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On the Azéma Martingales

M. Emery(*)

INTRODUCTION. Let be a martingale such that X,X>t = t. As shown by

Meyer [5], the iterated integral

In(f) =  f(t1,...,tn)dxt1 ...dxtn

can be defined for f square-integrable on the set C = ((t I , ...,t n ) e Rn:

0  t1  ...  t ), and is an isometry from the Hilbert space L2(C) ) to its

image x 
= I (L (C )). . This subspace x of L2(03A9) is called the n chaos

generated by X; for n = 0, by convention, L2(CO) = R, Xo is the space of

constant random variables and I~ is the obvious identification. These chaoses

0 
are mutually orthogonal in L2(S~); hence they provide an orthogonal

expansion for the random variables Z that belong to the Hilbert sum ® x (such

random variables will be called chaos-decomposable). . It may happen that this

Hilbert space is the whole space L2; such is the case, for instance, when X is

a Brownian motion or a compensated Poisson process (and F the o-field generated

by X). , When this happens, one says that X has the chaotic representation

property. A problem raised by Meyer in [6] p. 262 is: Which martingales X have

this property? We shall not answer this question, but merely add a few examples to

the aforementioned ones.

Notice that this chaotic representation property is stronger than the

predictable representation property, since every chaos-decomposable Z e L2(S~) can

always be written as E[Z] + ~0HsdXs for some predictable process H with

E (if z = I (f) for n ~ 1, just choose

Ht = 0t1...tn-1t tn-1,t)dX t1...dXtn-1;

this process has a predictable version, and any such version will do). . Recall

that, if the filtration we are working in is the one generated by X,

then X has the predictable representation property iff its law is an extreme

(*) Part of this work was done in Strasbourg, during uncountable conversations with

P.A. Meyer; part in Vancouver, while visiting U.B.C.
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point of the set of all laws of martingales (see Jacod-Yor [4]). .

Before starting, seeing what happens in the discrete-time case will be

helpful: the time-axis is replaced by the finite set (0,1,...,N), we have

a martingale , and, denoting by Yn = Xn - its increments, the

requirement X,X>t = t is naturally replaced by its discrete analogue

1.. Supposing also that the initial value X~ is deterministic, the

nth chaos x is now the vector space generated by the random variables 1t Y." 
jeJ -’

where J ranges over all subsets of (0,...N) with n elements (x is defined

only for n s N). . Now, supposing that the filtration is the one generated by X,

the following turn out to be equivalent:

(i) X has the predictable representation property;

(ii) the filtration is dyadic: F essentially consists in 2n atoms,

each of them splitting into exactly two atoms of Fn+1; ;

(iii) for some Borel functions ~n;gn-1 ~ R,
Y2n = 1 + 

(iv) X has the chaotic representation property.

PROOF. The equivalence between (i) and (ii) is well known; it can be obtained by

replacing (i) by the law of X being extremal, and this amounts to the conditional

law of Xn given Fn-1 being supported by at most two points (see Dellacherie

[2]). As the variance of this conditional law is 1, "at most" can be replaced by

"exactly" in the previous sentence; and this means that the natural filtration of

X is dyadic.

To get (iii), just remark that, given , Yn can assume exactly two

values; hence it must solve some quadratic equation

Yn = + 

But, since E[Yn~Fn-1] - ~ and 1, ~n is identically 1. .

Conversely, if (iii) holds, given , Yn can take at most two values and the law
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of X is extremal.

Last, to get the chaotic representation property (which we know is stronger

than (i)), it suffices to notice that L2(F) ) is a vector space with 2n

dimensions, whereas the subspace x has dimension (n) (if dim x were

N
smaller, some Y would be a linear combination of Y ,...,Y ) ; hence C x~ ~ ~ ~ 

n=0 
~’

with dimension 2N, must be the whole space. )t

Remark that, given X~eR and the functions ~n, , there is exactly one

martingale X such that (iii) holds (uniqueness being understood in law). . Indeed,

if you know Xa,...,Xn-1 the quadratic equation (iii) gives you two possible

values for Yn; since their product is -1, they are real with opposite signs, so

there is exactly one way of weighting them to get a mean equal to 0 = 
.

STRUCTURE EQUATIONS. The continuous time analogue of (iii) will be called a

structure equation. It has the form

(SE) d[X,X]t = dt + 

this is, of course, a symbolic notation for the equation

[X’ X] t - t + 

(by convention, all brackets and stochastic integrals are taken null at time

zero). .

