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ON PATHWISE UNIQUENESS AND

EXPANSION OF FILTRATIONS

by Martin T. Barlow1,2 and Edwin A. Perkins2

t
Abstract. Suppose that pathwise uniqueness holds for the SDE Xt = x0 + f 

0 
where ~o~ is bounded and bounded away from 0, and B is a Brownian motion on a

filtered probability space, . We give conditions under which pathwise

uniqueness continues to hold in the enlarged filtration (Ft), where L is the end of
an (F)-optional set.

1. Introduction

Let be a filtered probability space ((Ft) ) satisfies the usual

conditions) carrying a Brownian motion B, and let o : 8 -~ R be a measurable function

satisfying

(1.1) K 1 S K, x e R

for some constant K e (O.co) . We consider the stochastic differential equation

(SDE)

t

(1.2)(xO,o,B) Xt = x0 + f 0 
Let L be the end of an (F )-optional set, and be the smallest filtration

containing (F ) which makes L a stopping time - see Jeulin (1980). . In this paper

we discuss the following question: Suppose pathwise uniqueness holds for (1.2). .

Then does it continue to hold for (1.2) in the enlarged filtration (Ft)?
Note that B will be a semimartingle, but not in general a martingale, in the

filtration (FL) (see Barlow (1979)). Thus the SDE (1.2) continues to make sense,

and the stochastic integral has the same value in both filtrations (see Stricker

(1977)). , However, to explain what ’pathwise uniqueness’ means in the enlarged

filtration we need a few definitions.

As these will not involve any special structure of the SDE (1.2), we will

consider the more general SDE

1. Partially supported by an NSF grant through Cornell University.
2. Research partially supported by an NSERC of Canada operating grant.
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t

(1.3)(x~,o,Z) + 

where Z is a d-dimensional semimartingale, x0 e xd, o: x+ x D(R ,R ) -" ~~d is

bounded and predictable with respect to the canonical filtration on and

is a jointly measurable adapted functional of X and Z. (An example of such

a functional would be a version of the local time .

Definition 1.1 Let be a probability space carrying an

(F )-semimartingale Z. Uniqueness of solutions (UOS) holds for (1.3)(x-,o,Z) in

(Ft) if there is at most one (F)-adapted process Xt satisfying (1.3).

In the case where Z is a Brownian motion, pathwise uniqueness holds if UOS

holds for (1.3)(x..,o,Z’) in for every (F’t)-Brownian motion Z’ on a probability

space (~’,F’,Ft,P’).
To generalize this to semimartingales we need the concept of the adapted

distribution of a semimartingale Z in a filtration (F ), which we denote
. For the definition we refer the reader to Hoover and Keisler

(1984, Def 2.6): here we just remark that 1 . fl. Z is an (F1t)-semimartingale and Z 2 is

cadlag then adsn(Z ,(F~)) implies not only that Z~ and Z~ have the
same law, that Z2 is an (F2)-semimartingale (Hoover-Kiesler (1984), Thm 6.5) and

that Z1 and Z2 have the same predictable characteristics, but that the whole
’information environment’ of the Zl in their filtrations (Ft) are the same.

Definition 1.2 Let be a filtered probability space carrying an )

semimartingale Z. Pathwise uniqueness (PU) holds for (1.3)(xO,o,Z) in ) if

whenever (~’,F’,Ft,P’) is a filtered probability space earring an (F~)
semimartingale Z’ and adsn(Z,(Ft)) - adsn (z’, (F’)), then UOS holds for

(1.3)(x~,o,Z’) in 

Remark While this definition may appear both clumsy and sophisticated, something of
the kind seems essential. In much of the literature pathwise uniqueness is only
discussed for SDEs driven by a Brownian motion, or functions of a BM. If Hl are
(Fit)-Brownian motions for i = 1,2, then (see Hoover

and Keisler (1984, Thm 2.8)), so in this case the definition given above reduces to
the standard one.

Jacod and Memin (1981, Def (2.24)), in a paper which predated the introduction
of adapted distributions, gave a definition of pathwise uniqueness for a general SDE
which involved product extensions. It follows from a recent result of Hoover (1989,
Theorem 5.1) that their definition of ’very good pathwise uniqueness’ is equivalent
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to our ’pathwise uniqueness’.

