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A Probabilistic Approach to the Boundedness of Singular Integral Operators

Richard F. Bass*

Department of Mathematics, University of Washington
Seattle, WA 98195, U.S.A.

1. Introduction.

Suppose K is a real-valued function and the linear operator T is defined formally
by

= / n K(x - 
A central area of harmonic analysis has been to find conditions on K so that T is a
bounded operator on Lp(dx), p E (1, oo). A typical theorem is

Theorem 1.1. . Suppose K is an odd integrable function and suppose that there exist
cl, c2 > 0 and 6 E (0,1) such that

(1.1) - , x E ~~~~

and

(1.2) |K(y) - K(x)| ~ c2|y-x|6 |x|1+03B4 , |y-x|~7 8|x| .

Then for all p E there exists a constant c3 ( p), depending on p, cl , and c2, , but
not on the L1 norm of I~, such that

(1.3) 

There are two main approaches to proving Theorem 1.1. One involves the Calderon-
Zygmund decomposition, establishing a weak ( 1,1 ) inequality, and using the Marcinkie-
wicz interpolation theorem (see Stein [17], Ch. 2). The other involves Littlewood-Paley
functions and Fourier multiplier techniques (see [17], Ch. 4).

The purpose of this paper is to give a probabilistic proof of Theorem 1.1 For
a C ( 0, 6) and r > 0, define by

1.4 03C9r( x) = ca r-
1( 1+ |x|2) -((1+03B1)/2),

" 

r 
’

* Partially supported by NSF grant DMS 87-01073.
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where ca is chosen so that IR 03C9r(x)dx =1. In Section 2 we use the Burkholder-Davis-
Gundy inequalities and another well-known inequality from probability theory to show
that to prove Theorem 1.1, it suffices to obtain the L2 inequality

(1.5) 

with c4 depending on ci and c2 but not on r or the L1 norm of K. (We also give an

analytic proof of this fact.)
In Section 3 we prove (1.5). The tool we use is the elementary Cotlar’s lemma

(see Theorem 3.2), which reduces the proof of (1.5) to obtaining suitable estimates for
certain nonsingular kernels. These estimates are obtained in Section 4.

A side benefit of our method is that with virtually no extra work we obtain the

.H~ and BMO boundedness of the operator T. Also, although we do the case d = 1 for

simplicity, our method extends, with only minor modifications, to the case K : 

d> 1.

Ours is by no means the first probabilistic approach to singular integrals. A prob-
abilistic proof of the LP boundedness of the Hilbert transform has been known for some
time (see Durrett [8] or Burkholder [5]). The Riesz transforms have been studied by
Meyer [15], Gundy-Varopoulos [12], Gundy-Silverstein [11], Banuelos [I], and Bennett

[2]. The Littlewood-Paley approach has been viewed probabilistically by Meyer [15],
Varopoulos [19], McConnell [14], Marias [13], Bouleau-Lamberton [3], and Bourgain [4].
Our approach is quite different from all of these. In particular, we make no use of

Littlewood-Paley functions, Fourier multipliers, nor the method of rotation. Rubio de

Francia [16] has some results related to our Theorem 2.1.
The letters c and ~3 will denote constants whose value is unimportant and may

change from line to line. We will henceforth denote both the operator T and the

function K by T. The adjoint of T will be denoted T*. When we write f * g, we mean

the convolution of f and g in the usual sense, i.e., with respect to Lebesgue measure.

2. Probability
In this section we show that to prove Theorem 1.1 it suffices to establish (1.5). We

prove

Theorem 2.1. Suppose T is odd and integrable, let a E (0,1), and suppose there

exists a constant c4 independent of r and the L1 norm of T such that

(2.1) !!r/(’) -  c4~f~L2(wr(x)dx) > r > o,
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where wr is defined by (I .4). Then there exists a constant c5 ( p) depending only on a, c4
and p, but not the L1 norm of T, such that

(2.2) ~Tf~Lp(dx) _ 

We first give a probabilistic proof, then an analytic proof.

