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A Zero-One Law for Integral Functionals of 
The Bessel Process*

By Xing-Xiong Xue

Department of Statistics, Columbia University, New York, N.Y.10027

Abstract. In this paper, we find necessary and sufficient conditions for the finite-

ness of the integral functionals of the Bessel process : f o f(Rs) ds, 0  t  oo.

They are in the form of a zero-one Iaw and can be regarded as a counterpart of the

Engelbert-Schmidt (I981) results, in the case of the Bessel process with dimension

n>2.

Let (Wt, , t > 0) be a Brownian motion in Rn starting at x. Let Rt = be

the radial part of Wt ; then R ~ (Rt, t > 0) is a Bessel process with dimension n,

and if n > 2, the stochastic differential equation

Rt = r0 + t0 n-12Rs ds + Bt, 0 ~ t  oo (1)

is satisfied, where (Bt, t > 0) is a standard, one dimensional Brownian motion, and

ro = . We are interested in finding conditions which will guarantee the finiteness

of integral functionals:

t0f(Rs)ds; 0 ~ t  ~, (2)

where f: : ~ [0,~) is a Borel measurable function. When n = 1, such

conditions are provided as special cases of the well-known Engelbert-Schmidt zero-
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one law for integral functionals of Brownian motion (see ~1~ or [5], section 3.6). When

n > 2 and ro > 0, Engelbert &#x26; Schmidt state necessary and sufficient conditions

for the finiteness of (2) in their recent paper [3]. When n > 2 and ro = 0 things are

different, because the origin is then an entrance boundary; in this case, Pitman &#x26;

Yor [7] obtain necessary and sufficient conditions for the finiteness of (2) in which

f has a support in a right neighbourhood of the point 0 and is locally bounded on

(o, oo), and Engelbert &#x26; Schmidt [3] obtain a sufficient condition when n > 3.

In this paper, we shall provide necessary and sufficient conditions for the finite-

ness of (2) when n > 2 and ro = 0 (Proposition 2 and Corollary 2 ) and when

n = 2 and ro > 0 for Bessel processes defined by (1), where the dimension n > 2

is a real number (Remark 4) . These conditions are in the form of a zero-one law,
and can be regarded as a counterpart of the Engelbert-Schmidt (1981) results in

the case of the Bessel process with dimension n > 2. We will give a counterexample

which shows that the zero-one law fails when n > 2 and ro > 0 (Remark 5). We

also show that Engelbert-Schmidt zero-one laws for integral functionals of Brownian

motion, and for those of the Bessel Process with n = 2 and ro > 0, are two special

cases of a zero-one law for integral functionals of semimartingales (Proposition 3).

It is also of interest to investigate under what conditions

~0 f(Rs) ds

will be finite. Engelbert &#x26; Schmidt [3] provide zero-one laws in the case n = 2 and

in the case n > 3 and ro > 0. They also give some conditions in the case n > 3

and ro = 0. In this paper, we establish a zero-one law for the case n > 2 and

ro = 0 (Corollary 4).
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The continuity of local time ~Lt(a), (t, a) E [0, oo) x [0, oo)} for the Bessel

process (Rt, t > 0) will play an important role in our paper, so we start with a

direct statement of this fact. It is well-known that for P - a.e. 03C9 E H,

t0 f(Rs(03C9)) ds = ~0 f(r)Lt(r,03C9) dr, ~ 0 ~ t  ~. (3)

From now on, we assume n is a real number and n > 2.

Proposition 1. Let ~Lt (a); (t, a) E [0, oo) x [0, oo) } be the local time for the

Bessel process (Rt, , t > 0) . Then Lt (a) is P - a.s. . continuous in (t, a) . .

Proof: By the semimartingale representation (1), this follows immediately

from Corollary 1 in [9] (see also Exercise 3.7.10 ’and the proof of Theorem 3.7.1, in

[5]). . o

Proposition 2. Suppose Ro - ro - 0, and f : [0,00) ---~ [0, oo) is a Borel

measurabJe function. Then the following conditions are equivalent:

(i) P ~o f(R8)dsoo, V >0; ;
(ll) P f(R8)dsoo, V =1; ;
(iii) f (r) is locally integrable on (0, oo) and

f (r)r(log r )+ dr  oo , if n = 2; or

(b) n > 2,

where c is an arbitrary positive constant.