In the course of our proofs we will require the space to be

’rich’ enough to carry processes independent of B. This could be done by taking a

suitable product extension of on each occasion. However we feel that it is

technically easier to work on a saturated space, and we recall the definition of

this interesting class of spaces from Hoover and Keisler (1984). . A stochastic

process on is a B([0,co)) x A measurable mapping X from x Q to a

Polish space.

Definition 1.3 A filtered probability space satisfying the usual

conditions is saturated if for any process X1 on and for any pair of

stochastic processes (Xi,X2) on a second space (03A9’,A’,A’t,P’) such that adsn(X1,(At))
= there is a process X2 on such that adsn(X1’X2’ (t)) =

(~)). °

Remarks 1.4 (a) Hoover and Keisler (1984, Cor 4.6, Thm 5.2) prove that saturated

spaces exist, by showing that any adapted Loeb space which carries an

(A )-Brownian motion is saturated. Henceforth all our adapted Loeb spaces will

carry an (A )-Brownian motion, and so will be saturated. Adapted Loeb spaces are

constructed using nonstandard analysis - see for example Hoover and Perkins (1983,

Section 3). . Hoover (1989, Section 5) sketches a direct model-theoretic construction

of a saturated space.

(b) If the processes in Definition 1.3 are cadlag, then the process X2 may
also be taken to be cadlag (Hoover and Keisler (1984, Cor 5.8)). .

The usefulness of saturated spaces in determining whether or not PU holds is

exhibited in the next theorem.

Theorem 1.5 Let be a filtered probability space carrying an

Z and let saturated space carrying an

(At)-semimartingale Z such that adsn(Z, (Et)) = Then PU holds for

(1.3) (x~,o,Z) in (Ft) if and only if UOS holds for (1.3) (xO,o,Z) in .

The proof is given in Section 2.

In this paper we obtain two main results on pathwise uniqueness (or lack

thereof) in an enlarged filtration. The first (Theorem 1.6) characterizes PU in

in enlargements in terms of PU in a related equation in the

original (F ). . This immediately gives a sufficient condition on o for PU to hold .

for (1.2) in any enlargement (Et) (Corollary 1.9). . The proofs of Theorem 1.6 and

Corollary 1.9 are given in Section 3.
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Notation If X is a semimartingale let t z 0, a e R denote its local time -

see Yor (1978, p 20). .

Theorem 1.6 Let satisfy the usual conditions, let B be an (Ft)-Brownian
motion and o satisfy (1.1). . Consider the equations

t

(1.4) Xt = x0 + 0 03C3(Xs)dBs ,

(1.5a) Yt = x0 + 
t0 

03C3(Ys)dBs + 1 2 L0t(Y-X) ,
(1.5b) Yt = x0 + 

The following are equivalent:

(a) For any L which is the end of an (F)-optional set, pathwise uniqueness
holds for (1.4) in (fit) .
(b) Pathwise uniqueness holds for the system (1.4), (1.5a), (1.5b) in (F ). .

Remarks 1.7 (a) Note that any solution X to (1.4) is also a solution to (1.5a) and

(1.5b).

(b) If pathwise uniqueness does not hold for (1.4) in (Ft) then, as any

(F )-adapted solution of (1.4) is also an (F)-adapted solution, both (a) and (b)

fail trivially. So the theorem has content only in the case when pathwise

uniqueness does hold for (1.4) in (F ).

The implication (a) => (b) is easy. The plan of the converse argument is as

follows. We suppose that PU holds for (1.4) in (Ft) and let X denote the unique
solution. Let X’ be an (FLt)-adapted solution to (1.4). . We first prove (Lemma 3.2)

that X and X’ can only separate at L. We then construct various "approximations" to

X, which converge to the processes Y and Y’ satisfying (1.5). . We show that the

paths of X’ cannot cross the paths of these approximating processes. Hence, if X =

Y = Y’ then the paths of X’ are trapped between the paths of processes which

converge to X, and so X = X’.

The following condition was introduced in Barlow and Perkins (1984). .

Definition 1.8 o satisfies (LT) if whenever Vt and V2t are continuous adapted
processes of bounded variation on some and (i = i,2) are adapted
solutions of

. t

Xl - x, + f i = 1,2

(x1,x2 e R), then Lt(X1-X2) - 0 for all t ~ 0.

This condition together with (1.1) implies PU for (1.4) in any (F ) ) (see the
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remarks following Theorem 2.1 in Barlow-Perkins (1984)). We do not know if (LT) is

equivalent to PU, but all known conditions on v sufficient to establish PU for (1.4)
in (as in LeGall (1983)) also establish (LT) for o. Explicit conditions on o

which imply (LT) may be found in Barlow and Perkins (1984, Thm 2.1).