In this section we work in the half space R x with points z = (x, y), x E IRd,
y E [0, oo). Let Xt be a standard Brownian motion on R and let Yt be a Bessel process
of index, on independent of Xt, where 03B3 = 2 - a. Thus x is a strong Markov

process with continuous paths and infinitesimal generator 1 2 f"(y) + 03B3-1 2y f’(y). Since

~y E (1, 2), Yt hits 0. Let

We will only need to consider Yt up to time T, so its boundary behavior at 0 is irrelevant.
Write Zt = (Xt, The infinitesimal generator L of Zt is given by

( 2.3 ) Lf(z) = 1 20394 f(z)+ 03B3- 1 2y ~f ~y
(z), z= (x,y) .

We first compute the distribution of Xr .

Lemma 2.2. (cf. Marias E A) = fA w,.(x)dx.

Proof. Since T  oo, a.s., then E dx) is a probability density. So it suffices to
show E dx) = cw,.(x)dx. . We do this by calculating the characteristic function
of Xr.

Using the independence of Xt and Yt, hence of Xt and T,

(2.4) E(0,y) exp(iuX) = ~0E(0,y) exp(iuXt)P(0,y)( ~ dt)

= ~0 exp(-u2t/2)P(0,y)( ~ dt)

= Ey exp((-u2 2)).

By [10, Prop. 5.7 (i)], (2.4) is equal to where v = 1 - 03B3/2 and
K" is the usual modified Bessel function. Lemma 2.1 follows by inverting the Fourier
transform (see [9]). 0
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Next we recall an elementary probability inequality (see [7], for example). For

completeness and to emphasize its simplicity, we give a proof.

Lemma 2.3. Suppose At and Bt are two increasing continuous processes with Ao m 0.

Suppose for some constant C6 > 0,

(2.5) a.s. for all t.

Then for p E [l,oo), .

EA~  

where c7 (p) depends only on p and cs .

Proof. The case p = 1 follows by taking t = 0 in (2.5), and then taking expectations,
so suppose p > 1. Suppose first that At is bounded. By integration by parts,

EAp~ = pE ~0 (A~ - At)dAp-1t = pE ~0 E(A~ - At|Ft)dAp-1t
~ c6pE ~0 E(B~|Ft)dAp-1t = c6pE ~0 B~dAp-1t
~ c6p(EBp~)1/p(EAp~)p-1p.

Dividing through by (EA) gives our result with c7( p) = (cs p)p.
If At is not bounded, note that the process satisfies (2.5), where TN = inf {t : :

At > N}. Apply the above argument to At^TN to get EApTN  let N ~ oo,

and use monotone convergence. 0

Proposition 2.4. Under the hypotheses of Theorem 2.I, ,

(2.6) 

Proof. Let fi(.) = Since T is odd, T 1 - 0, hence T f = T f 1.

Applying (2.1) to f i , we get

(2.7) I) Tf(’) - c4~~ f - 

Using Lemma 2.2, (2.7) can be rewritten as

(2.8) - - 
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Let f2(.) = f(. + x). By the translation invariance of Xt and of the operator T,
applying (2.8) to f 2 gives (2.6). 0

Suppose f E CK , that is, Coo with compact support. Define

Uf(z) = = z = (x~ y)~

and define

M/ = uf (Ztnr), = uTf(ZtAr).
Since T is in L1, T f is also, hence uT f is finite everywhere. As is well-known, u f is

L-harmonic in R x (0, oo), and by Ito’s lemma, M/ is a local martingale with

with a similar statement holding for . Let

(2.10) At = Bt = (Mf)t.

Proof of Theorem 2.1 (Probabilistic). Since T is in L1,

(2.11) ~Tf~Lp(dx) = ~T * f~ Lp(dx)  ~T~L1(dx) ~f~Lp(dx).

This is not what we want, since in (2.2) it is important that cs(p) not depend on the
L1 norm of T. But (2.11) does show that T is a bounded operator on LP, and so to
establish (2.2) for all f E Lp, it suffices to verify (2.2) for f E CK . So suppose that

We do the case p > 2 first. By the strong Markov property, if t  T,

{2.12) E(°~~) (A~ - = EZ~ = EZt  MTf >r
= Mo ,f )2 = EZUTf(Xr) _ 

with a similar expression for Bt.
By Proposition 2.4 with (x, y) = (Xt(W), Yt(W)), we get

(2.13)  
.

So by Lemma 2.3, with p replaced by p/2.