In this equation, X is a martingale, ~ a predictable process, and the

stochastic integral fdX is a martingale. Note that no further generality would

be gained by assuming only that X and M = fdX are local martingales, or even

stochastic integrals with respect to local martingales: In that case, the

existence of the decomposition of the increasing process [X,X] into t + M shows

that [X,X] is locally integrable (see [3]); then the uniqueness implies that M

is a local martingale. So it is reduced by some stopping times Tn; and

E[[X,X]t  T ] - E(t ° Taking increasing limits yields E[ [X,X] t] - t, and,
n

on compact time intervals, X is a square-integrable martingale and M a

uniformly integrable martingale (it is even in H1, since

sup [X, X] t + t).
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Remark also that X,X>t = t is a consequence of the structure equation

itself, ’ since [X,X]t -t is a local martingale. The initial value X.. plays no

role in (SE); it would be possible to decide that it is zero; for the sake of

further convenience we shall take for X~ an arbitrary constant xQ.
The structure equation is an obvious necessary condition for X to have

the predictable representation property, since [X,X]t -t, being a local

martingale, must be an integral with respect to X. The similar necessary

condition for an L4-martingale have the chaotic representation

property, would be

(SE’) [X,X]1 = 1+ 03A3 fn(t1,...tn)dXt1...dXtn

for some functions fn e ) with V ~fn ~2  co; in such an equation, the

functions fn can be considered as the data and the martingale X as the unknown.

We shall also deal with such equations in the sequel; but since they can be

considered as a particular case of (SE), it will be convenient to use the latter

when stating a few general properties.

The two basic examples of structural equations are obtained by taking a

constant process $ in (SE). .

(a) Brownian case: $ = 0. The equation is [X,X] = t, and shows that [X,X]

is continuous, hence also X. Being a continuous martingale with quadratic

variation t, X is a Brownian motion.

(b) Poisson case: V E a # 0. The equation is now

= t + 

dividing by a shows that X has finite variation, so it is the compensated sum

of its jumps. These jumps verify

= = 

so each jump has amplitude a, and the martingale Yt = a X , , a compensated sum

of unit jumps with Y,Y>t = t, must be a compensated Poisson process Nt - t. So

the solution to the structure equation is

where N is a standard Poisson process.
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In the latter example, the law of X depends continuously upon a (for

the Skorohod topology on [O.co)); moreover, when a tends to zero, the Brownian

case is the limit (in law) of the Poisson one. This makes it possible to see (SE)

as some kind of differential equation: ~ being predictable, you may heuristically

consider $ as known a very short instant before X is, and, during

this minute time-interval, solve the equation by considering $ as fixed and using

(b), or (a) if 03A6 = 0.

GENERAL PROPERTIES OF STRUCTURE EQUATIONS.

PROPOSITION 1. Let a martingale X be a solution of (SE). Then

(i) When a jump of X occurs, it is equal to ~t; ; the jump times are

totally inaccessible.

(ii) The continuous and purely discontinuous parts of X are given by

dXc - I ~ = 0 dX; ’~=~0) 
(iii) If V is a neighbourhood of 0 in R, let

Zt = t0I {03A6s V}dXs 03A6s 
;

At = t0 I{03A6sV}ds 03A62s .

Then Zt = NA - At for some Poisson process N.t = 
t 

- 

t for some Poisson process N.

PROOF, (i) If T is any stopping time, (SE) implies

DXT = = 

and 0394XT e : the jumps of X are equal to 03A6.

If T is a bounded predictable stopping time,

0;

hence 0394XT = 0 and X is quasi-left-continuous.

(ii) Let C = and D = Since

[C, C] - f I {~_~ ] d [X, X] - f I {~_~ ] dt
is continuous, C is a continuous martingale. Since 03A6dX = [X,X] - t has finite

variation, 0, hence f~2 dX,X> = 0, f = 0 and

so D is a purely discontinuous martingale. As

C+D=X-X~, and 
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(iii) The quadratic variation of Z is

d[Z,Z]t = I{03A6t V}

d[X,X] 03A62t = 
I{03A6t V}

(dt 03A62t+dXt 03A6t) = dAt + dZt ;

hence, if T is the inverse of A (defined on the interval [0,A~[),

d[Z,Z] = dA + dZ = dt + dZ ; ;
Tt Tt Tt Tt

so, on [O,A~[, the martingale ZT t is a compensated Poisson process, t.