Corollary 1.9 If o satisfies (LT) and (1.1), then conditions (a) and (b) of Theorem

1.6 hold.

Our second main result (Theorem 1.11) was used in Barlow-Perkins (1989, Thm.

5.1) to prove that for a large class of o’s, which satisfy (1.1) and change sign at

0, PU fails for (1.Z)(x~,o,H) in (Ft}. In that paper we first constructed a second

solution to (1.2) on an enlarged filtration. This solution exhibited a certain path

property which allows us to apply Theorem 1.11 (stated in Barlow-Perkins (1989) as

Theorem 5.H) to conclude that PU must fail for (1.2)(x~,o,H) in the original 
We first state a preliminary result which shows that (on an adapted Loeb space)

if PU holds for (1.4) in but not in (A~) then the new solutions in the

enlargement must separate from the (A )-adapted solution in a rather implausible
manner.

Proposition 1.10 Let be an adapted Loeb space, B an (At)-Brownian
motion, and L be the end of an optional set. Suppose PU holds for (1.4) in 

and fails for (1.4) in (At). Let X be the unique adapted

solution, and let X’ be an adapted solution. Suppose that 1, and that

X~ for some t) = 1. Then w.p.i Xt = Xt for for all

sufficiently small t > 0, and the event (XL+t > XL+t for all sufficiently small
t > 0} is A measurable.
(We recall that AL = 03C3(YL: Y is an (At)-optional process).).

Theorem 1.11 Let be an adapted Loeb space carrying a Brownian motion B.

Let X be an adapted solution to (1.4), and let

T = inf (s: 1}, L = sup (s  T: Xs = 

Then if there exists an adapted solution Y to (1.4) with the property that

sign(YL+t - x~) - - sign(X - x~) for all sufficiently small t > 0, then pathwise

uniqueness fails in (1.4) relative to 

(Here sign(x) = 1(x ~ a) - 1(x  0))’

Proposition 1.10 and Theorem 1.11 are proved in Section 4: we use the same

basic strategy as in the proof of Theorem 1.6.

Acknowledgement. We thank Doug Hoover for his helpful remarks on saturation and

product enlargements.
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2. . Preliminary Results

We begin this section with some elementary results on adapted distributions,

required for the proof of Theorem 1.5.

Lemma 2.1 Assume Xi is a cadlag process on values in a

Polish space M, Y1 is a stochastic process on (i = 1,2)

and 03C8: R x D(R ,M) ~ M’ (M’ is another Polish space) is universally measurable.

If adsn(X1,Y1,(F1t)) = adsn(X2,Y2,(F2t)), then adsn(X1,Y1,03C8(.,X1),(F1t)) =
adsn (X2,Y2,03C8 (.,X2), (F2t)).

Proof. If 03C8(t,x) - 03C6(t,x(t1),...,x(tn)) where 03C6: R is continuous,

the conclusion follows easily from the definition of adapted distribution.

Proposition 2.19 of Hoover-Keisler (1984) shows that the class of for which the

conclusion holds is closed under pointwise convergence. A monotone class argument

gives the result for Borel 03C8 if M’ = R and also for general M’ if 03C8 is Borel and

finite-valued. In general, however, a Borel 03C8 is the pointwise limit of a sequence

of finite-valued and hence the result holds for Borel ~. The extension to

universally measurable ~ is trivial.

The following result on stochastic integration follows easily from the above

lemma and Theorem 7.5 of Hoover-Keisler (1984). .

Proposition 2.2. Let Zl be a d-dimensional semimartingale on
(03A9iFi,Fit,Pi), Xi be a cadlag R -valued (Ft)-adapted process, and Y be a stochastic

process on S~1 ( i = 1,2). . Let o: R+ x D (R+, Rn) -~ Rnxd be bounded and predictable

(use the canonical right-continuous filtration on D(R ,Rn)). If adsn(Y1,X1,Z1,(F1t))

then adsn(Y1,X1,Z1, 03C3(s,X1)dz1s,(F1t)) =

adsn(Y2,X2,Z2, 03C3(s,X2)dz2s,(F2t)).
Proof of Theorem 1.5. The "only if" assertion is trivial. To prove the converse,

suppose PU fails for (1.3)(x ,o,z) in (~ ). Then there exists a filtered space

(S~’,F’,Ft,P’) carrying an (Ft)-semimartingale Z’ with adsn(Z, (F ))
such that (1.3)(x~,o,Z) has two distinct solutions, X’ and Y’ say. By saturation

