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ON CONVERGENCE OF SEMIMARTINGALES

Martin T. Barlow1 and Philip Protter2
Statistical Laboratory Mathematics and
16 Mill Lane Statistics Departments
Cambridge CB2 15B Purdue University
England W. Lafayette, IN 47907

U.S.A.

Let X be a semimartingale. A norm commonly used on the space of semimartingales
is the norm: One defines

jp(M,A) = ~[M,M]1/2~ + ~0 |dAs| ~Lp

for any decomposition X = M + A with M a local martingale and A an adapted, right
continuous process with paths of finite variation on compacts. Then

~X~Hp = infjp(M,A)

where the infimum is taken over all such decompositions of X. Then as is well known
(see, for example, Emery [2], Meyer [7], or Protter [8], Theorem 2 of Chapter V):

~X*~Lp ~ cp~X~Hp (1 ~ p  ~)

where X* = sup and cp is a universal constant. An immediate consequence is that
t .

if a sequence of semimartingales Xn converges to X in then

lim E{(Xn - X )*} = 0

as well.
In this paper we examine the converse question: if J~~ = Mn + An is a sequence

of semimartingales converging uniformly in L~ to a process X, what can be said about
the convergence of the Mn and An processes of the decompositions? Such a question
is closely related to recent work on weak convergence of semimartingales: In particular
Jacod-Shiryaev [3], Jakubowski-Memin-Pages [4], and Kurtz-Protter [5].

The examination of two simple examples illustrates the problems that arise and
shows that one cannot expect a full converse.
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Let Y be any continuous, adapted process with Yo = 0 and Y constant on 
set 

Xnt = n tt-1/nYsds1{t>1/n}.
Then Xn is a differentiable function of t in [1 n, oo) for each n and in particular each Xn
is of finite variation (and hence it is a semimartingale). However the limit Y need not
be a semimartingale.

The preceding example indicates that we have to impose some type of uniform
bound on the total variation of the An processes. But even if we do this we cannot

hope always to obtain convergence of the An processes in total variation norm. Indeed,
let 0  t  2 , and define At = 1 n sin nt. Then = 1, but (An)* converges to
zero.

The following theorem avoids the pathologies of the two preceding examples. Recall
that a semimartingale X in ?~l1 is special: that is, it always has a unique decomposition
X = X o + ~VI + A, where Mo = Ao = 0, and the finite variation process A is predictable.
Such a decomposition is said to be the canonical decomposition.

Theorem I. Let Xn be a sequence of semimartingales in H1 with canonical decomposi-
tion xn = Xo + Mn + An, satisfying for some constant K,

(1a) E{ |dAns|} _ K/o

(16) E{(Mn)*}  K.

Let X be a process, and suppose that

(2) E{(Xn - X)*} --~ 0 as n -~ oo.

Then X is a semimartingale in ~-l1, and ifX = Xo+M+A is its canonical decomposition
we have

00

(3) E{M*} ~ K, E{~0 |dAs|} ~ K

and

(4a) lim M~H1 = 0,

(4b) lim E{(An - A)* } = 0.

Corollary 2. Let (Xn) be a sequence of special semimartingales with canonical decom-
position X n = Xo + Mn + An, where the An satisfy (la). Then if X is a process such
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that lim ~(Xn-X)*~L1 = 0, X is a special semimartingale. Further if X = X0+M+A
is its canonical decomposition, then

o

lim = 0, lim A)* } = 0,  K.
n-;oo n-oo / -

Proo f. By deleting a finite number of terms in the sequence (X n ), we may suppose that
X)* }  I~ for n > 1. But then

E{(Mn - M1)*} ~ E{|Xn0 - X10|} + E{(Xn - X)*} + E{(An - A1)*}

 4K.

So write X n = = Xo X = Then the hypotheses
of Theorem 1 hold for X and the conclusion follows easily. D

The proof of Theorem 1 uses some ideas from Kurtz and Protter (5~, and it also
needs the following martingale inequality.

Proposition 3. Let p > 1/2, M be a martingale in H2p and K be a predictable process
with K* E Then

~(K.M)*~Lp ~ cp~K*~L2p~M*~L2p.