(2.14)  
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Now by the Burkholder-Davis-Gundy inequalities (see [7] or [8]),

(2.15) = 

 + 

Similarly,

(2.16) = Mf >p~2 
_ = 

Putting (2.14), (2.15), and (2.16) together,

(2.17) + 

Note

= -~ ca If(x)IP dx
as s -~ oo by monotone convergence. Similarly, 

Finally, since T ~ L1 and f E C~K, T f  L1. Then

= 

So multiplying (2.17) by s and letting gives the required result when p > 2.

Since T* = -T, we also have c5(p) for p > 2. The usual duality argument

(see [17], p.33) gives (2.2) for p E (1,2]. p

Actually the above proof gives us more.

Corollary 2.6. Under the hypotheses of Theorem 2.I, there exists c9 depending only

on a and c4 and not the Ll norm of T such that

Proof. By an argument very similar to that in [8], the BMO norm of f is equivalent to

supx,yE(x,y)[f(X)-E(x,y)f(X)]2. The BMO boundedness of T follows from (2.6),
and the I~1 boundedness follows by duality. D
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We also give an analytic proof of Theorem 2.1. Although short, the proof uses the

Calderon-Zygmund decomposition:implicitly when interpolating between BMO and L2. .

Proof of Theorem 2.1 (Analytic) As in the proof of Corollary 2.6, T is a bounded
operator on BMO. . Arguing as in the probabilitic proof of Theorem 2.1 (the paragraphs
following (2.17)); we multiply (2.1) by r and let r --~ oo to get that

~Tf~L2(dx) _ c4~f~L2(dx)

for f E . This says that T is a bounded operator on Interpolation between
L2 and BMO gives Theorem 2.1 for p E ~2, oo), and the result for p E (1,2] follows by
duality. 0

3. L2 theory
In this section we prove the following

Theorem 3.1. Suppose T is an odd integrable function and suppose that there exist
ci, C2 > 0, and 6 E (o,1) such that (1.I) and (1 .2) hold. Suppose a E (o, ~). Then there
exists a constant c4 independent of r and the L~ norm of T such that (2.I~ holds.

In fact, more is true. It is not hard to show that is an A2 weight (see [18]),
and therefore

(3.1) ~Tf~L2(wr(x)dx)  

The proof that (3.1) follows from wr being an A2 weight is not elementary.
The inequality (2.1) may be shown to be equivalent to the L2(dx) boundedness of

an operator related to T. This operator, does not, however, satisfy the hypotheses of
the "Tl" theorem of David-Journé [6].

The main tool we use to prove Theorem 3.1 is Cotlar’s lemma:

Theorem 3.2. Suppose x is a Hilbert space and that = -~V,.... ~ Q~ ... , N are
bounded operators on 7~. Suppose a : i5l -~ [0, oo) satisfies

00

L  oo and  a 3-k for all - N  j, k  N.( ~ - 

Then ~~ C cs~

The proof of Cotlars lemma is both elementary and short. See [18, pp.285-286],
for example. 
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We will also use the following well-known lemma.

Lemma 3.3. Suppose V (x, y) is a nonnegative kernel with respect to a a-finite

measure. Suppose

V(x,y) (dy) ~ c10, V(x,y) (dx) ~ c11.

Then 

Proof. By Cauchy-Schwartz,

( 
Then

/ c1o / 
~ CI0CU 1 a

Let cp = cpo be a nonnegative even C°° function with support in ~-1,1~ satisfying
~ c.p(x)dx =1. Let = E ~L.

Define

Define the operator UJ by

(3.2) = Tjf(x) - 

Since fTjf(v)wr(v)dv = - fTjwr(v)f(v)dv, we see that

= 

where

(3.3) Urj(x, y)= -Tj(y-x)-Tjwr(y) wr(y) .

The key estimate we need is the following. We defer its proof until Section 4.

Proposition 3.4. There exist constants c12 and ~i1 > 0 depending only on a, 6, ci and

c2 (and not on the L1 norm of T) such that

(3.4) |Ur0(x, y)|wr(y)dy ~ c12;
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(3.5) sup y)I wr(x)dx  c12;
r, y

(3.6) sup ~ ~122 k’~1, ’ k > 0;
r, x

and

(3.7) sup / 0122"~, , &#x26; > 0.
r, y

With this proposition we can now prove Theorem 3.1. .

Proof of Theorem 3.1. By Lemma 3.3, (3.4), and (3.5), we get

(3.8) sup c12.
r

Fix j for the moment and let T(x) = Observe that T satisfies the

hypotheses of Theorem 3.1 with the same constants cl, c2, ~. Define Uo in terms of

T the same way !7J was defined in term of T (see (3.2)). A simple scaling argument

(i.e., a linear change of variables) shows that ) = cx)dx). .