(see Remark 1.4(b)) there are cadlag (A =t )-adapted process X and Y such that
. Lemma 2.1 and Proposition 2.2 imply that X

and Y are distinct solutions of (1.3) on fails in

(At ) . i

Lemma 2.3. Let X be a stochastic process on the filtered space and

let X be a stochastic process on the saturated space that(~ ,A,A ,P ) ) such that

. Assume L is the end of an (F )-optional set.
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(a) There is an L, which is the end of an (At)-optional set, such that adsn(X,(Ft))
= adsn (X, (ALt)).

(b) If an adapted Loeb space, then so is (Q ,A,(AL),P ). In

particular, is saturated.

(c) If is an adapted Loeb space and T is an (At)-stopping time which
is finite a.s., then is an adapted Loeb space, and so is also

saturated.

Proof (a) Let A be an (Ft)-optional set such that L = sup{t: t s A), let

gt = sup t: s E A} and Vt = t - gt: we have L = sup it: Vt = 0}. Set At =

1(L~~)(t), and let °At be the (cadlag) (F )-optional projection of A. (See

Dellacherie and Meyer (1982), VI.47). By saturation there exist cadlag

(A J-adapted processes V, °A such that Let L

= sup (t: Vt = 0}: by Lemma 2.1 and hence

°At = PA-a.s. for all t 2 0. It follows that °A is the (At)-optional
projection of 1 . If ~ E L1(F) then (see Barlow (1979, Lemma 2.2, 3.1)),

L 

_

E(~~Ft) - + ((1-At)/(1_oAt)) (here 0/0 = 0),

and a similar equation holds for E(.~AL). Thus conditional expectations relative to

(FL) and can be reduced to conditional expectations relative to (F ) and (A ).

It follows easily that implies

(b) The first assertion is proved just as in Theorem 5.A in Barlow and Perkins

(1989), where it is shown that is an adapted Loeb space. The second

assertion is then immediate from Remark 1.4(a).

(c) Any stopping time T is also an end-of-optional time, so this is immediate from

Barlow and Perkins (1989, Theorem 5.A), t

Remark. We have been unable to decide whether or not (b) remains valid if we

replace "adapted Loeb space" by "saturated space" in both hypothesis and conclusion.

This is why we have used adapted Loeb spaces in this work.

We close this section with a result on the convergence of Itð integrals, which

is required in the next section.

Notation. Given a process Y we define Y by Ys = .

Lemma 2.4 Let o be a bounded measurable function satisfying K 1  I  K

for x s R, let B be a Brownian motion and let be a sequence of
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semimartingales with decomposition = Y~ + M~ + A~, where M~ is continuous. .
Suppose that

(a) lim Ynt 
= Y~t a.s. . for each t,

(b) Mn>
t 

= J* Hns ds, where K-12 ~ Hns ~ K2 for each s, for 

(c) sup ~(Tn) t~H1 = c(t)  ~ for each t.

Then

(2.1) ) E [J* ~ - J* ~ ) dB 
s 
]~ -~ 0 for each t ~ 0, ,

and so in particular there exists a subsequence (n.) ) such that

(2.2) ) J* 
t 

o(Y 
n 

-’)dB -~ J* 
t 

o(Y 
~ 

) dB a . s , uni formly  - on compacts .
0 

~ s 
0 

~ ~

Proo f . To prove (2.1) ) it is enough to prove

(2.3) lim E J* (o(Y~) - o(Y"))~ ds = 0 . .
n-*co 0 

~ 

(As (s: Yns- ~ Yns} is countable, we can replace Yns- by Yns).
If o is cont inuous , (2.3) ) is immediate from dominated convergence. . From

El-Karou i (1978, , Proposition 1.2, , Remarque 3) ) and Barlow (1983, , Theorem 5.5) ) there

exists a universal constant c such that

(2.4) E L~(Y~) ~ c~t(Y~!t ~ ~ ’ for t ~ 0, a ~ R .

So, if g is any bounded continuous function, and 1 ~ n ~ co,

(2.5) ) (g(Y~) - o(Y~))~ ds = (H~~(g(Y~) - o(Y~)~ dM~>, .

S

~ K~ E J* (g(a) - o(a))~ L~(Y~) c !!g - o!!~ . °
Here c depends on K and c(t), ’ but not on n.

