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MARKOV CHAINS AS EVANS-HUDSON DIFFUSIONS IN FOCK SPACE

by K.R. Parthasarathy &#x26; K.B. Sinha

Seminaire de Probabilités XXIV

Indian Statistical Institute, Delhi Centre

7, SJ.S. Sanlanwal Marg, New Delhi 110016

1. Introduction. M.P. Evans and R.L. Hudson have recently formulated and developed
an algebraic theory of quantum diffusion processes in a series of papers [1-4]. In his
two recent notes [6,7] P.A. Meyer has pointed out how a classical finite Markov chain in
continuous time can be viewed upon an an Evans-Hudson diffusion, and also exploited to
develop chaos expansions or, more specifically, Isobe-Sato expansions in terms of multiple
stochastic integrals with respect to a fixed finite family of martingales determined by the
Markov chain. The present note is motivated by some of Meyer’s observations on Markov
chains. It is shown that whenever the structure maps of Evans-Hudson are defined on a
commutative *-algebra of operators the whole diffusion is commutative or, equivalently, is a
classical stochastic process eventhough the driving quantum noise is noncommutative. This
striking fact enables us to construct a whole class of Markov processes as Evans-Hudson
diffusions by using general group actions. Such processes are realized by conjugations
with respect to unitary operator valued adapted processes satisfying a quantum stochastic
differential equation in the sense of Hudson-Parthasarathy [5]. In the special case of a cyclic
group acting on itself by translation our construction reduces to that of Meyer. An ergodic
theorem is proved for the homomorphisms that describe the Evans-Hudson diffusion in
some special cases.

2. Abelian diffusions in the sense of Evans-Hudson.

All the Hilbert spaces that we deal with are assumed to be complex and separable with
scalar product , > linear in the second variable. For any Hilbert space M we denote

by and respectively the boson Fock space over ~I and the *-algebra of all
bounded operators in fiI. For any we denote by e~r~) the exponential or coherent
vector in associated with u . Let

. (2.1)
where ’~~ is a fixed Hilbert space. Denote by £, the set of all vectors of the form foe(u) ,
f ~ H0, u~H. We adopt the convention of writing as f e (u) . It is important to
note that £ is total in x . .

Suppose that A C B(Ho) is a unital *-5ub&#x26;lgebra of Consider a family of
bounded linear "structure maps" 0 ~ i, k ~ n} mapping A into A and satisfying the
Evans-Hudson structure equations
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rij(I) = 0, (rij(X))* = rji(X*)
n (2.2)

= + + ~ 
t=i

and the inequality

for all ~~~,o.,;~ (2.3)
M being a positive constant. Let 1 ~ ,; ~ ~ be the conservation or gauge
processes in M with reference to the standard orthonormal basis e,, 1    n in C" .
Denote by A~(t)=~,(), 1~ n the annihilation and creation processes
with respect to the same basis. Write where t denotes tI, the identity in %. By
the quantum Ito formula we have

~~=~,0.,~n (2.4)

= 0 if t=0 or l = 0, 03B4il otherwise (2.5)
DefineDefine 

for all t~0, X EA. . (2.6)
THEOREM 2.1. There exists a unique adapted family { ;, , t > 0 ) of identity preserv-
ing contractive *-homomorphisms from A into satisfying the quantum stochastic
differential equations

(2.7)

/or all X EA. Furthermore, the Map t ~ (X) « strongly continuous for each X and
/(0) =

 /, T,~(~.. > (2.8)
.

PROOF. The first part is proved in [1,2]. For fixed /, ,",’~ M write

~(~) =/(.), ~(~e(.)>.
Then (2.7) implies.. 

~~= E (2.9)