Applying (3.8) to Uo yields

(3.9) sup 
r 

’

Similarly,

(3.10) |Urj(x,y)|wr(y)dy ~ c12

and

(3.11) sup  c12.
r, y

Next, observe that by Fubini, (3.4), (3.10), and (3.11),

/ y)I wrCx)dx  / dv wr(x) dx

~ C12 J y)I wr(v)dv  c12.

By Lemma 3.3, (3.6), and (3.12),

(3.13) Sup ~ ~1222 k~’~ / 2.
r
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Scaling as in the derivation of (3.9), if j  k,

(3.14) C1222 ~k-~)~~/2.

Observing that if j > k,

- 

- ~ ~1222 U-k)ai/2
by (3.14).

So in any case we have

(3.15) ~1222 Ij-kl~~/2. .

Similarly, starting with (3.7), we get

(3.16) C .

We now apply Cotlar’s lemma (Theorem 3.2) and obtain

N

(3.17) II ~ ~ ~13~
j=-N

c13 independent of N and r.

Finally, observe that

(3.18) - Urjf()x) = [(T * 03C6-N)f(x) - (T * 03C6-N)f(v)wr(v)dv)

- [(T *03C6N)f(x) -(T *03C6N)f(03C5)wr(03C5)d03C5].

So to conclude the proof, it suffices to show that for f E CK , the right side of (3.18)
converges to Tf(x) - in norm.

If f E CK, then f E and since T E L1(dx), T f E So (T *cp_N) f =

T f * cp _ N -~ T f in L2(dx) norm. Since wr(.) is bounded above by a constant, it is

not hard to see that this implies that the first term on the right of (3.18) converges to
T f - f T f (v)wr(v)dv as N - oo as desired.

On the other hand,

T *03C6N(z)| ~ |T(z-03C5)|2-N03C6(03C52-N)d03C5 ~ 2-N~03C6~L~ ~T~L1(dx) ~ 0
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as N -~ oo, which shows that the second term on the right of (3.18) converges to 0 in
norm. 0

Proof of Theorem 1.1. . Immediate from Theorem 2.1 and 3.1. 0

Remarks. 1. We have shown that T is a bounded operator on Lp(dx) with a bound
independent of the L1 norm of T. So one could dispense with the hypothesis that T is

integrable by a suitable limiting process (cf. [17]).
2. Operators such as the truncated Hilbert transform T~ ([17], p. 38) can be

written as a sum Ti + T;, where T1 satisfies the hypotheses of Th.1.1 with constants
ci and c2 independent of e and T; is integrable with L1 norm independent of c. Hence
Theorem 1.1 and (2.11) shows such operators are bounded on LP(dx).

3. Only minor modifications are needed to handle the case T : IR, d > 1.
The condition that T be odd gets replaced by

/ 
 ]z 

T(x)dx = 0 for all 0  Rl  R2.

4. The bounds in (3.15) and (3.16) are much stronger than are necessary to obtain
convergence in Cotlar’s lemma. It would be interesting to see whether our method could
be extended to the case where (1.2) is replaced by Hormander’s condition:

sup / 
l >2 1 Y 

y) -  c2.

5. Necessary and sufficient conditions are know on a weight function w for T to be
a bounded operator on LP( w( x )dx). Can such theorems be proved by our method? One
would need to replace our Brownian motion Xt be another diffusion whose invariant
measure is w(x)dx.

4. Estimates

In this section we prove Proposition 3.4. It is here that (1.1) and (1.2), unused so
far, come into play. Define

P(x) _ (1 + 

let = 2-~ p(x2-~), and define

= 1 A 

We start with an elementary lemma.
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Lemma 4.1.

(4.1~ ~ M(z)wr(z)dz  cM(ra);

(4.2) f p(z)M(z2-k)dz  c2-k~;

(4.3) 2k/2, then f  

Proof. The only one requiring comment, perhaps, is (4.3). If 2k/2 and 22k/3,
then M( x~)  c2-k/3. So

M(z-x 2k )wr(z)dz ~ c2-k/3 |z|~22k/3 wr(z)dz +|x|>22k/3 wr(z)dz

~ c2-k/3 + |x|>r-122k/3 w1(z)dz ~ c2-k03B2,

since r-12k/3 > 2k/s. a

Next, we have

Lemma 4.2.