Inverting again, Zt = NA - At.
PROPOSITION 2. (Change of variable formula). Let M be a Rn-valued local

martingale of ~the form M = M + fHdX, where H is a predictable Rn-valued

process and X a martingale verifying (SE). . For every f s C2(Rn,R),

f(Mt) - f(MO) = f0 Usdxs + f0 
with

Us = 10 HisDif(Ms- + 03B803A6sHs)d03B8 = 

f(Ms- + 03A6sHs) - f(Ms-) 03A6s

and

Vs = 10HisHjsDij(f(Ms- + 03B803A6 H)(1 - 03B8)d03B8 = f(Ms- + 03A6sHs) - f(Ms-) - 03A6sHsVf(Ms-) 03A62s

In this formula, the integrals fUdX and Vds are formal semimartingales. If

the semimartingale foM is special, then U is integrable with respect to dX, V

to dt, and the formula holds in the ordinary sense.

[Recall Schwartz’ definition of formal semimartingales [10] : this simply

means that, if K is any strictly positive predictable process, small enough for

all the following integrals to exist, for instance K = (1 + U2 + VZ) 1, then

f Kd(foM) = f(KU)dX + f(KV)ds.
The reason why such formal integrals occur here is that foM may have very large

jumps, too large to be the jumps of some local martingale. But the small jumps of

foM can be compensated all right, and a formula involving only semimartingales

would require cutting off the large jumps and dealing with them separately.]

Only the first given expressions for U and V are rigorous. The second

ones, involving ~ in the denominator, are valid only for ~s ~ 0; ’ when ~s = 0, ’
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they should be replaced by their limits Us = Hsof(Ms-) ) and

Vs = 2 Hess °

PROOF. First, the formula holds if f is a constant (U = V = 0) or a linear

form (U = = 0) .

Second, it holds for f a polynomial. Indeed, it suffices to check it for

fg, knowing that it holds for f and g. With the obvious notations

Uf,Vf,etc..., one has

d(fgoM) = ( f oM-) (UgdX + ygdt) + (goM-) (Uf dX + yfdt) + 

(the computation rules for formal semimartingales are naturally the usual ones). .

Replacing d[X,X] by dt + we have to verify that

= ( f oM) _ Ug + f goM ) _ Uf + 

Vfg = (foM)_ Vg + (goM)_ Vf + .

When ~s = 0, these formulae reduce to the identities

V(fg) = fog + gVf

Hess(fg) - fHessg + gHessf + VfaVg + ~g~f;

and when ~s ~ 0, to the identities

9(a) + f (a) + f(a) cr(b) - cr(a)

f(b)g(b) - f(a)g(a) - h~(fg)(a) 03C62 = f(a)g(b) - g(a) - h~g(a) 03C62 h~g(a) 03C62

+ g(a) f Lb) 
- f(a) - hVf(a) 

+ 
f(b) - f(a) g(b) - g(a) 

,

Third, to prove the formula for f e it is possible to

approximate it by a sequence of polynomials f such that f - f, V(f - f) and

Hess(f - f) tend to zero uniformly on compacts. Let K be a strictly positive,

predictable process such that K, KUf and KV are bounded. On the predictable

set

{ t : ~ I + II Mt- + q ) ~

Ufpand Vfp conver g e uniformly to Uf and So I A KUfp and I A KVfp are
bounded, and, in the equality

IAqKd(fpoM) = fIA q KU pdX 
+ fIA q KV pds,

the integrals are true semimartingales. The index p can be dropped by taking
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limits (the left-hand side converges since fp approximates f in the

C2-topology); then one gets rid of I by letting q -~ co and using the
q

boundedness of K, KUf and KVf. So the formula is true for f.

Last, if foM is a special semimartingale, it can be decomposed into a

local martingale N and a predictable process A with finite variation. Since,

for every bounded predictable K, fKdN + fKdA is the decomposition of fKd(foM),

making K small enough gives fKUdX = fKdN and fKVds = fKdA, hence N = fUdX

and A = fVds. So these integrals exist in the usual sense.

REMARK. A more general formula, that we will not use, can be shown: for a function

f(M ,t) (or f(M,A) ) with A = A + Jc ds, G predictable and Rm-valued) a third

term must be added, namely ds (or J* °

PROPOSITION 3. (i) On let  be a predictable process. A

solution X of (SE) has the predictable representation property iff P is an

extreme point of the set of all probabilities on F for which X is a martingale

and verifies (SE).

(ii) If ~ is a functional of the form

~t = 

and if uniqueness in law holds for (SE) with initial condition x0, , every

solution X has the predictable representation property with respect to its natural

filtration.

