
SÉMINAIRE DE PROBABILITÉS (STRASBOURG)

PETER IMKELLER
Regularity and integrator properties of variation processes
of two-parameter martingales with jumps
Séminaire de probabilités (Strasbourg), tome 23 (1989), p. 536-565
<http://www.numdam.org/item?id=SPS_1989__23__536_0>

© Springer-Verlag, Berlin Heidelberg New York, 1989, tous droits réservés.

L’accès aux archives du séminaire de probabilités (Strasbourg) (http://portail.
mathdoc.fr/SemProba/) implique l’accord avec les conditions générales d’utili-
sation (http://www.numdam.org/conditions). Toute utilisation commerciale ou im-
pression systématique est constitutive d’une infraction pénale. Toute copie ou im-
pression de ce fichier doit contenir la présente mention de copyright.

Article numérisé dans le cadre du programme
Numérisation de documents anciens mathématiques

http://www.numdam.org/

http://www.numdam.org/item?id=SPS_1989__23__536_0
http://portail.mathdoc.fr/SemProba/
http://portail.mathdoc.fr/SemProba/
http://www.numdam.org/conditions
http://www.numdam.org/
http://www.numdam.org/


Regularity and integrator properties of variation processes of

two-parameter martingales with jumps

by

Peter Imkeller

Mathematisches Instltut

der Ludwig-Maximilians-Universitat MUnchen

TheresienstraBe 39

D-8000 MUnchen 2

Federal Republic of Germany

Abstract

With a view towards a general Ito formula, the main aim of this paper

is to study the regularity and stochastic integrator properties of the

principal variation processes of the stochastic calculus of two-parame-

ter martingales with jumps. By considering its elementary jump compo-

nents and continuous part separately, we first show that any

L 10g+L-lntegrable martingale possesses one-directional quadratic varia-

tions, which are right continuous and have left limits in the two-para-

meter sense. Square integrable martingales are even seen to inherit

their precise continuity properties to their quadratic variations. As an

application of this, we are able to identify these processes as stocha-

stic integrators in the Ll-sense and describe their natural domains. We

finally define and study the "anti-diagonal" martingale component ap-

pearing in the stochastic calculus of two-parameter martingales, as

another application. It is also shown to precisely inherit the disconti-

nuity properties of the underlying martingale.

1985 AMS subject classifications: primary 60 G 44, 60 H 05; secondary
’ 

60 G 07, 60 G 48.
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Introduction

The aim of this paper is to study and describe the principal variation

processes appearing in the stochastic calculus of two-parameter mar-

tingales with jumps.

It is seen in the theory of one-parameter martingales and and in the

special case of continuous two-parameter martingales alike (see Nua-

lart [12], [13]) that these processes are already exhibited in the simplest
form of the transformation theorem, the Ito formula for the square of

a square integrable martingale. For example, if M is a square integrable
continuous two-parameter martingale, MZ is represented by roughly
three kinds of processes: two martingales, one of which is given by the

usual stochastic integral of M, the other one being a kind of "anti-dia-

gonal" martingale part which will occasionally be called "mixed martin-

gale part"; one process of bounded variation, the quadratic variation

[M] of M; finally two processes which show martingale-like behaviour
in one direction and are of bounded variation in the other, the "quadra-
tic i-variations" of M, which are defined by the quadratic variati-
ons of the one-parameter processes resp. for t=(tl,t2)
fixed. Of course, if these processes are to be used in a general Ito for-

mula, it is inevitable to consider their stochastic integrals (see Nualart

[13]). Abstractly stated, this means that they have to be classified in
terms of stochastic integrators in the sense of Bichteler [2]. This is an

easy task for the two martingale parts and the bounded variation part
(see for example HUrzeler [5 ] . . It is considerably harder for the two
processes with "mixed" behaviour. Recently, in [6], the quadratic i-vari-
ations of square integrable continuous martingales were shown to be
1-stochastic integrators and their integrands described.
For general square integrable martingales M however, which are "re-

gular", i.e. continuous for approach from the right upper quadrant and
possess limits in the remaining three, little is known so far. As will be
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seen below, the transformation theorem for M2 still produces the same

species of variation processes, i.e. two martingales, the quadratic vari-

ation and the two quadratic i-variations. One of the martingales, the

stochastic integral of M, has been repeatedly studied and used (see

Cairoli, Walsh [3], Merzbach [9]), and [M] has been described in [7 ]. Of

course, both of these processes are stochastic integrators. The remai-

ning three, however, seem to be known very little, in contrast to this.

Although [M]l are known as families of one-parameter quadratic varia-

tions, their genuinely two-parameter properties, for example regularity

and stochastic integrator properties, had not been studied. This holds a

fortiori f or the mixed martingale part which, f or martingales with

jumps, had not yet been seen to exist in general. See, .however, Mishura

[10], [11], for a class of martingales defined by restrictive conditions.