(4.4) 0;

(4.5) (U~ )*1= 0.

Proof. Since T is odd, using Fubini gives

= = J T(y - = 0.

Substituting in (3.2) gives (4.4),
As for (4.5), recalling (3.3) we have

- - 

= Tjwr(x) o. 0

The next three lemmas give the required estimates on T,.

Lemma 4.3. (cf. (6~, Lemma 4)
(4.6)  

(4.7~ - ~ + 
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Proof. We will do the case j = 0. The case when j ~ 0 can be reduced to this one by
scaling, as in the derivation of (3.9).

Suppose first that 8. Since cpl )( y)d y = 0 and the support of po - cp1
is contained in ~-4, 4~, we have, using (1.2),

(4.8) = T(x - 
= | [T(x - y) - T(x)](03C60 - 03C61)(y)dy|

~ c|y|~4|y|03B4 |x|1+03B4~03C60 - 03C61~L~ dy ~ c03C1(x).

Suppose now that Ixl  8. Since T is odd and (po - y) = 0 if Iyl > 16, we
have ’

(4.9) 

= ! ~ y) - 

~ |y|~16 |T(y)| |y| ~03C60 - 03C61)’~L~ dy  C,

using (1.1). Putting (4.8) and (4.9) together gives (4.6).

To prove (4.7), again when j = 0, we observe that if Ix - yl > 1, then

ITo(x) - +  + P(y)l

by (4.6).  1, (with x  y, say)

(4.10) sup 
,

Now To = T * (03C60 - 03C61)’ and repeating the proof of (4.6) with po - pi replaced by
we get

sup  c sup p(v)

~ + 

since j.r 2014 ~(  1. D

The most technical lemma is
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Lemma 4.4.

(4.11) - To(x))  cM(ra)P(x).

Proof. If Ixl  64, the proof is easy. Using (4.1),

. 

To(x)~ ~ y) - 

 c y) + 

 

since p is bounded by 1.
So suppose |x| > 64, and without loss of generality, assume x > 0. Define sr, tr, ur

as follows. For y E ~3x~4, 5x~4~, let tr(y) = wr(y). Define tr so as to be nonnegative, 0
on ~x~2, 3x~2~~, and with  cw,.(x),  and ~tr(y)~  
for y in ~x~2, 3x~4~ and ~5x~4, 3x J2~. Let sr(y) = - and ur(y) _

tr(y) - sr(Y).
Now write

To(x) = y) - 

= y) - - 

y)ur(y)dy -E- T0(x - y)tr(y)dy
= II + 12 + 13 + 14.

By the definitions of sr and tr, we have sr(y) = 0 unless y E ~-x, 3x~4~. For y in

this range, p(x - y)  cp(x), and so by (4.1)

|I1| ~ c -x~y~3x/4M( y)[03C1(x - y) + 03C1(x)]wr(y)dy ~ c03C1(x)  M(y)wr(y)dy

~ cM(r03B1)03C1(x).

For all r

 cp(x) ~

And if r  1,

|I2| ~ c03C1(x) |y|>x/2 wr(y)dy ~ c03C1(x)r03B1 |y|>x/2dy y1+03B1 ~ c03C1(x)r03B1.
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Since u,.(y) = 0 unless y  -x or y > 5x~4, and p(x - y)  cp(x) for y in this range,

|I3| ~ c y[-x,5x/4]c 03C1(x - y)wr(y)dy ~ c03C1(x) |y|~x wr(y)dy
 

as in bounding 72.
Finally, we look at 14 . Write 03C6 for Since tr is supported in [x/2, 3x/2],

then is supported in ~x~4,’1x~4~. Since T is odd,

(4.12) |I4| _ 1 Tp(x - _ | T(y)(03C6* tr)(x - y)dy|

=!/ - y)dy)

= ! l tr(x - y) - 03C6*

/ Sup 
zE[x/4,7x/4]

 cx sup * 

zE[x/4,7x/4]

using (1.1).
Since 03C6(y)dy = 0 and ëphas support in [-4,4],

tr)~(z)~ _ ( - 

_ ~ - y) - 

 Sup 
~ 2r-4V~+4

So

(4.13) sup ~(~P * tr)~(z)~ ~ c sup ~ V 
zE(x/4,7x/4~ x/8v2x

Plugging (4.13) into (4.12) and estimating w;.‘(x) (do the cases x  r and x > r

separately), we get ~I4~  
Summing our bounds for 7i, ~2, ~3, and 14 proves the lemma. 0

The final estimate we need is
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Lemma 4.5. 