PROOF. (i) Owing to the result of Jacod-Yor [4], we just have to verify that P is

extremal in this set S iff it is extremal in the larger set M of all

probabilities such that X is a martingale. The "if" part is obvious. For the

necessary condition, suppose P = ÀQ1 + (1 - À)Q2 with Q1 and Q2 in M and

0 C A  1. Both Q1 and Q2 are absolutely continuous with respect to P, so

[X,X] and when computed with P, are also valid for Q and Q2. Since

(SE) holds for P, it also holds for Q1 and Q2, and they belong to S. So if

P is not extremal in M, it is not in S either.
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(ii) Taking for Q the canonical space of cadlag paths and for X the canonical

process, (i) shows that, among the solutions of (SE), the predictable

representation property is possessed by those with an extremal law. In particular,

if uniqueness holds, the set S has only one point, and extremality is trivial. ~

(c) THE CASE WITH INDEPENDENT INCREMENTS. An important generalization of (a) and

(b) is obtained when the process $ in (SE) is a deterministic function of time.

PROPOSITION 4. 1) Let 03C6 be a Borel function on [0,~); consider the structure

equation

d[X,X]t =dt + X~ = x~.
(i) EXISTENCE. If B is a Brownian motion and P an independent Poisson point

process on [0,~) with intensity I{03C6(t)~0} dt 03C62(t), the martingale

Xt = x0 + t0I{03C6(s)=0}dBs + Mt
is a solution, where M is the purely discontinuous martingale with jump times the

points of P and dMT = ~(T) if T is a jump time.

(ii) UNIQUENESS. If, on some X is a solution, then, for s ~ 0,

the process (Xs+t ’ is independent of Fs and its law depends upon the

function ~~ , only.

(iii) CHAOTIC REPRESENTATION PROPERTY. If G is the a-field generated by X,

the chaoses are total in L2(G).

PROOF. (i) Let An = (t:2n 1  2n+1} c [0,~); i the family is a

partition of (~ ~ 0}. The restriction Pn of P to An is locally finite. The

process with independent increments

Mt = sPn03C6[0,t]03C6(s) - t0IAn (s)ds 03C6(s)
has mean zero, so it is a martingale. It verifies

= E 03C62(s) = t0IA (s)ds + 

and
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(s)ds.
n

For fixed T > 0, each is a square integrable martingale, with norm

= t0IA (s)ds. Depending upon Pn only, the Mn are mutually independent,
n

hence orthogonal in L2. Since  ~, they add up to a square integrable

martingale (Mt)45tsT‘ ; letting -r -~ ~, we get a martingale M verifying

d[M,M]t = IA(t) (dt + 

with A = U An = {03C6 ~ 0}. Now, adding the independent martingale

Nt = yields a solution to the structure equation.

(ii) Let X be a solution. If u is a bounded real Borel function with compact

support on [0,co), since the functions and 
eix -21 

- ix 
are bounded

for x real, the functions

h (t) = eiu(t)03C6(t)-1 03C6(t) if 03C6(t) ~ 0

iu(t) if 03C6(t) = 0

- eiu(t) 03C6(t) - 1 - iu(t) 03C6(t) 03C62(t) if 03C6(t) ~ 0

( - 1 2 u2 (t) if 03C6(t) = 0

are also bounded and compactly supported. The change of variable formula

(Proposition 2) applied to Yt= ] shows that

Yt = 1 + f ~ Ys-(h(s)dXs + k(s)ds) ~
hence the bounded process Zt = verifies the Doleans

exponential equation

Zt = 1 + °

So Z is a martingale, and :

E[exp i exp .
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n

Taking for u a linear combination j=1 ] gives the conditional

characteristic function of the process given Fs. As it is

deterministic, this process is independent of Fs; taking s = 0 gives the law of

X - whence uniqueness in law.

(iii) The notations are the same as in (ii). 0 For 0 ~ the random

variables

t 

are well defined in L2 because

f 
[0 0t1...tnt 

~ n l n n. (o,t] 2

is the general term of a summable series; moreover Zt = ] and Z’ is a

martingale. Taking the right-continuous version shows that Z’ solves the same

Do leans equation

= 1 + 

as Z; so Z’ = Z. Hence the random variable

Z~ = ]

is chaos-decomposable, and so is also its multiple exp[i the chaotic

representation property will be established if we prove that the random variables

exp[i " I a,Xt] ] are total in L 2 (G). 0

This is a classical consequence of the Fourier transform being injective:

Take a U e L2(F) orthogonal to every a.X ]. The Fourier transform of
tJ

the finite measure  on Rn defined, for f Borel and bounded, by

fd  = E[U ... ,xt ) )]
1 n

is E[U exp[iZa,Xt.]] - 0, so u = 0 and U is orthogonal to every
J J

f(X ,...,Xt ), whence to all L2(G). 0 t
1 n

(d) THE "MARKOV" CASE.