In this paper we investigate both regularity and stochastic integrator

properties of the quadratic i-variations and the mixed martingale part

of square and L log+L-integrable martingales with jumps. Section 1 is

devoted to the regularity and jump classification of [M]l for a square

integrable martingale M. Guided by [? ], we decompose M into its ele-

mentary compensated jump components and its continuous component,

describe the quadratic i-variations of these processes explicitly as

regular processes and finally use uniform convergence to extend these

regularity results to M. This approach provides us, in addition, with

precise information about the kinds of jumps [M]I may have. As expec-

ted, it inherits the discontinuities of M (theorem 1.1). Another uniform

approximation extends the regularity result on to L log+L (theo-
rem 1.2). On the background of section 1, in section 2 we are able to

transfer the methods of [.6] to prove that [M]I is a 1-stochastic inte-

grator, defined on a vector space of T-previsible processes (i is the

complementary index of i)(theorem 2.2) for a square integrable M. In
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section 3 we finally derive the decomposition of MZ given by the simple

form of the transformation theorem. This is employed to study the mi-

xed martingale part via the properties of the stochastic integral of M,

the quadratic variation [M] as described in [7] and of [M]l as derived in

section 1 (theorem 3.1). Its regularity properties are described in theo-

rem 3.2. As expected, it Inherits discontinuities of the three possible
kinds as well as continuity from M.

Since, as mentioned above, the decomposition of MZ given in theorem

3.1 contains the most important variation processes whose integrals ap-

pear in Ito’s formula for M, the results of this paper, in particular the

stochastic integrator aspect, can be considered a step towards a gene-

ral transformation theorem for square integrable two-parameter mar-

tingales with Jumps.

0. Notations, definitions and basics

The stochastic processes considered in this paper are parametrized by
the unit square 0 = [0,1]2. 0 is ordered by which is understood to be

coordinatewise linear ordering on [0,1]. Intervals with respect to this

ordering are defined as usual. If J is an interval, we write sJ, tJ for its
respective lower and upper corners. By a partition of a parameter inter-
val we always mean a partition generated by a finite number of axial

parallel lines (points) consisting of left open, right closed intervals (in

the relative topology of 0 i[o,l]) ). A 0-sequence of partitions is a se-

quence of partitions which is increasing with respect to fineness and
the mesh of which goes to 0. To denote components of points (inter-

vals, partitions) in 0, we use lower indices. For example, t = (tl,t2)
for tE0 (an interval J in 0, a partition ~C of 0). We

sometimes write t = (ti’tT) regardless of whether I = 1 or 2, where T
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denotes the complementary index 3-i of I. Given an interval J in 0,

J’l = resp. J2 = [0,sJ1] ]sJ2,tJ2] is the "I-shadow" resp. "2-sha-
dow" of J. Given a function f: [0,1] -7 R, the increment of f over an

interval J in [0,1] will be written This also applies to functions

-~ R. Here

Ajf = f(tJ) - f(sl,t2) - f(tl,s2) + 

f is called increasing, if 0394Jf ~ 0 for all intervals J, regular, if

f(s) = f(t), lim f(s), lim 2 2 
f(s), lim f(s)

exists for t~.

On our basic probability space assumed to be complete

with respect to P. The filtration F = which is also fixed through-

out the paper, is supposed to satisfy some basic assumptions: it is

right continuous, i.e. t = n 3 , it is complete, contains all

P-zero sets, and, for convenience, t is trivial whenever t~~~2+. The
most important hypothesis, however, is the "conditional independence"

of the filtrations F. = and F2 = (~2 ) t2 t2E[o,i~, where
iti = (ti, i ,1). 

I=1,2. It states that for all t~, the o-algebras 1t i and 2t2
are conditionally independent given ~t, and is often referred to as the

(F4)-condition of Cairoli, Walsh [3]. Stochastic processes are a priori

no more than families of random variables. A stochastic process X on

nx~ defines two families of one-parameter processes: for 

X~.,~) is the process ((j,t~) -~ Xt(w), i==l,2. Two processes X and Y are

considered as being equal, if the differ on a zero set, as being versions

of each other, if Xt = Yt, a.s. for all t. A process X is called increasing

(regular), if for all 03C9~03A9 the trajectories X(w,.) are increasing (regular).

Besides the usual Banach spaces of random variables pzl, we

will have to deal with the "Orlicz space" L log+L, i.e. the topological

vector space of random variables ~ f or which  00. This

space is topologized by the functional

~03BE~L log+L = inf {a>o: 1}.
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By far the most important measurability concepts for stochastic pro-
cesses are evoked by the words "optionality" and "previsibility". There

are several notions related to them which are relevant to us. We recall

the notations used here, but refer the reader to [7] for their definitions

and basic properties. For i==l,2, the i-optional (i-previsible) sets on f~XO
are denoted by i (i), the optional (previsible) sets by  (). Due to
conditional independence, we have @ = ~in~2, ~ _ For I=1,2,
the dual i-previsible projection of an integrable increasing process A is

denoted by its previsible projection by An. We have 
= A" .

To analyze the jumps of regular processes, the following concepts of
"thin" optional sets introduced in [7] will be of interest. A set T~ is

called 0-simple. if c~ -~ is integrable, I-simple, if T~ consists of
finitely many vertical open line segments whose upper boundary is on

ao for the number of which constitutes an integrable random vari-

able, 2-simple, if an analogous statement for horizontal line segments
can be made. For a simple set is called p-integrable, if the respec-
tive random number of points (lines) is p-integrable. A 0-simple set T
is sometimes studied by means of its associated increasing process

r(T), defined by
= (c~,t) E ~x0.

r(T)t just counts the number of points in T up to t. In analogy to the
graphs of stopping times in the classical theory, simple sets can be de-
composed by simple sets of different "accessibility" degrees. A 0-sim-
pie set T is called i-previsible, i-inaccessible (totally inaccessible) If

for any 0-simple the intersection SnT is evanescent.