where we have expressed H in (2.1) as the n-fold direct sum of and denoted bya’ the component of M in ~(R+), Ui = M’ for 1  t  n and M. = M = 1 for
every t in M. In particular, the map t ~ is continuous. Since  jjx jj
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the totality of £ in 7-l implies the weak continuity of j;(X~ in t. The required strong
continuity follows from the relation

~~~?t~X) - 7~(X ~ ~~2 =  f e~u~~ + Jr(X*X Of eO >
- 2 ~e > .

Equation (2.8) is a straightforward consequence of (2.7). []

THEOREM 2.2. In theorem 2.1. let A be Abelian. Then

js(X)jt(Y) = ji(Y)js(X) for all X,Y E A, 0  s, t  ~ .

PROOF. Without loss of generality we assume s  t. Since j, is a homomorphism and
,4 is abelian we have

= j,(XY) = js(yX) = .

By (2.7) we have

.7itY)=,7t~~’~’f -

Thus

~7r~X ~, 9t~~’~~ _ , (2.10)
’ 

~,k

thanks to the fact that j~(X~ is adapted and commutes with the increments of Ak
in Fix f,gE7-ln, u,roE7-( and put

K(s,t; ~~(,Y)= fe( u), (2.11~
and write (2.10) as

h’(s,t;X,Y)= (2.12)

where we have adopted the notations in (2.9). Iterating (2.12) N times we get

t; X,Y) = 03A3tdtNuiN(tN)vkN(tN) dtN-1-uiN-1(tN-1)vkN-1(tN-1)
~

... t2tdt1ui1(t1)sk1(t1)K(s,t;X,i1k1i2k2...iNkN(Y)) (2.13)

Restrict u, v to be Cn-valued bounded functions, set

= sup ~~~ ~~~ ~~, 1} (2.14)

and note that

(2.15)
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Inserting (2.14) and (2.15) in (2.13) and using (2.3) we conclude

IK~s~ ~; ~’~I ~ + 1)2N W ~’)M~t - ~))N (2.16)

for all 0  ~  t  T where C is the constant on the right side of (2.15). Since the
right hand side of (2.16) tends to 0 as N -r oo and the set of all f e (u) with f E 7~io
and u a en-valued bounded Borel function ie total in ?~I it follows from (2.11) that

n

THEOREM 2.3. In Theorem E.1 suppose there exists a bounded linear map : A ~ A
Bach that

lim = 0 for all X E A (2.17)i~~

Then there exists a unique contractive linear map j~ : A ~ B(7-() such that ( w.lim
denoting a weak operator limit)

= for all X E A (2.18)

and joo = joo 0 T~ .
PROOF. Fix any 0  to  oo. Considering any element in ~( as a ~"-valued function on
IR+ choose such that u(t) = e(t) = 0 for all t > to and f,g~H0. Then consider
at(X) = The differential equation (2.9) now assumes the form

~ X E A, t > to

Thus

’~~~X~ = for t ~ to

By (2.17) we have

lim 03BBi(X) = 03BBt0(T~(X)).

t~~

The totality in 7-( of the set where f E 7-lo and u has compact support, and the
inequality  ~X~ imply (2.18). Since Too = for each t > 0 it follows that
ioo = j~ O T~.

COROLLARY 1. If = 
, the weak limit in (~.18~ can be replaced

by a strong limit.
PROOF. For f 6 7-(0 , , u E ?-L we have from Theorem 2.3

~ (jt(X) - ~2 =

~ []
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COROLLARY 2. If = 
, we have in theorem 2.3

s.lim t-1 Ji j=(X)ds = joo(X) .t~~

PROOF. Let f t , u E 1’l with compact support. We have

t-2 ds1ds2 (2.19)

.

If = 0 for all t > to and to  s1 ~ az  oo then the adaptedness of {ji(X)} implies
that

= .

This together with (2.17_~ and elementary analysis yields

lim t-2 0s1s2t2Rejs1(X)fe(u),js2(X)fe(u)> ds1ds2
t~~

= fe(u),j~(X*T~(X))fe(u)> .

Now (2.19) becomes

lim ~(t-1t0js(X)ds - j~(X))fe(u)~2 
=

t~~
fe(u),(j~(X*T~(X))-j~(X*)j~(X))fe(u) > . []

RBMARK. We may say that the semigroup is ergodic if (2.17) holds and is

a scalar multiple of the identity for each X . In such a case, since j~ = joo o Too and
=1 the condition of Corollary 2 holds for all X E A and t-I fo converges

strongly to Too(X)I as t --~ oo .

3. Markov chains as Evans-Hudson diffusions.

Let G be a measurable group acting on a separable u-finite measure space (X, F, ~~
so that ~. is quasi invariant under G action. For any g E G define the unitary operator

S’g in La( y by

~ = ~ f E (3.1~

where = 
, E E ~. Then the map g H Sg is a unitary representation of