Proof. Recall the Davis decomposition of M - see Meyer [6, p. 80-81]. Let 0394Ms =
M8 - . Let At = sup then M = N + U, where N is a martingale with

at

At_, and U is a martingale with paths of integrable variation satisfying

~ |dUs|||Lq ~ Cq~A~~Lq , q ~ 1.

Further, we have the pointwise inequalities

Aoo  2M*,

C + ,

[U] ~2 - 4Aoo.
Now (K. M)*  (K N)* + (K . U)*, and |0394(K . N)t| ~ K*tAt. Hence, by Meyer [6],
Theorem 2 on p. 76,

~(K.M}*~Lp ~ Cp(~([K . N]~ + (K*A~)2)1/2~Lp + ~(K . U)*~Lp}

~ N~ ~2 + + 

~ cp(~K*[N]1/2~~Lp + ~K*M*~Lp + ~ |Ks~dUs|||Lp)

~ cp(~K*[M]1/2~~Lp + ~K*M*~Lp + ~K* |dUs|||Lp).
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The proof is concluded by applying Holder’s inequality, and noting that II f 
(The constant cp changes from place to place in the preceding.) 0

Remark9. 1. Of course, for p > 1 this inequality is an immediate consequence of the
Burkholder-Davis-Gundy inequalities.
2. This inequality is not true in general for 0  p  1 /2.

Proo f of Theorem I. First note that as X is the a.s. uniform limit of a subsequence of
the X is cadlag. Also, as -> 0, we may take Xo = Xo = 0.

Let H be an elementary predictable process, that is a process of the form

k

i=1

where hi E 1, and tl  t2  ...  tk. Then writing H . X for the elementary
stochastic integral of H with respect to X, tk+1 = oo, we have

k+1

E{CH = Xt; )}
i=1

k+1

= lim E{03A3hi(Xnti+1 - Xnti)}

= lim E{~n HtdAnt } ~ K.

So by the Bichteler-Dellacherie theorem (e.g., Dellacherie-Meyer [1]) X is a quasimartin-
gale, and therefore a special semimartingale. Hence X has a canonical decomposition
X = M + A, with M a local martingale and A a predictable finite variation process.
Choose a sequence (Tk) reducing M. Then, if H is an elementary predictable process,
E{(H. = E{(H = lim E{(H  K. Thus
n

E{Tk0|dAs|} ~ K, for each k ~ 1,

and hence E{~0|dAs|} ~ K.

M* ~ (X - Xn)* + (Mn)* + ~0 |dAns | + ~0|dAs| .

Thus E{M*} ~ 3K  ~, and M is a martingale in H1. Set Yn = xn - X, Nn =
Mn - M, Bn = An - A: We have

. 

E~ / o  2K,  2K, = 0.
" 

o n
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To complete the proof it is enough to prove that

(5) lim E~~Y"~ ~2} = 0.
noo

For then, by Dellacherie and Meyer [1], section VII.95, we have 

 Hence, as  +  3~{~YnJ ~2}~
so that limn~~ ~Nn~H1 = 0. This implies that E{(Mn - M)*} -> 0, and hence that

A)*~ -~ 0. Finally,  K follows from (4a) and (lb).
To show that lim E~ [YnJ ~2 } = 0, use integration by parts to conclude

_ (yono)2 - 2 Yn dN9 - 2 Yn dAs [Yn]~ = (Y n~)2 - 2~0Y ns-dN ns - 2~0Y n2-dA ns,

and so, writing Un = yn , Nn,

(6) _ E~(Yn)*} + 21~2E~((Un)*)1~2} + 2~~2E~( 
By Proposition 2

~’ ~(CUn)*)1~2~ - ~(E~(Yn)*})1~2(E~(~n)*})1~2
~ ~K1/2(E,(Yn)*J)1/Z.

Similarly, the third term in (fi) is dominated by

~dA~ ~)1~2} _ (E’~(Yn)*~)1 ~2(E~ 
 K1~2(E~(Yn)*})1~2.

Thus E~ ~YnJ ~2 } = 0. 0
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