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ON CONVERGENCE OF SEMIMARTINGALES

Martin T. Barlow! and Philip Protter?
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16 Mill Lane Statistics Departments

Cambridge CB2 15B Purdue University
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Let X be a semimartingale. A norm commonly used on the space of semimartingales
is the H? norm: One defines

5(M, A) = |[IM, ML2 + / (A, ||| e

for any decomposition X = M + A with M a local martingale and A an adapted, right
continuous process with paths of finite variation on compacts. Then

IXIbe = _inf ip(M, 4)

where the infimum is taken over all such decompositions of X. Then as is well known
(see, for example, Emery [2], Meyer [7], or Protter [8], Theorem 2 of Chapter V):

IX*lze < cpllX|lwr (1 <p<o0)
where X* = sup|X;|, and ¢, is a universal constant. An immediate consequence is that
: :

if a sequence of semimartingales X™ converges to X in H!, then
lim E{(X"-X)*}=0

as well.

In this paper we examine the converse question: if X” = M™ + A" is a sequence
of semimartingales converging uniformly in L! to a process X, what can be said about
the convergence of the M™ and A™ processes of the decompositions? Such a question
is closely related to recent work on weak convergence of semimartingales: In particular
Jacod-Shiryaev [3], Jakubowski-Mémin-Pages [4], and Kurtz-Protter [5].

The examination of two simple examples illustrates the problems that arise and
shows that one cannot expect a full converse.
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Let Y be any continuous, adapted process with Y5 = 0 and Y constant on [1, 00);
set
t
Xi = n/ Y,dsl{is1/n)-
t—1/n
Then X" is a differentiable function of ¢ in [%, 00) for each n and in particular each X™
is of finite variation (and hence it is a semimartingale). However the limit Y need not
be a semimartingale.

The preceding example indicates that we have to impose some type of uniform
bound on the total variation of the A™ processes. But even if we do this we cannot
hope always to obtain convergence of the A™ processes in total variation norm. Indeed,
let 0 <t < %, and define A} = Lsinnt. Then fo"ﬂ |dAZ| = 1, but (A™)* converges to
zero.

The following theorem avoids the pathologies of the two preceding examples. Recall
that a semimartingale X in H! is special: that is, it always has a unique decomposition
X = Xo+ M+ A, where My = Ay = 0, and the finite variation process A is predictable.
Such a decomposition is said to be the canonical decomposition.

Theorem 1. Let X™ be a sequence of semimartingales in H with canonical decomposi-
tion X™ = X§ + M™ + A", satisfying for some constant K,

(1a) E{ / " laAn)} <K

(1b) E{(M")"} < K.
Let X be a process, and suppose that
(2) E{(X"-X)}—-0 as n — 0o.

Then X 1is a semimartingale in H', and if X = Xo+M+A is its canonical decomposition
we have

o0
3) E{M*'}<K, Ef / A} < K
0
and
(4a) lim [|[M™ — M||3x =0,
(4b) lim E{(A" — 4)"} = 0.

Corollary 2. Let (X™) be a sequence of special semimartingales with canonical decom-
position X" = X§ + M™ 4 A™, where the A" satisfy (1a). Then if X is a process such



190

that nli_.ngo [|(X™=X)*||z: =0, X is a special semimartingale. Furtherif X = Xo+M+A
is its canonical decomposition, then

lim |[M" = M|jp =0,  lim E{(A" — A)*} =0, EdlMﬂgK
n—oo n—00 0

Proof. By deleting a finite number of terms in the sequence (X™), we may suppose that

E{(X" - X)*} < K for n > 1. But then

E{(M" - M')*} < E{|X§ - Xo} + E{(X" - X)*} + E{(4" - 4")"}
<4K.
So write X" = X" — M! = X7 +(M" - M)+ A", X = X — M. Then'the hypotheses
of Theorem 1 hold for X™, X and the conclusion follows easily. O

The proof of Theorem 1 uses some ideas from Kurtz and Protter [5], and it also
needs the following martingale inequality.