In discrete time, it is clear that the solution of a structure equation is
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a homogeneous Markov process iff the predictable process ~n is a function of 

only. This is why the special instance when the structure equation has the form

d[X,X]t = dt + f(Xt-)dXt
will be referred to as the Markov case. But we shall see that uniqueness does not

always hold, allowing non-Markovian solutions (whence the quotation marks above). .

It is possible to depict heuristically the solutions:

when f(Xt-) - 0, X behaves as a Brownian motion, when f(Xt-) # 0, X jumps,

with intensity 2 
dt 

and amplitude f(Xt-), and, between jumps, drifts with
f (Xt_) 

speed (as [X, X] is constant between jumps, X must obey the ordinary

differential equation dt + f(x)dx = 0). . So pathological behaviours, or phenomena

such as non-uniqueness will be observed for X if they already occur in this

deterministic equation.

Taking M = X in Proposition 2 shows that, intuitively, the generator L

of the Markov process X should be, for a C2 function g,

Lg(x) = + 6f (x) ) (1 - 9)d9

g(x + f(x)) - g(x) - f(x)g’(x) f2(x) 
if f(x) ~ 0

= 1 2 

g"(x) if f(x) = 0.

The following existence result is due to Meyer [7]. . 
’

PROPOSITION 5. If f is a continuous function on the real line, for every

x e R the structure equation

d[X,X]t = dt + f(Xt-)dXt
has a solution with Xa = x, defined on some 

[Meyer’s proof [7] consists in discretizing time, and solving step by step

the corresponding equation. By Rebolledo’s criterion [9], the set of laws of

martingales X verifying = t and x is tight, so passing to the

limit when the mesh size tends to zero is possible using the Skorohod theorem or a

nonstandard hyperfinite setting.]

When f is not continuous, Markovian structure equations may have zero,

one, or infinitely many solutions. Consider for instance the equation

d[X,X]t = dt - sign (Xt-)dXt’
where sign(0)~- 4. If the initial value X is not zero, there is a unique
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solution: between the jumps, X drifts away from zero with speed 1; the jumps

are given by a Poisson process with intensity 1 and have amplitude -sign(Xt-) : : X

jumps towards zero and may overpass it, but not hit it (the jumps occur at totally

inaccessible times and the set ~t : : is a countable union of graphs of

predictable times). But if 0, it is possible to choose the initial value of

- -2014 as 1, -1, or any random choice between these: uniqueness does not hold.

Now look at equation d[X,X]t = dt + sign(Xt-)dX . , Whatever the sign of

X~, XsignXO behaves as a compensated Poisson process until it hits zero. Then it

may neither leave zero (when X - 0, ~X = 0; and even if it succeeded in reaching

a small non-zero value, the drift would immediately bring it back to zero) nor stay

there (for on (X = 0), = dt and X must be a Brownian motion). . So this

equation has no solution, mainly because the deterministic equation

0 = dt + sign(x)dx has no solution x(t) starting from 0.

(e) THE AZ~MA MARTINGALES.

The rest of this article is devoted to studying structure equations of the

form

d[X,X]t = dt + (a + Xt-)dXt’
where a and ~ are two constants. This is of course a sub-case of the Markov

case (with f affine), but also a particular instance of (SE’), with f1 = a,

f2 = p and fn = 0 for n ~ 3.

When P = 0, the right-hand side is dt + adXt’ and we are back to the

Poisson case (b) if a ~ 0, and to the Brownian one (a) if a = 0 too. So we

may suppose 03B2 ~ 0; and now X is a solution of this equation (with initial

condition xj iff X + ~ is a solution to

(*) d[X,X]t = dt + 

(with initial value xo + ~) . p . So, at the cost of changing the initial condition,

we do not lose any generality by assuming that a = 0.

For P = 0, equation (*) is just the Brownian case; but for arbitrary fi,

as observed by Parthasarathy, it has the same scaling property as Brownian motion:

if Xt is a solution to (*), then so is also r X 2 for 0; in
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particular, if uniqueness holds (we shall establish it for 03B2 ~ 0), the solution

Xt starting from 0 and 1 03BBX03BB2t have the same law. Remark that this scaling

property remains true (for 03BB > 0 only) for the more general Markov equation

= dt + + 

with two coefficients 03B2+ and p-.