Remark 1. If (b) holds, then f (r) is locally integrable on (0, oo) . o

The proof of the proposition depends on the following lemmas.
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Define

Ta = inf{t ~ 0 : Rt = 03B1}, 03B1 ~ [0,~);

T1, if n=2; T = ~, if n > 2. (4)

Lemma 1. Suppose Ro = ro = 0. Let (Ut, t > 0) be the square of a Bessel

process with dimension 2, such that Uo = 0. Then the law of (LT (r), , r > 0) is

identical to that of

~=2, ~ and if n > 2.

This result is proved in [6] for n = 2, and for integers n > 3; the proof of the

latter part holds also for any real number n > 2. o

The following lemma is a particular case of a result by Jeulin ((4~, Application

1). . For the convenience of the reader, we shall go carefully through his proof in this

particular case.

Lemma 2. Let be a positive measure on (0, c ~, let (Y(r), , r E (0, c ]) be a

Borel measurable, R+- valued random process with P{Y (r) = 0} = 0, r E (0, c ~,

such that there exists a locally bounded, Borel measurable function ~ : : (0, c ] -->

(0, oo) satisfying: for every r E (0, c ~, the law is equal to the law of

an integrable random variable X. Then the following are equivalent:

(i) P{ f o V(r)  oo} > 0;

(ii) P{ f o V (r)  oo} =1;

(iii) f o (r)  oo.
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Proof. For the implication ~ (ii), observe

Ec0 V(r) (dr) = c0 E[V(r)/03A6(r)]03A6(r) (dr)
= E [X] . c 03A6(r) (dr)  ~.

J~O

In order to show (i) ~ (iii), denote 03A6(r) (dr),0 ~ t ~ c. For any given

event set J3,

E[1Bc V(r) (dr)] = c E[1B(V(r)/03A6(r))] dAr
.lo .lo

_ / c / 
J0 J0

~ c0~0 [P(B) - P{V(r)/03A6(r) ~ u}]+ du dAr

= Ac ~[P(B) - P{X ~ u}]+ du. (5)J

Now (i) implies that there exists some N > 0 for which the event J3 ~ 
 N~ has positive probability. Choosing such a B in (5), we obtain

A~ J P f X  t~}]+ du  N  oo. (6)o -

Notice that P{X = 0} = 0, therefore,

J ~~P(B) - P{X  u~~+ du > 0.
Whence, (6) implies that

14~ - J 0 c ~(r~ ~(dr~  oo. o

Lemma 3. Suppose Ro = ro = 0, and /; : ~0, oo) -~ (0, oo) is a Bore7 function

which has support in the finite interval (0,b] and is locally integrable on (0, oo).
Then the following are equivalent:
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(i) P{T0 f(Rs) ds  ~} > 0;

(ii) P{T0 f(Rs) ds  ~} =1;

(iii ) For every c > 0,

(a) f o dr  oo, if n = 2; or

(b) f o f(r) r dr  oo, if n > Z,

where T is given in (4).

Proof: We first show that, for any c > 0,

{T0f ( RS) ds  ~} = {c0 f(r)LT(r) dr  ~}, mod P. (7)

In fact,
T T T

~ f (Re) ds = ~ ds + ~ ds~
0 0 0

= T0 f(Rs)1{Rs~c} ds + T0 f(Rs)1{Rs>c} ds,

- % (r~ dr + ~ (r~ dr.

where T’ = T = Ti if n = 2, and T ’~ = Sb = Rt=b}ifn>2. L T ~(r)

is continuous in r, and therefore,

sup LT~ (r~  M  oo, a.s,

implying cbc f(r)LT’ (r) dr  oo, a.s. under the assumption that f is locally inte-

grable.

It is also easy to see, by Lemma 1, when n = 2,
. 

c ~n 1

~ ~ f(r) LT (r~ dr  ~~ f(r)LT (r) dr  mod P.
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Now let

= f(r) dr; (g)

~ r - 
if n = 2; (g)( ) r2 n, , if n>2. (

V(r) = U~(r). . (10)

We can now use Lemmas 1, 2 and the relation (7) to complete the proof. o

Remark 2. This lemma is an extension of the criterion for the divergence of an

integral functional of the Bessel process in [7] (Proposition 1). . It is in the form of

a zero-one law. o

Lemma 4. Suppose Ro = ro = 0. For any given a E (0, oo),

P{LT2a (a) > 0} -1.