Similarly, an i-simple set T is said to be inaccessible if the intersection
with any previsible i-simple set is evanescent, i=1,2. A 0-simple set is

called pure, if it is given by a (disjoint) union of four O-simple sets of
the four different accessibility degrees. In an analogous way, pure i-

simple sets are defined, i=l,2. Theorems on the decomposition of simple
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sets by inaccessible/previsible simple sets are presented in [7].

The most important class of processes we will have to discuss here

are the martingales. An integrable, adapted process M on 03A9  is called

martingale, if for s,teD, sst, we have = Ms. Due to conditional

independence, M is a martingale iff M~ ~ is an IF I-martingale for any

tTe[O,I], I=1,2. A martingale M is said to be L log+L-integrable resp.

p-integrable, if M1~L log+L resp. pzl. Accoding to the regu-

larity theorem of Bakry, Millet and Sucheston (see [7 ]), , any

L log+L-integrable martingale M possesses a version with regular trajec-
tories. For a regular process X, the following three kinds of jumps are

well defined and will prove to be relevant. A point (w,t)EnXU is called

0-jump, if

0394tX(03C9) = lim 0,

i-jump, if

A.X((j) == 0 and A. X.., = lim A.. nX.  ~ 0, 1=1,2.

Any regular increasing process A can be uniquely decomposed by

A = A 0 + A t. + A 2 + A C ,

where Ai is its i-jump part, i=0,l,2, A~ its continuous part (see [7], p.

107). It is shown in [7], pp. 120-123, that the set of discontinuities of a

regular martingale M is contained in a countable union of simple sets.

If, moreover, M is 2-integrable (square integrable), it can be decompo-

sed by three jump parts Mi, i=0,1,2, consisting of the compensated

jumps of M of the respective kind and a continuous part M~ (see [7], p.

156). The most general existence theorem for quadratic variation (see

[7], p. 161) states that any L log+L-integrable martingale M possesses a

quadratic variation [M]. For any tED,

[M]t = lim (in prob) 
along any sequence of partitions of 0. For more information

on [M] see [7]. By [M]~ ~~ we denote the quadratic variation of the

one-parameter process M~ ~~ . , 
We call the two-parameter
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process [M]~ quadratic i-variation of M, i=l,2. Occasionally, we will

have to consider the i-previsible process M~i , , and the previsible

process M~ associated with M in the Doob-Meyer decomposition of

MZ (see [7], p. 961’. Note that is also defined if M is only a mar-

tingale in direction I, I=1,2. We finally emphasize that, for convenience

of notation, all martingales to be considered are assumed to vanish on

~~R2+.

1. The quadratic I-variations

In [7], the quadratic variation process of a square integrable martin-

gale possessing all possible kinds of jumps was described in terms of

its jump components and regularity properties were derived. They were
shown to be exactly the same as for the martingale itself. More preci-
sely, the continuity degree of the quadratic variation coincides with the

martingale’s continuity degree. One clearly expects the same behaviour
for the quadratic i-variations. But since they are of mixed type, I.e.

show martingale-like behaviour in one direction and are increasing in

the other, unlike for the purely increasing quadratic variation, they are
not quite as easy to handle. ln this section, we will show that any re-

gular L log+L-integrable martingale possesses quadratic i-variations

which are regular. A more precise discussion of their regularity proper-
ties is given for square integrable martingales.
The method we will use to obtain the results are of the same kind as

in [7]. We will describe the quadratic i-variations for simple jump com-
ponents and pass to the general case by applying a uniform convergence
argument which is prepared by the following inequalities. Due to the
fact that any L log+L-integrable martingale can be approximated by a
sequence of martingales which are integrable in any order, there are

two relevant versions. We first state the LP-version for p>l.
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Proposition 1. Let I=1,2. For any p>1 there exists a constant cp such

that for any pair (M,N) of regular p-integrable martingales such that

[M]1, are regular

II sup I ~p °

Proof: For any t~!!, the definition of the quadratic i-variation and the

inequality of Cauchy-Schwarz give

I { [M-N]~ 
Now quadratic i-variations are increasing in direction i. Therefore

(1) sup I [M]r - sup { }1/2

By the regularity of [ M]i, and [ M-N ]~1,,~, C M+N]~1,,~ (the latter

can be assumed since the one-parameter processes are submartingales)

we are allowed to integrate (I). We find

~ sup |[M]it - [N]it|~p/z

s II II 
. i 

(Cauchy-Schwarz, Holder)

~ c~ (proposition 1.1 of [6],

Doob’s inequality)

S c~ ( Burkholder’s inequality)

with universal constants , c~. This is the desired result. D

If M and N are only L log+L-integrable, we have the following ine-

quality.

Proposition 2. Let i=l,2. There is a constant ci such that for any pair

(M,N) of regular L log+L-integrable martingales such that [ M]1, [N]l

are regular, any S,X>O

S C1 { XIS log+L + I/x 
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Proof: For any pair ( X,Y) of nonnegative random variables, any 8,a>0

we have

= P(XsX, XY>8) + P(X>X, XY>b)

s + P(X>X).