Besides Brownian motion, obtained for fi = 0, two interesting processes

can be found among the solutions of (*). .

First, the process X such that Xt = t and

= dt] - = - 
’

with jumps (that is, changes of sign) occurring according to a Poisson point

process with intensity dt/4t. This process is a martingale since, for

0  s  t,

(-1)N
where N is independent of Fs and has a Poisson law with parameter .- Log s. It

verifies (*) with p = -2 since

= t _ 

Using Proposition 1, one can show that this solution is the only one (another proof

of uniqueness will be given below). . See Parthasarthy (8] for a decomposition of

Fermionic Brownian motion as the product of this X and another commutative

process, with values ±1, that does not commute with X.

Second, the martingale obtained by Azema ((1] p.464 ; see also Azema-Yor

(0]) when projecting a Brownian motion B starting from 0 on the filtration of

sign (B): if Gt = sup(s : : s S t,Bs = 0}, let

Xt = (sign Bt) V2(t - G )
(the above mentioned projection gives a multiple of this X; the constant 12

featured here is chosen so that X,X> t = t). Assuming that X is a martingale

(this can also be shown directly, without using Azema’s projection), we shall show

that it verifies (*), with p = - 1. First, clearly has finite

variation for every E > 0; so latter equality holds
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for all semimartingales), and [X,X] = L But DXg is zero unless s is
~ 

Osst 
" s

the end of some excursion of B, in which case 0394X2s is twice the length of that

excursion; so [X,X]t = 2Gt. And

= 2Xt - 2 [X,X]t = ( t - Gt ) - Gt = t - [X,X]t

establishes the claim.

We know by Proposition 5 that solutions to (*) can be found for every value

of p. These processes will be called the Azema martingales; formally they should
be Markov, with generator

Lg(x) = ~ ~ g(x + ax) a2x2 - g (x) - if 0

l t g"(x) if px = 0 .

An amusing consequence of this formula is that, when e~ + 1 = 0 (this

happens for some p between -2 and -1) and 0, not only the process X

(we shall see that is is unique) but also L = Log|X| is a martingale -- and X

is the stochastic exponential of L. This is easy to verify rigorously by

Proposition 2, using Proposition 1 to see that the first time when X or X- hits

zero, having the same law as t)]dt, must be infinite.

PROPOSITION 6. Consider the structure equation

= dt + X~ = x~ .

(i) If 03B2 ~ 0, the solution is unique in law and is a strong Markov process.

(ii) If -2 5 ~ S 0, the solution has the chaotic representation property.

LEMMA 7. Let X be a solution to the structure equation

= dt + f(t)dXt + 

with X~ = x , where f and g are locally bounded, Borel functions. Every

random variable of the form Z = Q(Xt ,.,.,Xt) with Q a polynomial is in L2

i This means: informally!
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and chaos-representable. More recisel , if Q has degree k, Z is in ® X .

Naturally, in this structure equation, one has to take a predictable

version of the integral f~ ...; so the equation actually means

[X,X]t = t + + f g(r,s)dX dX
~ " s 

0rst 
~ ~

and is of the type (SE’). .

PROOF OF LEMMA 7. As the conclusion involves only finitely many instants ti, we

shall restrict ourselves to some fixed compact [O,T]. .

Define xT(a) as the set of all elements of x of the form

03C6(t1,...tn)dXt1 ...dXtn

for some ~ with a.

The conclusion clearly holds for k S 1; to establish it for all k, it

suffices to prove ’the following claim, where k ~ 1: if M = T0utdXt for some

Borel, bounded function u, and if Z is in then ZM is

in ® ~Tj(cka~u~~ ), where c, depends on f.g.T but not M nor Z.
2014 k . 201420142014 k 20142014201420142014 20142014

The important point is that this implies by induction on n that every

product of the form Xt ...Xt is chaos-representable. The estimate involving a

1 n

and u is not particularly interesting, but it will be useful when proving the

claim (the reason why the proof may be easier with a stronger conclusion is that it

goes by induction). .