(4.14) .|T0w r(x)| ~ cr-1(r-03B2 + M(
|x| r)).

Proof. Since T is odd and cp is even, To is an odd function. Recalling that ca is the

normalizing constant for wr (see (1.4)), we have

(4.15) Tawr(x) = |y|~r1/2 To(y)wr(x - y)dy + - y) - 

Since wr is bounded by ca/r, the first term on the right of (4.15) is bounded by
cr-1-~~2, using (4.6). For similar reasons, the second term on the right of (4.15) is

bounded by c/r for all x. But if in addition H  r, then the elementary inequality

(1 + a ) 2  1 + 4a for a E [0,2]

yields
(wr(x - y) - + 

when Iyl  rI/2. Substituting this better bound into (4.15) when |x|  r and using

(4.6) again completes the proof of (4.14). 0

We are now ready to prove Proposition 3.4. We break the proof into a number of

steps.

Proof of Proposition 3.4.

PROOF OF (3.4). By (4.11) and (4.6),

(4.16) - To(x)1 + cp(x).

Using the definition of y) in (3.3), (4.6), and (4.16),

 x)1 + |T0wr(y)|]dy _ - x) + P(y)l dy ~ c,

which is (3.4).

PROOF OF (3.5). Since + it suffices to look

at the cases r ~ 1 and r > 1 separately. Suppose r  1.
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By (4.7) and (4.11), .

(4.17) x) - x) - + 

~ x) + p(~/)] + 

Then

 )()

+ cwr(y)-1 |x|>|y|/2 M(x)03C1(y - x)wr(x)dx

+ c03C1(y)wr(y)-1  M(x)wr(x)dx + cr03B1wr(y)-103C1(y)  wr(x)dx

=11’+"12"~’13’+’14.

Treating these in reverse order, we see that

I4 = - c

by looking at the cases (y~  r and ~y~ > r separately and recalling that a  $.

By (4.1), I3 reduces to I4.
When |x| > is bounded by a constant independent of r, and so

I2  c ~ p(y - x )dx  c.

Finally, when |x| ~ |y|/2, p(y - is bounded by a constant. So

~1 ~  cI3.

Summing gives (3.5) when r  1.
Now suppose r > 1. In place of (4.17), we write

(4.18) x) -  x)~ + 

~ p(y - x) + c(r 1 ~ P(y)),

using (4.6) and either (4.14) or (4.16). Then

I .r)(.c)

+ ~(r 1 ~ = Is + Is.



32

If y ~ > r, we break up the range of int egration in I5 into x (  ~ and x ~ > ~ we

handle the first range similarly to the way we bounded I1 and we do the second range
similarly to the way we bounded I2. If  r, we simply observe that wr(x)/wr(y) is
bounded. To bound I6, consider the cases ~ y ~ > rand ~ y  r separately.

PROOF OF (3.6), r  1.

By (4.5),

(4.19) y)I wr(y)dy = ~ I y) - 

_ y) - y)I wr(x)wr(y)dy dz.

Substituting from (3.3), we see that we must suitably bound

(4.20) 17 = x) - Tow,.(x)I ITk(x - y) - Tk(x - y)I dy wr(z)dz.

Bounding the first factor of the integrand as in (4.17) and the second factor using (4.7),
we have

(4.21) 17  x) + + 

- y) + P(x - 

~ cwr(x)-1 {M(z)[03C1(z - x) + 03C1(x)] + M(r03B1)03C1(x)}M(z-x 2k)wr(z)dz

~ cwr(x)-1 |z|>|x|/2 M(z)03C1(z - x)M(z-x 2k )wr(z)dz

+ cwr(x)-1 
|z|~|x|/2

M(z)03C1(z - x)M( z - x 2k)wr(z)dz
+ c03C1(x)wr(x)-1  M(z)M(z - x 2k )wr(z)dz

+ M( 

When ~z~ > w,.(x)/w,.(x)  c independently of r, and so

18  c P(x - x )dz  

by (4.2)
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When |z|  p(z - x)  cp(x), and so I9  cI10.
We turn to I10. If |x| > 2k/2, then p(x)lwr(x)   c2-kar-a and in

this case

I1o  M(z)w,.(z)dz  
by (4.1). If ~x~  2~/2, then  cr-a. But

x 

)wr(z)dz _ c2-k03B2
|z|~22k/3 M(z)wr(z)dz + c (xI>22k/8 

 

by (4.1). So for ~x~ in this range also, we have l10  
Finally, we look at I11. If |x| > 2k/2,

wr(z)dz  
If  2k/2,

c M( z x)wr(z)dz  
by (4.3).