Us ing (2.5) ) we have

E ~ (o(Y~) - 3E + 3E ~(o(Y~) - 
+ 3E ~ (g(Y~) - 
~ 6c !!g - o!)~ + 3E ~ (g(Y~) - 

The second term converges to 0, so (2.3) follows on approximating o in L~ by a
continuous g (which is possible even though o is not in L~). , Passing to a

subsequence , and using Doob ’ s inequality and a diagonalization argument we
obtain (2.2). 
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3. A Characterization of Pathwise Uniqueness in an Enlaraement

We now fix a Loeb filtration an ) Brownian motion B, and an

(At)-end of optional time L. We begin with a technical result on pathwise

uniqueness.

Lemma 3.1 Suppose pathwise uniqueness holds for (1.4) in ) for some initial

point Then pathwise uniqueness holds for all initial points x.

Proof. Let X be the unique solution with XO = x0. Suppose pathwise

uniqueness fails for some initial point xi, and let T = inf{t ~ 0: Xt = xl). As X

is a time-changed Brownian motion and X>~ _ m, P(T  m) = 1. The filtration (A )
is saturated by Lemma 2.3(c). . By Theorem 1.5 there exist distinct solutions Y1, Y2
to

Yit = x1 + t0 03C3(Yis)dBT+s .
Let Zit = Xt1t  T) + Tit-T1(t ~ T) : the Zi are distinct (At ) adapted solutions to

(1.4) 1 with Zo = x., giving a contradiction.
From now on we will assume pathwise uniqueness holds in (1.4) (relative to

(A )). . Let At = At(x,H,s) be the unique (At)-adapted process such that
x 

t

x + f t > s .

s

From the continuity of paths, and the pathwise uniqueness, it is clear that if xl >

x2, then At(xl,H,s) 2 for all t. (These solutions may meet, however). ’

Let °At be the (At)-optional projection of that for every

time T we have °AT = P(L S T ~A~). ° Set

R = 0: ~A = 1) ; ;

R is "the time at which the enlargement comes to an end", and we have AR = ~, by
Barlow (1979, Lemma 2.2). 

Lemma 3.2 Let (Yt), be adapted solutions to (1.4), and let

K = inf {t ~ 0: Y1t ~ Y2t}. Then [K] ~ [L].

Proof By Jeulin (1980, Prop 5.3, p. 75) there exist previsible processes

Yij such that Yi = Yi1 1[0,L] + Yi2 1(L,~) .

Let T = inf{t: Y11t ~ At(x0,B,0)]. As Y1 solves (1.4) we must have T ~ L a.s.,

and so °AT = 1 Thus T ~ R, so that Y11 is a solution of (1.4) on [O,R].

Similarly, Y21 is a solution of (1.4) on (O,R~, , and so, by the pathwise uniqueness,

Y21 on [O,R]. . Thus, as L 5 R, we have K Z L.

It remains to show that, for each e > 0, K = m on {K > L + e]. Let e > 0 be

fixed: by Barlow (1979, Theorem 4.5) there exists a sequence (Sn) ) of (At)-stopping
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ap 
. 

’2 ’2 
.

times such that [L + ~] ~ U [Sn]. Let Tin = inf{t ~ Sn: Yi2t ~ At(Yi2s, B,sn)).
. n=1 

i2 n 
t t Sn n

As Yl is a solution to (1.4), and equals Y12 on /L,~), Tl - ~ on {S - L +Ej.
Also, on {K > L + ), we have Y12 = Y1 = Y2 = Y22 on /L,R). Hence, on {Sn = L + ,12 22 1 2 12 22 12 

n
R > L + ej, YS = YS and Tn = Tn = ~, so that Y12t = Y22t = At/YS ,H,Sn) for all

n n n
t z Sn, and hence R = ~. ~

Corollary 3.3 With the notation of Lemma 3.2 let

S = inf{t > L: Y1t = Y2t}.
Then Yi - Y2 on 

Proof. It is enough to show that Yt = Yt for all t Z S , where
Sn = inf{t > L + n-1: Y1t = Y2t), for each n. Let n ~ 1 be fixed, and let
Y3 = y11

[0,Sn) 
+ Y21[Sn,~). Since [Sn] ~ [L] = , by Lemma 3.2 we have Y3 = Y1, so

that (Y1 - Y2) 1[Sn,~) = 0. []

Now fix x0 ~ R, and let Xt = At(x0,B,0). Let ~n ~ 0, and define processes
~ as follows:

y~ _ ~~
and for n Z 1, k 2 0,

(3.1)(a) Yn0 = x0 + ~n, Tn0 = 0 ,

Tnk+1 = inf{t > Tnk: At(Yn(Tnk),B,Tnk) = Xt}
Ynt = At(Yn(Tnk),B,Tnk) on [Tnk,Tnk+1)

(3.1) (b) Yn(Tnk+1) = min(Yn-1(Tnk+1),X(Tnk+1 + ~n).
Proposition 3.4 (a) Ynt > Xt for all t.