Hence by (1) for 8,X>0

P( sup | I [M]it - [N]i| > 8)

S sup t M+N 
> 8)

~ P( sup ([M-N]i(t,tT))1/2 > P( 

~ 03BB/03B4 E(([E-N)i1)1/2) + 1/X 

(proposition 16.1 of [7], Doob’s inequality)

S ci { 03BB/03B4 ~ sup |M(1,tT)-N(1,tT) ~1 + 1/a 

(Davis’ inequality)

S c~ { a/8 log+L + 1/a log+L}
(Doob’s inequality).

This completes the proof. 0

We now concentrate on the simple jump parts of regular square inte-

grable martingales and consider the regularity properties and jump sets

of their quadratic i-variations, i=l,2. In order to describe the disconti-

nuities of the quadratic i-variations of a compensated 0-jump part, we

need some information about the discontinuities of the compensator.

We know from [7], that the compensators of jumps on pure 0-simple

sets have at most 1- or 2-jumps. In the following proposition we will

show that they occur in the "shadows" of the pure 0-simple sets consi-

dered. Hereby we will use the following notation introduced in [7]. For

a regular process X and a 0-simple set S let

X(S) ==. J. 0 X dr(S),
where r(S) is the increasing process associated with S (see section 0).

We call X(S) the "jump process of X on S". Recall that for a square in-

tegrable martingale M and a pure 0-simple set S which is p-integrable
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for some p>2, M(S) can be compensated by a process C which is descri-

bed in [7], § 15, and has at most 1- or 2-jumps. Recall further that the

I-shadow °t(S) of S is the random set of open (relative to 01 vertical

line segments connecting the points of S to the boundary of 0, and the

2-shadow o2( S 1 of S the corresponding random set of horizontal line

segments.

Proposition 3. Let M be a square integrable regular martingale, S a

pure 0-simple set which is p-integrable for p~l, C the compensator of

M(S) according to [7], pp. 126, 127. Then the i-jumps of C are contained

in ° 1 ( S ), i=1,2.

Proof: As a pure set, S is composed of a totally inaccessible, a 1-pre-

visible, 2-inaccessible, a 2-previsible, 1-inaccessible, and a previsible

0-simple set, which are pairwise disjoint. To concentrate on the most

difficult case, assume that S is totally inaccessible. First of all,

C = + M(S)7t2 - M(S)" - + M(S)7t2 - M(S1")

([7], theorem 15.1), where

M(S) = M(S) - M(S)

is the decomposition of the jump process M(S) into its positive and ne-

gative parts. We will show that

(2) have at most 2-jumps contained in c2(S1,
(3) M(S)7t2 have at most 1-jumps contained in 

(4) M(S)", are continuous.

To do this, we have to analyze the jump parts of the integrable increa-

sing processes appearing in (2)-(4) (see section 0). We know from the-

orem 15.1 of [7] that

A° = 0 for A = M(S)7t2, M(S)7t, M(S)7t.

To see that (M(S)"i)1 = 0, assume that T is a 1-previsible 1-simple set.

Then T is previsible and we have
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(5) = 

.. 
[ 

= Et ! 0 IT drt s ) ) ( >

=0 ( snT P-a.s).

This obviously implies (r(S)"’)’ = 0. Therefore, proposition 13.1 of [7]

gives

(MtS)"’)’ _ = 0.

To see that has no mass outside °2(S), let T be an arbitrary

2-simple set such that Tna2(S) = 0 P-a.s. Then, since S is totally Inac-

cessible and we have M(S)(T) = 0 and consequently

E( j 0 IT = Et j 0 IT d(M(S) - = 0.

Since analogously = 0, (2) follows. (3) ls proved by inter-

changing the roles of the coordinates in the arguments just given. FI-

nally, observe that by

= = 

(5) goes through for both t r(s)~)1 and (f(S)Tt)2. Therefore, another

application of proposition 13.1 of [7] gives

(M(S)")1 1 = (M(S1")1 1 = 0, i=1,2.

This finally entails (4). C7

Proposition 4. Let M be a square integrable regular martingale, S a

pure 0-simple set which is p-integrable for all pzl, M° the compensa-

ted jump process of M on S. Then

[M°]i = f 0394is1M(.,si-))2 df(S)s ’ , tEo, 1=1,2.

In particular, [M°]1 has a regular version with discontinuities contained

I=1,2.

Proof: Following proposition 3, the martingale M~ ~~ has its jumps

on I=1,2. Moreover, it is of bounded

variation. This clearly implies the desired formula, the right hand side

of which is a regular process. 0
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We next consider 1- and 2-jumps. Hereby we will use the appropriate

notation introduced in [7]. For a regular process X and an I-simple set

S let the "jump process of X on S" be given by

= f , t~, i=1,Z,

where aS is the random set of lower (left) boundary points of S, and

r(aS) is the increasing process associated with this 0-simple set. Note

that if X has no 0-jumps, the minus sign in the definition of X(S) indi-

cating a left limit in direction T can be omitted. Recall that for a squa-

re integrable martingale M without 0-jumps and a pure i-simple set

which is p-integrable for some p>2, M(S) can be compensated by a

continuous process C given by theorem 15.3 of [7] . .