To prove the claim, suppose that it holds when k is replaced by any

smaller value, and write

Z =  03C6(t1,...,tk) dXt1 ...dXtk

with a ; ; so the martingale Z = E[Z!F ] can be written with

Ht = 

(if k = 1, Z = and Ht = 03C6(t)). ° Similarly, the martingale

Mt = E[MIFt] is t0usdXs. The integration by parts formula gives
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ZM = + + 

= T0(Zt-ut + Mt-Ht + utHt03A6t)dXt + T0utHtdt
(the given structure equation has been abbreviated as d[X,X] t = dt The

conclusion will be checked separately for each of those four integrals. Clearly,

f [ft k-1 -L ~ 1 1 t~_~

is in and

T0Zt-utdXt = f ...dXt dXt-’- " 

1 k "

in breaking 03A6t into f(t) the first part of

f ...dXt dXt,
0t1...tk-1t 

’’ Ki ~ 1 k-1 t

is in 

Both remaining terms will be dealt with using the induction hypothesis.

Since, for every t, Ht is in Xk-1(a), the product

= (s)usdXs is in ® ); hence the integral

is in ® Similarly, the product 
0 t t t 1 " t 0 s

is in ® and the last term dXt is in

jsk "

® So the result holds, with
-’-

ck = 1 + T + + + 

PROOF OF PROPOSITION 6. (ii) We know by lemma 7 that for an Azema martingale X,

each polynomial Q(Xt ,...,Xt ) is chaos representable. The chaotic
1 n

representation property follows if these polynomials are dense in (where G

denotes the o-field generated by X). For -2 5 p  0, this is true simply

because X is bounded on each compact interval [O,TJ. Indeed, from the structure

equation

= dt + 
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and the integration by parts formula

d(X~) = + d[X,X]t’
one deduces easily

( a + 2)d[X,X]t + (-~ ) d (Xt) - 2dt,

whence X2t ~ x20 + 
(i) The proof of Lemma 7 is constructive: at each step, the expansion of ZM as a

sum of iterated integrals is obtained in terms of u,f,g and the coefficients in

the expansion of Z. So the chaotic expansion of ,...,Xt ) ) involves

Q,t.,...,t ,f and g only. This applies in particular to the first term

E[Q(t~,...,t )]. . So, for the structure equation of Lemma 7, uniqueness in law

holds as soon as X is bounded on compacts, for in this case approximating the

function + ...+ anxn)] uniformly on compacts by polynomials gives the

characteristic function of ,...,X ). . As we have seen, such a boundedness

holds for -2 ~ fi  0, whence the uniqueness in that case. The strong Markov

property follows by using the uniqueness of the conditional law of 

given ’ for a stopping time T.

Now for a  -2. In that case, the above equality

(-[i ) d (Xt ) - 2dt + (-a - 2)d[X,X]t
gives xa + We shall first study the case when 0. The preceding

equation shows that X is bounded away from zero. Proposition 1 applies, and, for

some standard Poisson process N,

xt = x0(1 + 03B2NAte -03B2At
At = t0

ds 03B22X2s
.

Considering N as given, this system has a unique solution, that can be

constructed pathwise from N: replacing Xs in the second equation by its value

from the first one yields an equation of the form dAt = C exp(2pAt)dt between the

jump times. So the law of must be the image of the law of N by this

deterministic operation on paths, whence uniqueness.

Observe that the change of time A transforming the filtration of N into
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that of X is continuous, strictly increasing and a.s. unbounded (else, X would

have a limit X~, , contradicting + 2 t), , realizing an isomorphism of

filtered probability spaces. If T is a stopping time for X, AT is one for N,

and the conditional law on FT of the process

= + 
At 

e 

is the law of X, with initial condition XO replaced by XT; so X has the

strong Markov property.

When x0 = 0, uniqueness is a little more difficult. The estimate

shows that X is bounded away from zero on every interval ’

where TE = E~. On this interval, the above applies, and the law of

(XT can be obtained by replacing xa by XT in the preceding formulae
s s

(with X and N independent). . As ~XT I s E~1 + [i~ we just have to show that
e E

the law of X .starting from x0 ~ 0 has a limit when 0. Repeating the

same argument, we just have to show that for each E > 0 the law of XT has a
. E

limit when the initial condition x~ tends to zero (for then the law of

(XT will be determined, and, since TE s -Zp(1 + p)2E2, the law will
e

necessarily be its limit for E ~ 0). .

By scaling, X is a solution of our equation with initial condition x0
iff 1 X 2 

t 

is a solution starting from x0/s. So it suffices to check it for

e = 1: we have to show that the law of XT1 has a limit when 0.