(b) Yt, where Y is a continuous semimartingale satisfying the equation
00 tool 0 00(3.2) (a) Yt = x4 + f 0 o(Yg)dHs + 2 Lt(Y - X)

(3.2)/b) Y~t ~ Xt .

Pro f. We may take x~ = 0. We begin by showing that Yn is well defined. Note that
Yn 

can only 
fail to 

be well defined if sup Tnk  + ~, and that Ynt > Xt for 0 ~ t 
sup Tk. Since the jumps of Y1 are all of size e , and as |03C3| s R, the times T1k 1 k
cannot accumulate, so 

sup T1k = +~. Suppose that Yn 1 is well defined. If 

~n for some i, then Ynt = Yn-1t on [Tni,sni], where Snj = inf(t>tnj: 0394Yn-1 > ~ }, and son 
11 i i t n

Yn is well defined on As the Tnk cannot accumulate outside an inte rval of
this form, we have sup Tk = + ~o,

k
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From the definition of Y" we may write

Y~ ~ = / 
0 
0(Y~)dB, ~ A~ , ’

where A" is increasing and AA~ ~ e~. Now = Y"(T") - X(T~), and Y"(T’~-) ~ =

X(T? ) on  "’}. So, setting H~ = we have

(3.4) = Y"(T~ - ~(T~-) - (X(T~) - X(T~))

= 1~’ ~ ~s ’ ’ °" ~1  ~ -

Let S 
1 

 S 
2 
be stopping times ’ and let N,M be such that T~_~ ~ S~  

TnM ~ S2  TnM+1. If AnS2 > AnS1 then M ~ N. From (3.4) we have

AnS2 - AnS1 = 03A3S1T ni~S2 0394An(Tni)

~(M.N) 
"N

~ ~n + 1 (TnN  S2) tTnN Hns dBs .
So, by the Burkholder-Davis-Gundy inequalities, for p ~ 1

(3.5) ~~/~p~n-p~~’~l’~-
and

(3.6) E!~-~.c~~c~E(S,-S,)~ .
By the definition of (Y~), Y~ is decreasing, and we have Y~ > X~. .

Let Y~t = lim : Y~t ~ X . . Using dominated convergence and the estimate (3.6) we

see that Ynt ~ Y~t in Lp. Let n ~ oo in (3.6): we have

By Dellacherie and Meyer (1982, VI.48), Y" is right continuous. But taking p > 2

in (3.7) and applying Kolmogorov’s continuity theorem, we also have that Y has a

continuous modification. Hence Y~ is continuous.

Now is l.s.c., and so Y~ is a limit of a decreasing sequence of l.s.c.

processes. Hence Y~ ~ Y~ uniformly on compacts, and by dominated convergence

lim ~ |Yns - Y~s| ~1 = 0 for each t.

Thus (Yn) satisfies the conditions of Barlow and Proffer (1990, Theorem 1), and so

Y~ is a semimartingale with decomposition Y = M + A, and

(3.8) lim ~(Mn - M)t~H1 = 0, lim ~Ant - At~1 = 0 .
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t

Thus M> t = f 
0 

h s ds, where K 1 s I s K. So (Yn) satisfy the hypotheses of Lemma

2.4, and (passing to a subsequence and relabelling) we deduce that
t t

Mt = lim f o(Ya)dHs = f o(Ys)dBs .t s s 
0 

s s

As Ant are increasing, At must also be increasing. So we have proved that

Y~t = t0 03C3(Y~s)dBs + At,
where A is increasing.