To see the regularity of the quadratic i-variation of a compensated

r-jump part, we prove that it is of bounded variation.

Proposition 5. Let i=l,2, M a regular square integrable martingale wi-

thout 0-jumps and S a pure i-simple set which is p-integrable for any

pzl, Mi the compensated jump process of M on S. Then is of

bounded variation.

Proof: Since S is the union of a previsible and an inaccessible i-sim-

ple set, which are disjoint, and since for previsible i-simple sets the

associated jump process of M is a martingale, the quadratic i-variation

of which is obviously of bounded integrable variation, we need only

consider the case S inaccessible. Now

M~ = M(S) - C,

and by definition and proposition 14.2 of [7] [M(S)]T is of bounded in-

tegrable variation. Hence it is enough to show that is of bounded

integrable variation. We argue f or i=l. Let M(S) = M(S) - M(S) be the

decomposition of the jump process by its positive resp. negative part.

Accordingly let C = C - C, where C, C are compensators of M(S), M(S)

respectively (see theorem 15.3 of [7]). Now fix an interval J~ in [0,1].
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Then by continuity of C,

~~ 1 [C~i..) ~ = y 1 ~~>~...~ = ~J 1 ~~~~ ,.) - ~~1~~~2
But since A. M(S), A. M(S) are submartingales in direction 2, we see

that both ~J 1 C~~.,.~, are increasing processes of the se-

cond parameter. Therefore the (two-parameter) variation of [C]2 is

dominated by the (one-parameter) variation of

C>~..~) + ~~~~.,~)~
But this process is increasing, so that an upper bound of the variation

of is given by

C~ i + C~ i.
which is integrable (see theorem 4.3 of [7]). Q

We are ready to describe the quadratic j-variations of simple i-jump

parts more precisely.

Proposition 6. Let i==l,2, M a regular square integrable martingale

without 0-jumps and S a pure i-simple set which is p-integrable for

any pzl, Mi the compensated i-jump process of M on S. Then

(0394isiM(.,ti) - 0394isiM(.,si ))2 dr(aS)$ , , t~,
is of bounded integrable variation.

In particular, has a regular version with i-jumps contained in S,

j=1,2.

Proof: For [Mi)1, see part 1 of the proof of theorem 17.2 of [7]. Now let

us discuss the case i=l. By approximation on S, we may assume that M

is p-integrable for any and by proposition 5, that [Ml J2 is regular.

Moreover, since for any fixed we have

we may even assume that

(6) = 

is regular and of bounded integrable variation. Now suppose that 
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has, say nonnegative, 0-jumps on a 0-simple set T which is p-integra-

ble for all Since M1~2 is 2-previsible, (6) shows that it is enough

to consider Now ( M1)2 _ [M1]2 is a 2-martingale, hence also

((M1)2 - [M1]21(Tl is a 2-martingale,

where we use the notation explained before proposition 5. This implies

that

= (M1)2)(T)) ( M1 has no 0-jumps)
= 0.

This excludes the possibility that [M1]Z has 0-jumps.
Next suppose that [MIJ2 has 2-jumps, say on a 2-simple set U which is

p-integrable for all p~l. Now U is I-previsible by definition. Hence

I[M1]2 - [M~])(U) = ([M1] has no 2-jumps)

is a nonnegative martingale in direction 1, since [M1]2 - [M1] is. But

this forces [M~]~(U) = 0 and thus excludes the possibility of 2-jumps.

Finally, suppose that V is a I-simple set which is p-integrable for all

pzl, and such that V~S = 0 P-a.s. Then, as above,

- «M1)2 - [MIJ2)(V)

is a continuous martingale in direction 2, which is of bounded variation.

This, again, forces it to be zero.

Summarizing, we have shown that [M1]Z has at most 1-jumps contained

in S. This completes the proof. D

We finally consider martingales without any jumps.

Prposition 7. Let M be a continuous square integrable martingale.

Then [MJ1, have continuous versions.

Proof: 1. For nEN let M" be a regular version of the bounded martin-

gale E( (-n) v n) ~~. ), its continuous part according to propo-

sition 19.3 of [ ]. Then (Mn)C is p-integrable for any pzl and
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M)I"2 S ci ~~ CtM")~ - 

S ci II [M" (proposition 20.2 of [7])

S c2 M)1((2 -~ 0 (n -~ oo),

where cl, c2 are universal constants. With an appeal to proposition 1,

we can therefore assume M to be p-integrable for any pzl.
2. Let us concentrate on [M]1. First of all,

[M]~.,t2~ _ M~~.,t2~ for all t2E[0,1],

by a well known one-parameter result for continuous martingales.
Next,

M~~.,1~ - M~~.,i~ is continuous

(see Dellacherie, Meyer [4], p. 376). Therefore, a slight extension of
theorem 6.1 of [7], to processes which are p-lntegrable for all pzl, in-

stead of bounded ones, shows that the optional pro jection N of

M~~,,i~ - M~~,,~~ In direction 2 is a process which possesses at most

2-jumps. Moreover, theorem 11.2 of [7] proves that M~1 - ~M~ is a

2-martingale. Hence we may and do assume

N = (M)1 -M~.
Since ~M~ itself is continuous, we deduce that (M)1 is regular and

possesses at most 2-jumps. Of course, the same is true for the process
Mz - M~1, which is a martingale in direction 1 and p-integrable for

any Now suppose S to be a 2-simple set which is p-integrable for

any The jump process

(MZ - ~M~1)(S) = - (M is continuous)

is a continuous 1-martingale. But, since (M)1 is increasing in direction

1, it is also of bounded variation. Hence = 0. Thus (M)1 pos-
sesses no jumps. Remember that is a version of to conclude. 0