Proof. As in [8], let J(r, t) denote the density of the absolutely continuous

part of the sojourn time, relative to the speed measure m(dr) = dr. By (3.1)
in [8], we have

(a) > 0} > U}

= P{J(a,T2a) > 0|RT2a = 2a} =1. o

We are ready for the proof of Proposition 2.

Proof of Proposition 2. For arbitrary given a E (0, oo), choose

Wo E {T2a  > ~,~o f (R8)  ~, V 0  t  oo}. By the

continuity of Lt (r) there exist c > 0, E > 0, such that

0a-Era+E implies 
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Therefore, we have from condition (i) and (3) :

~ > T2a(03C90)0 f(Rs(03C90)) ds = ~0 f(r)LT2a(03C90)(r,03C90) dr

~ c{|r-a| ~} f(r)dr.
Hence, f is locally integrable on (0, oo). In order to get (a) and (b) in (iii), note

that from (i) we have

0  P{ T0 f(Rs)ds  ~} = P {T0 f(Rs)1(0,1](Rs)ds  ~ }

for n = 2, as well as

0   ~}  J 0 T  ~}
for n > 2, where Si = sup{t > 0; Rt = 1} and T is given in (4). Using Lemma 3

for the function we obtain (a) and (b) respectively.

For arbitrary t > 0,

t0 f(Rs)ds = t0 f(Rs)1(1,~)(Rs)ds + tt^T1 f(Rs)1(0,1](Rs)ds
+ t^T10 f(Rs)1(0,1](Rs)ds

I1(t) + I2(t) + I3(t).

For P - a.e. w E 03A9, we have, with Rt = max0~u~t Ru,

I1(t,03C9) = 1R*t(03C9)1 f(r)Lt(r,03C9)dr

~ 
1 ~ r~ Lt(r,03C9) 

. 1R*t(03C9)1 f(r) dr  ~; ~ 0 ~ t  ~,

due to the local integrability of f and the continuity of in r. Similarly,

IZ (t~ c,~~  dr  oo; V 0  t  oo,
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where we set a °-- t ~ Tl  ~  t , and notice that a > 0, P - a.s.

Finally,

T

I3 (t, 03C9) ~ T0 f(Rs(03C9)) 1(0,1](Rs(03C9)) ds  ~; ~ 0 ~ t  ~,

where T is defined in (4), because of (iii) and Lemma 3.

This shows that for P - a.e. c~ E H, f o  oo ; V 0  t  oo. o

Corollary 1. Suppose that Ro = ro = 0, that f is a function as in Proposition I,

and that b E (0, oo) is fixed. Then the following are equivalent:

(i) ds  oo} > 0;

(ii) ds  oo} =1;

(iii) f is locally integrable on (0, b] and

dr  oo, if n = 2; or

(b ) n > 2, .

for any c E (0, b~. .

Proof: Without loss of generality, we may assume that f has support in (0, b~. .
It is well-known that P{Tb  oo} = 1.

(i) =~ (iii): For any a E (0, b~, as in Lemma 4, (a~ > 0} = 1. Choose

wo E {LTb (a) > f(Rs) ds  oo}. As in the proof of Proposition 2, we can
obtain that f is locally integrable. Let T be as in (4), m  min{Rs; T^Tb  s  T .
We know that P{m > 0} = 1. Therefore, with T’ as in the proof of Lemma 3, we



146

have

TT^Tb f(Rs)ds ~ T’0 f(Rs)1[m,b](Rs)ds

= bm f(r)LT’(r)dr
~ max LT’(u) b f(r) dr  ~, a.s.
mub y~

Hence (i) implies

P{T0 f(Rs)ds  ~} = P{T^Tb0 f(Rs)ds + TT^Tb f(Rs)ds  ~}

~ P{Tb0 f(Rs)ds  ~} > 0.

Now (a) and (b) follow from Lemma 3.

==~ (ii~: Noting that f has support in (0, b~, this follows immediately from

Proposition 2. o

Corollary 2. Under the assumptions in Proposition 2, the conditions (i)- (iii) of

Proposition 2 are equivalent to the condition:

(iv) There exists some t > 0, such that

P{J 0 

Proof: We need only prove the implication (iv~ =~ (iii~. For any b e (0, oo~,

(iv) implies

P{Tb0 f(Rs)ds  ~} ~ P{t0 f(Rs)ds  ~, Tb ~ t }

= P{Tb ~ t} > 0.