Let [S1,S2) be an interval on which Y~ > X: then Yn > X on [S1,S2} for each n,

so An is constant on [S1,SZJ, and hence A is constant on [S1,S2}. Thus dA is

supported by {t:Xt = Yt}.
By Tanaka’s formula

(Y~t-Xt) = (Y~t-Xt)+
t t

- f 1 ~ (o(Yg)-o(Xs))dBs + f 1 ~ dAs + 2 0 (Ys>Xs) 0 (Ys>Xs)
= t003C3(Y~s) dBs - t0 03C3(Xs)dBs 

+ 1 2 L0t(Y~-X )

= Y~t - At - xt + 1 2 L0t(Y~-X).
So At = 1 2 L0(Y~-X), and the proposition is proved. []

We may define a similar sequence of processes Yn 
, 

which approximate X from

below, by replacing (3.1)(a) 
, 

= x0 - en, and (3.1)(b) by

Yn~(T~+ ) - max (Y(n 1)~~(T~+1), X(Tk+1) - , E n }. Then an almost identical proof shows

that Yn increase to a limiting process Y~ ~ X, which satisfies

(3.9)(a) Y~’t= x0 + t003C3(Y~’s)dBs - 1 2 L0(X-Y~ ’)

(3.9)(b) Xt .

Proof of Theorem 1.6. By Remark 1.7(b) it suffices to consider the case when PU

holds for (1.4).

(b) _> (a). By Theorem 1.5 and Lemma 2.3 we may take our filtered space to be the

adapted Loeb space (~,A,At,P). That is, we will assume UOS in (1.4),(1.5a) and

(1.5b) in and show UoS for (1.4) in where L is a fixed end of optional
time for (At). (Lemma 2.3(ay shows that any end-of-optional time on a filtered
space can be modelled on a Loeb space, and Lemma 2.3(b) and Theorem 1.5 would then

give PU in (1.4) for (At).)
Let Yn, Yn be the processes defined by (3.1). By Proposition 3.4, and our

hypothesis that pathwise uniqueness holds in (1.5), Y~ = X, and

(3.10) Y~ 1 Xt, Yn t Xt for all t 2 0, a.s.
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Let X’ be an (ALt)-adapted solution of (1.4), We now show that

(3.11) for all t z 0,

By Lemma 3.2 X = X’ on (O,L], so (3.11) holds for 0 5 t 5 L. Let S = inf(t > L:

Xnt ~ Ynt}: as X’ is continuous and 0394Yn ~ 0, we must have X’S = YnS. Further, as

YnL > XL, S > L. By Corollary 3.3 if S2 = inf(t > S: Ynt = Xt], we must have
= = for S 5 t  S2. Similarly, X’ = X on [52,~). . Thus Yn

on each of the intervals [0, L] , [L,S], [S,S2] ] and [52,~] , , proving (3.11). .

Letting n -~ ~ in (3.11), and using (3.10) we deduce that X. Similarly,

using Yn 
, 

instead of Yn we have X and so X’ = X.

(a) => (b). Suppose that pathwise uniqueness fails for either (1.5a) or (1.5b):

let us assume it fails for (1.5a), and let Y 1 X be a solution. Let T be a stopping

time such that XT) > 0, and let

L = sup(t  T: Yt = R = inf{t ~ T: Yt = Xt],
and set = Xt (t) + Yt (t) + Xt 1 (t). . Then, since Y ?: X on [L,R)

we have LL(Y-X) - 0. It is now easily checked that X’ is

an (Ft) adapted solution to (1.4), and that X’ 1 X. So pathwise uniqueness fails

for (1.4) in (Ft), and we are done. )!

Proof of Corollary 1.9 The condition (LT) implies pathwise uniqueness for (1.4),

and that if Y, Y’ are solutions of (1.5a) and (1.5b) then LO(Y-X) - LO(X-Y’) = 0.

Thus Y and Y’ are also solutions of (1.4), and so X=Y=Y’, so that (b) holds.

4. Consequences of Non-Uniqueness

To prove Proposition 1.10 and Theorem 1.11 we will need a different

approximation to X, where the jump of +En by Yn at the times T~ is replaced by a
jump with a random sign.

We continue with the notation and hypotheses of Section 3. In particular, we

continue to assume PU holds in (1.4) in (At). Let

G - L, t ~ 0). " 
e

Let e > 0: we define a process ZE, , a sequence of stopping times, Tr, and a

sequence, 03BE~r, of AT~r- measurable random variables as follows:

(4.1) TO £ = 0, 
Tr+1 = = Xt],

Zt = on 

+ E~r’
p(03BE~r = + 1|ATrVG) = P(03BE~r = -1|AT~rVG) = 1/2 .
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As (Q,A,A ,P) is saturated, random variables (~r) with these properties can be
found. As in the proof of Proposition 3.4 we can check that ZE is well- defined.
Let

A~t = 03A3 1[T~r,~) (t), N~t = 03A3 03BE~r 1[T ~r,~) 
(t) .