Remark. For an alternative proof of proposition 7 which makes no use
of either simple sets or the classification of jumps, see Nualart [12].
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We now come back to the principal aim of this section. It consists in

showing that any regular square integrable martingale M possesses re-

gular quadratic i-variations and describing their discontinuities. First

of all, M can be decomposed according to the formula

M = M° + M1 + M2 + M~,

where M~ is the i-jump part of M, i=0,1,2, and M° its continuous part.

The jump parts are orthogonal sums of related simple jump parts as

discussed above, and, like the continuous part, can be treated separate-

ly by what we already know. Unfortunately, this does not carry over

immediately to M itself. The reason is this: in general, we do not have

= + + [M2]1 + 

and "mixed" variations may appear. Using the polarization identity, ho-

wever, we can represent them by quadratic i-variations of sums and

differences of single components. So we are lead to investigate

for j,k=0,1,2,c, I=1,2. It turns out that only M° can Interfere

with either M~ or M2. All other combinations of components have in-

deed "orthogonal i-variation", i==l,2. 
’

Proposition 8. Let i=1,2, M,N square integrable regular martingales, N

without 0-jumps. Let f urther S be a pure 0-simple set, T a pure i-sim-

ple set, both of which are p-integrable for any M° the compensa-

ted 0-jump process of M on S, N1 the compensated i-jump process of N

on T. Then

[M° + N1]1 = j ( L1i s~ ( M°+Ni) t..C~-) -~~ s~ ( M°+Ni) (..s1--) )Z dr( SUT) . s
In particular, [M° + has a regular version with discontinuities con-

tained in SUo 1 (S )UT.
Proof: Using proposition 3, one proceeds as in the proofs of the pro-

positions 4 and 6. 0

The other interesting case is the quadratic i-variation of a continuous

martingale and a compensated i-jump process.
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Proposition 9. Let i==l,2. M,N square integrable regular martingales
such that M is continuous, N without 0-jumps. Let further S be a pure

I-simple set which is p-integrable for any pl, Nt the compensated I-

jump process of N on S. Then [ M + possesses a regular version

which has at most i-jumps contained in S.

Proof: Let i=l. In complete analogy to the second part of the proof of

proposition 7 we first derive that

[M + Nl]2 = ~M + Nt)2

may be assumed to be regular. Now we proceed as in the proof of pro-
position 6 after equation (6) to conclude. 0

In the remaining cases, the quadratic i-variations of the respective

components are orthogonal.

Proposition 10. Let i=l,2, M,N square integrable regular martingales
such that M is of bounded variation in direction i, N continuous in di-

rection I. Then

[M + N]l = [M]I + 

Proof: For each tTe[O,I], we clearly have

CM + = CM~(.,ri ~ + 
~ 

D

Corollary. Let i==1.2. M a square integrable regular martingale, SJ a

pure j-simple set which is p-integrable for any pzl, NJ the compensated
j-jump process of M ( M-M°) on SJ, j=0 (j=1,2). Then

[NJ + NkJI = [Nk]1 for (j,k), (I,1 )}~

[MC + Nk]1 = [Nk)1 for k=0,I.

Proof: N° is of bounded variation, N~ of bounded variation in directi-
on k and continuous in direction ~C , MC continuous. Hence proposition
10 applies in all cases stated. 0
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The following diagram illustrates the results of propositions 8-10

and the preceding corollary. As usual, I=1,2. Combinations of compo-

nents, for which a mixed i-variation may exist, are indicated by "1",

whereas "0" means that they do not interfere.

Diagram

Mo

Mi 1

Mi 0 0

M~ 0 0 1

M° Mj Mi M~

We are ready to state our first main result.

Theorem 1. Let M be a regular square integrable martingale. Then

[M]t and [M]2 are integrable and have regular versions. Moreover, the

set of discontinuities of [ M]1, [M]2 is contained in the set of disconti-

nuities of M, and .

i) [MJ~ has no 0-jumps, if M has no 0-jumps,

li) [M]J has at most I-jumps, if M has at most I-jumps, 1=1,2,

iii) [M]J is continuous, if M is continuous,

j=1,2.

Proof: By [7], p. 156, we can and do choose a sequence of

compensated i-jump processes of M on pure i-simple sets which are

p-integrable for all such that

II |(Min)t - Mit|~2 - 0 (n -? oo),

where M1 is the i-jump component of M, i==0,l,2. According to proposi-

tions 8-10 and the corollary we may assume that the processes

(7) + + + MC]J = + + + MC]J , , j=1,2,

are regular and have their jumps prescribed by M~, i==0,l,2. Therefore,
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the first part of the assertion follows by applying proposition 1 for

p=2. The rest is obvious from the representation (7) and the description

of the jump species which may appear along with the respective com-

pensated jumps. D

Finally we extend the regularity result of theorem 1 to L log+L.

Theorem 2. Let M be a regular L log+L-integrable martingale. Then

[MJ1, [M]2 possess regular versions.