G in L~(~). Let m be any complex valued bounded measurable function on the product
Borel space G X X For any ~p E denote by the same letter ~ the bounded operator
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of multiplication by p in with norm Then = A is an abelian *-

subalgebra of B(L2( )). Define bounded operators Lg , g E G in L2( ) by
~ (3.2~

For any finite set F C G consider the Hilbert space

xF = Lz(I~) ~ ~‘(La(lfi.+) ~ La(~’)) , (3.3)
where L2(F) is the Hilbert space when F is equipped with the counting measure. If the
cardinality of F is n then can be identified with ~" and we may write

dAo = dt , dA9 = dA~g , dAo = dAg , , dA9 = dA9 , g E F 
_

with respect to the orthonormal basis of indicators of singletons in F. Now consider the
following quantum stochastic differential equations

= { g F(L9dAg +(S9 - 1)dg - L9S9dAy) - 1 2 L9Lgdt}WFttj (3.4)
g=F gE F

with initial value WF(0) = 1. By the basic results of quantum stochastic calculus [5] thereexists a unique unitary operator valued adapted process ~WF(t~, t > 0} satisfying (3.4~.Define 
-

= WF(t) , , X E ~(LZy)) . (3.5)
Then

= ~ - + ~’) Sg)dAg}
gEF

+ (3.6)
where

LF(X) = - 1 2(L*gLgX + XL*gLg - . (3.7)
gE F

We now specialize to the case when X = p E We then have

= m~9~~O’P~9~~ -’P~~~} (3.8)
(3.9~

= - ~P~~~} (3.10~
(~F~~P)f~~~~= r Im~9~~~I2~’P~9xO’P~~~}.~~~’~ ~ (3.11)

gE F

Equation (2.8) and Theorem (2.2) imply that the *-homomorphiems {ji, t ? 0} of theabelian algebra constitute an Evans-Hudson diffusion which describes the classicalMarkov process with infinitesimal generator LF given by

(LF~’P~) ~~~ = L ~~ ~2 ( - ~P~x~ ~~ ~ (3.12)
gE F
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EXAMPLE 3.1. Consider a continuous time Markov chain with finite state space X and
stationary transition probabilities y), x, y ~ ~ such that

d dt pt(x, y) |t=0=l(x, y) , x, y ~ ~ . (3.13)

Then ~ 0 y and = 0. We can realize such a Markov chain as an
Evans-Hudson abelian diffusion in several ways. For example impose any group structure
on X so that G = X, ~a is the counting measure and G acts on itself by left translation,
F = X B ~e} where e is the identity element and put

m x, y = ei8(~,~) if x ~ e
= 0 otherwise

where 8~x, y) is an arbitrary real valued function. Then j~ defined by (3.5) and restricted
to the algebra A of all complex valued functions on X yields an Evans-Hudson diffusion
with

_ ~ .

~~x

We may interpret y) dt as the probability amplitude for a transition from the state
y to the state xy in time dt. When 8 = 0 and X is the cyclic group with n elements we
obtain Meyer’s construction in [6, iJ.

EXAMPLE 3.2. Let y) be as in (3.13). Choose G to be the group of all permutations
of X. Define 

_

= if gx = y, x ~ y
= 0 otherwise.

By a transposition we mean an element g satisfying the following : there exists a pair x, y
in X such that gx = y, gy = x, gz = z whenever z is different from both 

x and y. Let

F be the set of all transpositions. Then (3.12) becomes

_ ~ .

y~X

In this description, for any g E F, m~g, x) dt is the probability amplitude for a transition
from x to gx in time dt. Thus we obtain another realization of 

the finite Markov chain

described in example 3.1 as an abelian Evans-Hudson diffusion.

EXAMPLE 3.3. Choose G = X = ?~, the additive group of all integers, F = {1, -1},

= if g -1

= ~a{x)1~Z if g = -1

= 0 otherwise,
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where 03BB,  are nonnegative bounded functions on 7L satisfying = 0 if x  0,

p(x) = 0 if x ~ 0 . When Z acts on itself by translation the generator LF in (3.12)
assumes the form

= + 1~ - ~P(x~) + ~~ - ~P~~~~ .

In this case the Evans-Hudson diffusion restricted to becomes the classical birth
and death process with bounded birth and death rates A and  respectively.
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