PROOF OF (3.6), r > 1.
We bound - x) - by p(z - x) + Using this bound and

arguing as in (4.19), (4.20), and (4.21), we see that it suffices to bound

(4.22) I12 = wr(x)-1 [03C1(z - x) + |T0wr(x)|]M( z - x 2k)wr(z)dz
= wr(x)-1 

|z|>|x|/2 03C1(z - x)M(z - x 2k )wr(z)dz

+ wr(x) 1 p(z - z x )wr(z)dz|z|~|x|/2 

+ ( T0wr(x)| u’r(x) 1 J M( z 2k x )wr(z)dz
=I13’E’I14’+’I15.

When ~z~ > wr(z)/wr(x)  c, and so I13  c2-ka by (4.2).
Next we look at I14. If (x~  r, again  c, and we bound I14 as we

did I13. When ~z)  p(z - x)  cp(x).
If r   2~~2, then by (4.3),

j14 - cp(x)wr(x)_1 M( z x )wr(z)dz  c2-k’~.I14 ~ cp(x)wr(X)- M( c2-k03B2.
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If 2k/2 V r, then

I14  

In any case we have the desired estimate for 114.

Finally, look at I15. First consider the case r. Using (4.16),

(4.23) 

If Ixl ~ 2~/~, 115  by (4.3). And if 2k/2, then I15  c2-~~ by (4.23).
Next consider the case ~x~  r. If r  2k/Z, we use (4.14) to see that 

 c, and then use (4.3) to get 115  If Ixl  r1-a/4 and r ~ 2k/2, we use (4.14)
to see that

(4.24)  + ~ 

And lastly, if r ~ 2k/2 and r1-a/4  r, then by (4.16),

(4.25) ~ crP(x) ~ cr1-~1-~/4»1+~~  

So in any case I15  and the proof of (3.6) is complete.

PROOF OF (3.7), r ~ 1.
We write, using (3.3),

(4.26) ) I 
 / z)Uk(y, dx

+ |  To(z - x)Uk(y, z)dz
- 

 / z)Uk(y, dx

+ / dx

+/ 
+/ 

=116 + I17 + 118 + I19.
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By (4.17),

c 

Since 1, p(z - x) ~ cp(z), and by (4.1),

(4.27) I1s  z) + Pk(z)]dz

~ cM(r03B1) |z|~2k/2 +cM(r03B1) |z|>2k/2.

Since c and pk is bounded by 2-k, the first term on the right of (4.27) is
bounded by When ~ ( > 2k~Z, raP(z)I w,.(z)  c2 k~. Since pk(y - z)
and pk(z) are integrable, the second term on the right of (4.27) is also bounded by
c2~k~; hence so is I16 .

Since era, then using (4.16),

I17 ~ c|x|>103C1(z)wr(z)-1|03C1k(y- z) + 

~ era z) + Pr(z)]dz.

But this is bounded by c2-k~ by (4.27).
Next,

(4.28) 118  c 

A

~ c ,

where A = > 1, ~z - 2k~8). When Ixl > wr(x)/wr(z)  c, and so the

first term on the right of (4.28) is bounded by

c [|z-x|~2k/8 03C1(z - x)dx][03C1k(y - z) + 03C1k(z)]dz ~ c2-k03B2.

If Ixl  Izl/2, then p(z - x)  Izl > 2 > r, and c2k/8. So the second term
on the right of (4.28) is

~c |x|~c2k/03C1(z)wr(z)-1[03C1k(y - z) + 03C1k(z)][ |x|>1 wr(x)dx]dz
.