Proof: Let Mn, nEN, be as in proposition 7. Then

-> 0 (n -~ co).

By theorem 1, n~N, I=1,2, has a regular version. Now apply pro-

position 2 to see that for any 

(8) PI ( sup ([M"]t 8)

~ c1 { XIS log+L 
+ 1/a + log+L}’

For 8,E>0 fixed, choose X big enough to ensure that the second term on

the right hand side of (8) is smaller than e/2 for all Then choose

n big enough to force the first term below E/2. This completes the

proof. D

Remark. Theorem 1 should extend completely to L 10g+L. It appears as

if this could be shown by associating a "dual" Orlicz space to L log+L
and deriving an "orthogonal" decomposition for L log+L-integrable
martingales. But this seems to involve methods which are out of our

scope here.
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2. The stochastic integrator properties of quadratic i-variations

In [6], the quadratic i-variations of continuous square integrable mar-

tingales were shown to be 1-stochastic integrators, operating on vector

spaces of 1-previsible (for i=2) or 2-previsible (for I=1) processes. The

approach taken hereby goes over to the quadratic i-variations of arbi-

trary regular martingales with jumps without essential changes, and

needs only the results of the preceding section as additional informati-

on. We therefore generalize the theory of [6] by stating the extended

results and justifying only those, which require some extra thought.

The main difference consists in the fact that, due to the appearance of

discontinuities, the martingale inequalities basic to the construction of

dominating processes for the quadratic i-variations, are no longer valid

for pl. This forces us to concentrate on square integrable martingales

for most of the section. The analogue of proposition 2.1 of [6], how-

ever, can be stated for L 

Proposition 1. Let Jc0 be an interval. Then for any L log+L-integrable
martingale M

~J t~rCM]c.,.)]‘ ~ 4 1--1,2.

Proof: Let us consider the case 1=1. The proof is essentially the same

as the proof of proposition 2.1 of [6]. But there is one place at which

we used the continuity of M. It was not essential to do so, and here we

show why. Let resp. be a 0-sequence of partitions of

Ji resp. J2. Then, with limits In probability,

A, [A, ]Z = lim lim ~ ( ~ A.. (A~ M J~

== n~ lim K ~~ ~K~~ (L~K1 M~.~tK~ + L1K1 M~,~sK~))2
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From this point on, we can continue as in the proof of proposition 2.1

of [6], remarking that for the desired estimation it is immaterial whe-

ther we take suprema over s2 or over tf. This completes the proof. D
In the following proposition, due to the presence of jumps, we have,

contrary to [6], to restrict the domain of validity of the desired inequa-

lity to LP for p~l.

Proposition 2. For pzl there is a constant ap>0,such that for any pair
(X,Y) of regular processes satisfying

i) X is increasing in direction 1, A. X~.,.) is a submartingale in di-

rection 2 for any interval Jic[0,1],
ii) Y is increasing, 0394J1(X-Y)(.,.) j is a martingale in direction 2 for

any interval 

iii) AJY sup for any interval ~c0,

and any partition K of [0,1] we have

II K~ sE[u0,1) ap 
An analogous statement holds, if the roles of the coordinates are in-

terchanged.

Proof: In the proof of proposition 4 of [6] replace the application of

propositions t.l and 1.2 of [6] by an application of Bakry’s [1 ], p. 364,

inequality, which holds for families of regular one-parameter martinga-
les in case 0

As a corollary of the preceding two propositions, we have 

Proposition 3. For there is a constant ap such that for any square
integrable regular martingale M, any partition ~C of [0,1]

II ap II 

~K[M~~s..) IIp S ap II 

The abstract criterion for the integrator property of processes which

are of bounded variation in one direction generalizes as follows.
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Theorem 1. For p,q,rzl such that 1/r + 1/q = 1 there is a constant

bp,q,r, such that for any quadruple (W,X,Y,Z) of regular processes

which satisfy

i) W is adapted and a martingale in direction 2,

ii) X is increasing,

iii) (Y,Z) fulfills I)-iii) of proposition 2,

iv) AjX sup j for any interval 1 

and any 2-previsible elementary process Y we have

II I f Yo bp q r ~ J’ Yo dX 
A similar statement holds, if the roles of the coordinates are inter-

changed.

Proof: In the proof of theorem 1.1 of [6] the following changes are

necessary. Replace the applications of propositions 1.1 and 1.2 of that

paper with Bakry’s [1], p. 364, inequality and proposition 1.4 with pro-

position 2 of the present paper. D

We are now ready to state the integrator properties of the quadratic

i-variations of square integrable martingales.

Theorem 2. Let M be a regular square integrable martingale. Then the

elementary stochastic integrals of [MJl resp. [M]Z, defined on the line-

ar spaces of 2-previsible resp. 1-previsible elementary processes, can

be linearly and continuously extended to resp.

and for pzl we have

II sup I f Y III YZ ’

Y~L2(03A9 ,i,P [M]), i=1,2, where given by theorem 1.

Proof: The results of section 1 allow us to assume that [M]l is regu-

lar, I=1,2. Therefore, theorem 1 applies and we can run the short proof

of theorem (2.1) of [6]. The inequalities extend immediately from the

respective spaces of previsible elementary functions to the L2-spaces. D
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Remark. Theorem 2 implicitly proves that for regular square integra-

ble martingales the quadratic i-variations are 1-stochastic integrators

in the sense of Bichteler [2] or HUrzeler [5]. As was pointed out in [6],

this property is essential for the development of a stochastic calculus

for square integrable martingales.