Now (iii) follows from Corollary 1. o
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Corollary 3. Suppose Ro = ro = 0, d > 0, and f is a function as in Proposition

2. Then the following are equivalent:

V 0  t  Td} > 0;

v o  1  rj = i;

(iii ) f is locally integrable on (0, d) and

if n = 2; or

(b) n > 2,

for every c E (0, d).

==~ (iii): For any b C (0, d) , P(Tb  Td} = 1, and thus (i) implies
that

P{ Tb0 
Tb 

f(Rs)ds  ~} > 0.

Using Corollary 1 and the fact that b is arbitrary in (0,d), we obtain (iii).

(iii) =~ (it): Consider a strictly increasing sequence C ~0, d) with

bn = d. Then

 Td for all n > 1, and lim Tb = Td} = 1." ~ 

n2014~oo ~ " 
’

By Corollary l, (iii) implies that

P{ Tbn0 f(Rs)ds  ~} = 1, ~ n ~ 1.

Therefore,

P{t0 f(Rs)ds  ~, ~ 0 ~ t Td} = P{Tbn0 f(Rs)ds  ~, ~ n ~ 1} = 1. o
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The following is an improvement on the Corollary to Theorem 2 in [3].

Corollary 4. Let (Rt) be a Bessel process with dimension n > 2 and Ro = 0,

a.s.P. Let f : [0,oo) 2014~ be a BoreJ measurable function. Then the following

are equivalent:

(i) f (X8) ds  oo} > 0;

(ii) P{ f o f (X8) ds  oo} =1;

(iii) ) ~0 r f(r) dr  oo.

Proof. It is easy to see that even if c is replaced by oo and (0, c] is replaced

by (0, oo), Lemma 2 still holds. Noticing that for P - a.e. w E 03A9,

~0 f(Xs(03C9))ds = ~0 f(r)LT(r,03C9) dr ,

where T = oo as in (4), we can use Lemma 1, V(r), 03A6(r) and as in (8)-(10),

and Lemma 2 with c = oo, to obtain the results. o

Now we discuss integral functionals of continuous semimartingales. Let X =

{Xt = Xo + Mt + Vt, ~t; 0  t  oo} be a continuous semimartingale, where

M = {Mt, Jt; 0  t  oo} is a continuous local martingale and V = {Vt, ; 0 

t  oo} is the difference of two continuous, nondecreasing adapted processes with

Vo = 0, P-a.s. In [2], Engelbert &#x26; Schmidt deal with a zero-one law for the integral

functionals J~ f(Xs(w)) d(M) s (w); 0  t  oo for some special semimartingales,

to which the Girsanov theorem can be applied. Here we deal with the same problem

by another approach. We know that there exists a semimartingale local time A =

w); (t, r) E [0,~) X R1, for X, such that

t0f(Xs(03C9))dMs(03C9) = ~-~ f(r)t(r,03C9) dr; 0 ~ t  ~
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holds for P - a.e. w E H, for every Borel measurable f : : R1 -~ [0,oo) (see [5],
section 3.7). .

Proposition 3. Suppose X is a continuous semimartingale, satisfying P{Xt E

I; 0  t  oo} = 1 for some interval I C R1, P{w; ~t(~, w) is continuous } = 1

for every t E [0, oo), and there exists a random variable T for which

P{w E ~; 0  T (w)  oo, > 0} =1 (11)

holds for every rEI. AJso suppose that f : R1 -~ ~0, oo) is a Borel measurable

function. Then the following are equivalent:

(i) P{ fo f(Xs) d(M)s  oo, b’ 0  t  oo} > 0;

(ii) P{fo d 0too}=1;

(iii) f is locally integrable on I.

Proof: (i) ~ (iii): For any x E I, (i) implies that
t

P{03C9; T(03C9)(x,03C9) > 0 and 0 f(Xs(03C9))dMs(03C9)  ~; ~ 0 ~ t  ~} > 0.

Choose wo and a number to > T(03C90), such that Ato(.,wo) is continuous,

t0 (x, 03C90) > 0, t00 f(Xs(03C90)) dMs(03C90)  ~,

and

= /" o 
f(Xø(wo)) d(M) ø(Wo) - f(r )Åto (r, wo) dr.