~cr03B1 |x|~2k/03C1(z)wr(z)-1[03C1k(y - z) + 03C1k(z)]dz,
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which is  as in (4.27).
We now turn to Ilg. In the proof of Lemma 4.5 we showed that To is odd. So

~~x-x~~2k~8 To(z - x )g(x, y)dz = 0 for any function g(x, y). Hence

I19 = |x|>1|) - - 

~ 

+ - - = I2o + 

BZ

where B1 = (~z - 2k~8, ~z)  2k~4) and Bz = (~z - 2k~8, ~z~ > 2k~4). When
z  2k~4 and z - 2k~a, then ~x~  c2~‘~4,  1 + x~  and

similarly for wr(x)-1. Since Tk is bounded by c2-k, we get

I20 ~ c |x|>1|x|~2k/42-k/2r-03B1wr(x)dz dx ~ c2-k03B2.
The last integral to bound is I21. We have

(4.29)

Tk(y 
- z) - Tk(y - x)  |Tk(y - x) - Tk(y - x)| wr(z) 

+ 
|Tk(y - - 

wr(x) 
- 

wr(x) 
+ 

wr(x)wr(z) 
.

When 2k~8 and ~z~ > 2k~4, the first term on the right of (4.29) is bounded by
- x) + - x)  

- ~) + Pk(y - x) 
.cM( 2k ) wr(z) 

- 

w r( z ) 
°

Routine estimates show that the second term on the right of (4.29) is bounded by
- Also wr(x)I wr(x)  c. Then

(4.30) P(z - x) - w r( x ) dx dx
B2

~ c2-k03B2  03C1(z - x){03C1k(y - z) + 03C1k(y - x) wr(z)
+03C1k(y - x) wr(x)}wr(x)dx dz ~ c2-k03B2.

Similarly, using

- Tkwr(x)I = v) - Tx(x - 

~ M(’-’) v) + Pk(x - 
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we get

(4.31) 03C1(z - x) | Tkwr(z) wr(z)-Tkwr(x) wr(x)| wr(x)dx ~ c2-k03B2 .

Together (4.30) and (4.31) bound T2i

PROOF OF (3.7), r > 1.

Similarly to (4.26), we write

(4.32) /’ ~ I 
 / 

+ / I - 

+| |z-z|~2k/T0(z - x)Urk(y, z)dz|wr(x)dx = I22 + I23 + I24.

For 122, we have

(4.33) I22 ~ |T0wr(z)|wr(z)-1[03C1k(y - z) + 03C1k(z)]dz

= |z|~2k/2+|z|>2k/2 .

Using either (4.14) or (4.16), c. Since pk is bounded by 2-k, the
first term on the right of (4.33) is bounded by c2-k/2 = . Since Pk(y - z) + 
is integrable, to bound the second term on the right of (4.33), it suffices to bound

for ~x~ > 2k~2. If ~x~ > r, we use (4.23). If (z~  r, we use (4.24) and
(4.25).

We turn to I23. We see that

(4.34) I23 ~ c|z-x|>2k/8 03C1(z - x)03C1k(y-z)+03C1k(z) wr(z
) wr(x)dx dz

= c  +c ,

Ci C2

where Cl = (~x - 2k~8, and C2 = (Iz - 2’~~8,  When
|x| ~ |z|/2, w,.(x)  cw,.(z), and the first term on the right of (4.34) is

~ c|z-z|~2k/ 03C1(z - x)[03C1k(y - z) + 03C1k(z)]dx dz ~ c2-k03B2.
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When |x|  p(z - x)  cp(z) and Izl > so the second term on the right of

(4.34) is
 z) + dz,

D

where D =  Izl > When Izl > r > c2k~8, then p(z)/wr(z) 
 When ~z~  r, then  c, and

/ / c2-~~~

since  . So the second term on the right of (4.34), hence 123 also,
is bounded by 

As with 

~24 = / ! ) / To(z - 

 c / p(z - 

=C/ / +c / ~=725+726.
Ei E2

where Ei = (Iz - xl  2k/8, Izl  2k~4) and E2 = (Iz - xl  2~~8, Izl > 2k~4). When
Izl  2k~~  2k~8, then Ixl  c2k~4, and both wr(z)-1 and wr(x)-1 are
bounded by cr + c(2k14)1+a  cr + c2~~2. Let F =  2k~4, ~x~  c2k~4). Since Tk is
bounded by 2-k,

(4.35) I25 
F F

 .

using the fact that to handle the first term on the right of (4.35).
The final term, 126 , is handled just as I21 was. D
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