Proposition 3. Let p > 1/2, M be a martingale in H?? and K be a predictable process
with K* € L??. Then

(K - M)*||Lr < cpl|K*||L2p || M| 20

Proof. Recall the Davis decomposition of M — see Meyer [6, p. 80-81]. Let AM, =

M, — M,_. Let A, = sup|AM,|: then M = N + U, where N is a martingale with
s<t
|AN;| < A:_, and U is a martingale with paths of integrable variation satisfying

I / dUlze < callAoolle, g2 1.

Further, we have the pointwise inequalities
As < 2M*,
[N1L? < (ML + [UILL2,
[U)? < 4A.

Now (K - M)* < (K - N)* + (K -U)*, and |A(K - N)¢| < K} A;. Hence, by Meyer [6],
Theorem 2 on p. 76,

(K - M)*|[zr < cp(II(IK - Nloo + (K*Aw)*)? I + (K - U)*[l20)
< cp(llK - NI + K* Acollze + |I(K - U)*||2»)

< (I INTL e + 1K M| s + II/IKsIIdUsIIIu)

< cp(IIK* ML NILr + || KM || s + || K™ / |dUs|||z»)-
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The proof is concluded by applying Holder’s inequality, and noting that || [ |dU,]|||p2» <
¢p||M*||L2». (The constant ¢, changes from place to place in the preceding.)

Remarks. 1. Of course, for p > 1 this inequality is an immediate consequence of the
Burkholder-Davis-Gundy inequalities.
2. This inequality is not true in general for 0 < p < 1/2.

Proof of Theorem 1. First note that as X is the a.s. uniform limit of a subsequence of
the X", X is cadlag. Also, as ||X§ — Xo||z: — 0, we may take X§ = X, = 0.
Let H be an elementary predictable process, that is a process of the form

k
H, = Z hil(t.',t.'.'.l](t)’

=1
where h; € Fy;, |hi| < 1,and t; < t3 < < tg. Then writing H - X for the elementary
stochastic integral of H with respect to X, tx4+1 = 0o, we have

k+1
E{(H - X)oo} = E{D_ hi(Xe;y, — X,)}
=1
k+1
= M B MO = X0)
'_oo
= JEI;OE{/O H,dAP} < K.

So by the Bichteler-Dellacherie theorem (e.g., Dellacherie-Meyer [1]) X is a quasimartin-
gale, and therefore a special semimartingale. Hence X has a canonical decomposition
X = M + A, with M a local martingale and A a predictable finite variation process.
Choose a sequence (T}) reducing M. Then, if H is an elementary predictable process,
E{(H-A)n,}=E{H -X)r,} = li’ran{(H - X™)1,} < K. Thus

T
E{/ [dA,)} < K, foreach k> 1,
0

and hence E{ f;° |d4,|} < K.
Now M =X -A=(X-X")+(M"+ A™) — A, and so

MU= X) + Q)+ [ laaz+ [ laal
0 0

Thus E{M*} < 3K < oo, and M is a martingale in H!. Set Y™ = X" - X, N* =
M"™ — M, B® = A™ — A: We have

B{[ MBI} <2K,  B{N"Y}<2K, ImB((¥")}=0.
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To complete the proof it is enough to prove that
(5) lim E{[Y"]}/?} =o0.
n—oo

For then, by Dellacherie and Meyer [1], section VIL95, we have E{[B"]'/?}
< 2B{[Y"]!/?}. Hence, as [N"]!/? < [B"]!/2 + [Y"[\/2, E{IN"]:{") < 3E{[Y"]:’),
so that limp oo ||[N™||31 = 0. This implies that E{(M™ — M)*} — 0, and hence that
oE{(A™ — A)*} — 0. Finally, E{M*} < K follows from (4a) and (1b).

To show that nllx’ré<> E{ [Y"];éz} = 0, use integration by parts to conclude

™o = (V2P —2 [ ¥rany -2 [T vraaz,
and so, writing U =Y" . N",
6)  B{Y"R) < By} + 2B+ 2E(([ Va2,
0
By Proposition 2
E{((U™)")/?} < «(B{(Y")" D (E{(N")DY?
< KM(B{(Y") )2,

Similarly, the third term in (6) is dominated by

E{((Y")" / T AT < (B{Y™Y )M (E /:’ |dAT )2
< K1/2(E{(Y")*})l/2.

Thus limp_.o E{[Y"]2*} = 0. O
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