Then

t

(4.2) Zt = x0 + f 0 O(Zs)dBs + ENt~
so that Z is a perturbation of a solution to (1.4). .

We 
wish to show the term ENt is small. Applying Tanaka’s formula to X we

have

(4.3) |Z~t - Xt| = t0(03C3(Z~s)-03C3(Xs))sgn(Z~s--Xs)dBs + ~A~t + L0t(Z~-X).
Since {t:Zt- - Xt} is countable, and = Xt} - ~, 0, and so ~ZE - X ~
= Vt + ~A~t, where V is a continuous martingale satisfying V>t ~ 4K2t. Let R = max
{r:T~r ~ t}: then ~ = |Z~TR - XTR| = VTR + ~A~TR, so that A~t= A~TR ~ ~-1(1 + sup |Vs |).

Hence, for each t ~ 0,

(4.4) E A~t ~ ~-1 + ~-1 E(sup |Vs|)

by the Burkholder-Davis-Gundy inequalities. So, as N£) = AE,
(4.5) E(~N~t)2 = ~2EA~t ~ ~ + ~cKt1/2

.

Set U~ = (4.5) implies that

(4.6) E( sup ~US - Zs ~ 2) -~ 0 as s -~ 0, for each t ~ 0.
0~s~t

Let (Ut, Xt, Bt) denote the co-ordinate process on C=C(8+,x3), and let QE be the
probability law on C induced by (UE,X,B). . The estimate 

s 
~ K2(t-s), ’

and the similar estimates for X> and B> imply that {Os, 0E1} is tight. Let e 1

0 be a subsequence such that Q 
E 
k 

converges, and let Q = lim Q 
E 

k. 

’ 

k

Lemma 4.1. On the space (C,B(C),Q),
(i) B is a Brownian motion,

(ii) Xt = x0 + t0 03C3(Xs)dBs and Ut = x0 + t0 03C3(Us )dBs .

The proof is as in Barlow (1982). . The additional problems which arise when o
is discontinuous can be handled using the methods of Lemma 2.4.
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Proposition 4.2 With notation as above we have

(4.7) E(sup X|) ~ 0 as k ~ ~ for each t z 0.
s~t 

~ ~

Proof. By the assumption of pathwise uniqueness for (1.4) we must have X = U under

Q. Thus using the uniform bounds on X and U given by the Burkholder- Davis-Gundy

inequalities we have, for any t ~ 0,

(4.8) 0 = lim sup |Us - Xs|dQ~k

= lim E (sup |U~k - X|).

k sst 
s s

Combining (4.8) and (4.6) we obtain (4.7). . t

Proof of Proposition 1.10. Let S = inf{t > L:Xt = The assertions that X=X’

on [O,L) and XL+t for small t follow from Lemma 3.2 and Corollary 3.3,
respectively. For the latter note that X = X’ on [S,m) and X ; X’ a.s. implies

S > L, and so sgn(Xt - Xt) ) is constant on (L,S). 
e e

Let Z 
n 
be the processes constructed above, let ~n = 

Tn = inf{t > L: Xt-} and set Vnt = Z~nt 1(t  Tn} + Xt1(t ~ Tn}.
As Z~nt ~ Xt a.s., we have Ynt ~ Xt a.s. 

If 03BEn = 1 then, as in the proof of Theorem 1.6, we have X’ ~ Z~n on [L,T ], , and

hence on ° Thus Xt s = 1) on so that on

G+ = {03BEn = +1 for infinitely many n) we have X’ s X on [L.eo) . . Similarly, on

G* = {03BEn = -1 for infinitely many n} we have X’ ~ X on [L,~). As z~n are 

(At)-optional processes, G+ and G- are AL measurable, and the result follows. []

Proof of Theorem 1.11 Note first that P(L~) - 1. Suppose that PU does hold for

(1.4), and let n (respectively, ny) be the common value of sign(XL+t - xO)
(respectively, xj) for small t > 0. By hypothesis However, by

Proposition 1.10 ny is AL measurable, and so nx is A -measurable. But by Yor (19?9,

Proposition 10)

E(XT - 0.

This implies nX = 0, which gives a contradiction.
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