By the continuity of (~, wo) there exist E > 0 and c > 0, such that ~to (r, wo) > c

for all r ~ I ~ {a : |a - x|  ~}. Therefore,

~ > t00 f(Xx(03C90)) dMs(03C90) = ~-~ f(r)t0 (r, 03C90) dr00 

o 
f(Xø(wo)) d(M)ø(wo) f(r)Åto(r,wo) dr

> c dr.
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This implies that f is locally integrable on I.

(iii) =~- (ii): For any t E [0,oo), denote m = min{Xs; 0 ~ s  t} and

1 max{Xs; 0  s  t}. Then,

t0 f(Xs) dMs = t0 f(Xs)1[m,l](Xs)dMs

= ~-~ f(r)1[m,l] (r)t(r) dr

~ max t(r) [m,l] f(r) dr  ~,

because of the continuity of the local time Åt(r,w) and the local integrability of

f. o

Remark 3. A sufficient condition for the continuity of At(~, w) is that be

absolutely continuous with respect to d(M).(w) for P - a.e. w E S~; cf. references

in the Proof of Proposition 1. . On the other hand, Professor M.Yor points out

to us (personal communication) that (11) is satisfied as soon as the law of X is

locally absolutely continuous with respect to that of a continuous local martingale

(for instance, that of its continuous martingale part). . o

Remark 4. This Proposition has two important consequences:

(i) If X is a Brownian motion, then we obtain the Engelbert-Schmidt zero-one

law (see [1] or [5], section 3.6).

(ii) If X is a Bessel process with dimension n = 2 and Xo = ro > 0, then I =

(0, oo). ~ By Proposition 1, the local time Lt(r) is P - a.s. continuous. It is also

well-known that  oo} = 1 for every a E (o, oo). . Therefore, similar to

Lemma 4, we have (a, w) > 0~ =1 for a > ro and (a, w) > 0} _

1 for a E (o ro), and the conditions in Proposition 3 are satisfied. Hence we
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can obtain the zero-one law for X as Theorem 1 in [3]. . But it is not possible
to obtain a zero-one law for the Bessel process R with dimension n > 2 and

Ro = ro > 0 from this Proposition, because (11) fails for r E (0, ro). . We shall

discuss this situation in Remark 5. o

Remark 5. For a Bessel process R with dimension n > 2 and Ro = ro > 0, and a

Borel measurable function f : : (0, oo) -~ [0, oo), consider the statements

(i) V 0  ~  oo} > 0;

(ii) P{ f o f(Rs) ds  oo, V 0  t  oo} =1;

(iii) f is locally integrable on (0,oo).

For n = 2, (i)-(iii) are equivalent (see Remark 4(ii)). . However, the / zero-one
law ( i.e. the equivalence (i) ~ (ii) ) does not hold when n > 2. Here is a

counterexample.

Let R be a Bessel process with dimension n > 2 and Ro = ro > 0. Let I be an

open interval such that I C (0, ro~2). Let (Lt(r); (t, r) E (o, oo) x (o, oo)) be the

local time for R, which is P - a.s. continuous in (t, r), due to Proposition 1. Given

any t > 0, we know that there exists an a E I, such that

P{Lt(a) > 0} > 0. (12)

Now define

f(r) = |1 r - a| 1IB{a}(r) , r ~ (0,~).

For every w E > 0}, by the continuity of Lt(r),

t0 f(Rs)03C9))ds = ~0 f(r)Lt(r, 03C9) dr = ~,
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and this leads, in conjunction with (12), to

P{t0 f(Rs)ds  ~, ~ 0 ~ t  ~}  1.

On the other hand, it is well-known that = oo} - 1 - 22-n > 0 (cf.

Problem 3.3.23 in [5]). For every 03C9 e = oo}, we have

t0 f(Rs(03C9))ds = 0, ~ 0 ~ t  ~.

Therefore,

t

P{0 f(Rs) ds  ~, ~ 0 ~ t  ~} ~ P{Tr0/2 = ~} > 0.

Whence the zero-one law fails. However, noting that the probability of the event

in (11) is positive, we can see that (ii) and (iii) are equivalent by slightly changing

the proof in proposition 3. o
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