., it follows That S~" converges to Z, uniformly in
t E [0, T~ a.s. and this gives approximation of the solution by step processes.

References

1. K. Bichteler. Stochastic integration and Lp2014 theory of Stochastic integration.
Ann. Prob., 9, 1981, 48-89.

2. M. Emery. Une topology sur e’espace des semimartingales. Seminaire de Proba-
blities XIII, Lecture notes in Mathematics 721, p. 260-280, Springer-Verlag, Berlin
(1979).

3. R.L. Karandikar. Pathwise solution of stochastic differential equatios. Sankhya
A, 43, 1981, 121-132.

4. R.L. Karandikar. On Metivier-Pellaumail inequality, Emery toplogy and Pathwise
formuale in Stochastic calculus. Sankhya A, 51, 1989, 121-143.

5. M. Metivier. Semimartingales, Walter de Gruter, Berlin, New York. (1982).

6. P.A. Meyer. Sur la method de L.Schwartz pour les E.D.S. To appear in Seminaire
de probablites.

7. L.Schwartz. La convergence de la serie de Picard pour les e.d.s. Seminaire de

Probablities XXIII, Lecture notes in Mathematics 1372, p. 343-354, Springer-
Verlag, Berlin (1989).