Using the time change A, this amount to saying that the first value

exceedin g 1 or -1 of x0(1 + has a limit law. Takin g logarithms,

= 1’ x and T = x}, we

have to check that the law of ((-1) T,NT + aT - x), carried by {-1,1~ x [4,1),

has a limit when x -~ +~, invariant by the symmetry exchanging -1 and 1. This

law can be expressed in terms of the two functions

u (x) - P[NT even, NT + aT = xJ

v (x) - P[NT NT + aT = xJ
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Indeed, for x ~ 1, and dy infinitesimal,

even, dy]

= I 

n even 
~ ~ 

=, P[Nx + y - n a = n - 1, Nx + y + dy - n a = n]

= ’ P[Nx + y - n = n - 1] dy an even 201420142014*201420142014

~o~~-Y~-~"~
= v(x + y - 1) ~

(the probability that more than one jump of N occurs during an interval -~ has

been neglected as an infinitesimal of higher order) .

So on (1) x [0,1), , the probability is u(x)e (dy) + ~ v(x + y - l)dy;
s imi lar ly , on (-1) ) x [0,1), , the probability is v (x) e ) + - u (x + y + l)dy. .
All we have to do is prove that, when x -~ co, u (x) and v(x) both have the same

limit a; and the limit law will be

(e~+e.~) +~[0,1]~~’ °
This could be done by using an explicit expression of u(x) and v(x) : they are

respectively the contribution of the even and odd terms in the series

x - n

~I(X~ ’ .~,". °
But it is quicker and simpler to use some probabilistic information on u and v.

First, u(x) , v(x) and u (x) + v(x) are probabilities, so they are in [0,1]. .

Second, the law of ((-1) , N~ + aT - x) has a total mass equal to one ’ whence, ’

for 

u(x) + v(x) + ~ + u(t)]dt = 1.

So = + v(x) - ~-y verifies = - ~ for x > 1. As

1 for x > 0, this implies by induction that !o(x)t I $ a*~ for x > n.

Since a > 1, this gives o(x) ~ 0 for x ~ oo, and (u + v) (x) -* a a + 1.
Last, using the fact that (-1) !l + p! " is a martingale (up to the
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time-change A, you have recognized our Azemartingale xp(1 + p) te at) bounded

on [4,T], its expectation at time T is its starting value:

|1 + p) x - u(x) - v(x) - a + + y - 1) - v(x + y - 1)]dy

- a(x) - a fx-1~1 + 
with 6 = u - v. Now the total mass of the measure a ~1 + on the

interval [x - l,x] is

b = |1 + 03B2| - 1 aLog|1 + 03B2| = -03B2 - 2 -03B2  1,

so c = + p~ ) is also less than 1. By induction on

n, (n + f or x Z n, so 6(x) -~ 0 f or x -~ oo, and u(x) and v(x)

have the same limit . Uniqueness is proved. t!

REMARK. What about the chaotic representation property when [3 is not in

[-2,0] ? I do not know. 
’

And uniqueness for fl > 0? I do not know either; but, letting

a = 03B2 Log(1 + 03B2) > 1 and S = sup(Nt - at), it is possible to show that, for

x ~ 0

(1 + 03B2)-x-1 ~ PIS > x] ~ (1 + p) x,

and that uniqueness holds if and only if (1 + > x] has a limit when

x -~ co. I have not been able to decide this question, although the law of S can

be computed explicitly: it is a - a 1 ~ u , n* where p is the uniform measure on
~ 

nz0

[0,1] with total mass a (this is the (sub-probability) law of the (not

everywhere defined) random variable NU - aU, with U the first time when

Nt - at > 0); alternatively, for x z 0,

P[S ~ x] 
= a - 1 a (-1)n n! I(x~n) x-n a (x-n a)n

(this function of x verifies f’(x) - a [f(x) - f(x - 1)] for x > 1); and the

Laplace transform is

a - 1 a - 1 - e-03BB 03BB.
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Letting T = inf(t : : Nt - at > x}, uniqueness is also equivalent to the

conditional law .

having a limit for x -~ ~.
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Note de la redaction (Azema)

L’unicite dans le cas 6 > 0 (page precedente du present article) semble avoir ete
etablie par Emery a son insu ; en effet, "1’estimation de Cramer" (Feller t.2, XI 7,
p. 364) fournit precisement ce dont on a besoin : P[S > x] est equivalent quand x

tend vers l’infini a Ce ~, avec K = Lop(1+S).

Note de la redaction

La proposition 4 (p. 74) a etc etablie independamment par A. Dermoune.