3. The mixed martingale part in the decomposition of the square of a

square integrable martingale

Let M be a regular square integrable martingale, K a partition of n by

intervals. Then for any t~B we have the following decomposition of M~
" j~ M~

= 2 03A3 MsJ 0394J~[0,t]M + 2 03A3 0394J1~[0,t]M 0394J2~[0,t]M
’ ’ 

~ 

The processes appearing in the first line on the extreme right hand side

of (1) are martingales. 0-sequence partitions of B,

we want to study the limit martingales of the two corresponding mar-

tingale sequences. Now the first one converges to a well known sto-

chastic integral I of M. We are mainly interested in the limit of the se-

cond one which we call "mixed martingale part" of M2. Since the left

hand side of (1) is constant in n, this process can be studied via the

limits of the remaining 4 sequences appearing on the right hand side.

As it happens, sections 1 and 2 give us enough information about the
last three. Indeed, the fifth sequence converges in L~ to [M]~, teO, the

quadratic variation of M. Moreover, since

J~ = 

the L1-limit of the third sequence is given by [M]1t - [M]t, and analo-
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gously the fourth one produces [M]r - [M]t, tEO. Therefore, the regula-
rity results of section t, of [7], and of the following simple proposition
about the stochastic integral of M, should give us complete information
about the continuity properties of the mixed martingale part of M2. For

any square integrable martingale M, we will denote by 1M the stocha-
stic integral (process) defined on associated with M.

Proposition 1. Let M be a regular square integrable martingale. Then

(2) !~ = :M~ + ~Mt + ,M2 ~ ~Mc

where Mi, i=o,l,2,c, is the I-jump component resp. continuous compo-
nent of M. Moreover, for any the set of discontinu-

ities of IM(Y) is contained in the set of discontinuities of M, and

i) has no 0-jumps, if M has no 0-jumps,
Ii) IM(Y) has at most i-jumps, if M has at most i-jumps, I=1,2,

iii) is continuous, if M is continuous.

Proof: For elementary previsible Y, the assertion is obvious. But this

is all we need to know, since we may approximate a given

by a sequence of elementary processes and

use the uniform convergence on 0 of to IM(Y) granted by
Doob’s inequality. D

It is clear from the discussion preceding proposition 1 that the se-

quence ( converges to the mixed mar-

tingale part of M2 at t for any ten. The convergence Is even uniform on

0, as will be concluded from the following proposition.

Proposition 2. 1. For any p>l there is a constant cp such that for any

pair (M,N) of regular 2p-integrable martingales, any partition ~C of 0

~~ ~ cp 
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2. There is a constant ci such that for any pair (M,N) of regular square

integrable martingales, any partition ~C of 0, any ~>0

’ ( JE~ > ~ ) S Ci 

Proof: We argue for the slightly more complicated second assertion.

Let ~t be a partition of 0 and observe that the quadratic variation of the

martingale  0394J1~[0..]M 0394J2~[0..]N is given by

[  0394J1~[0,.]M 0394J2~[0,.]N] =  0394J1~[0,.][M]1 0394J2~[0,.][N]2.
a fact which follows straight from the definition. Hence we find con-

stants al,..,a4 such that for any 03BB>0

a I J~ > a )

~ I 

(Doob’s inequality)

S ai E(([ J~ (Davis’ inequality)

S a2 ([8], theorem 4)

- a2 E(( 0 

S a2 /). Jl [ M ] 1 (.,s) 03A3 sup 0394J2[N]2(s,.))1/2)
S a2 ~Ji[M~(.,s))i/2 E( ~~ 

(Cauchy-Schwarz)

S a3 (proposition 2.3)

S a4 (Burkholder’s inequality).
This completes the proof. r-i

We can now state our main result about the existence of the mixed

martingale part in the decomposition of a square integrable martingale.
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Theorem 1. Let M be a regular square integrable martingale. Then

there exists a regular martingale M such that for any 0-sequence

prtitions of 0, the sequence of martingales

J n converges to M in and

uniformly on U In probability.

If M is 2p-integrable for some p>1, then the convergence is uniform on

~ in Moreover, we have the following representation

MZ = 2 IM(M--) + 2 11~ + + [M]2 - [M],

where M-- - lim M .
s

Proof: For fixed t~, convergence is clear from (1) and the discussion

preceding proposition 1. The only thing we need to check is whether the

convergence Is uniform on 0 in the asserted sense. If this is done, the

representation formula for MZ also follows. For p>l, the uniform con-

vergence is a consequence of pointwise convergence and Doob’s inequa-

lity. In case p==l, to show uniform convergence in probability, let

be the sequence of martingales associated with M, defined in

the proof of proposition 1.7. Then

0 (m -~ co).

Now for a>o, we have

(3) a P( sup t 03A3 0394J1~[0,t]M °J2 o t 
M

-  0394J1~[0,t]M 0394J2~[0,t]M | > 03BB)

~ 03BB P( sup I k 0394J2~[0,t]M I > 03BB)

+ a P( sup | 03A3 k 0 > a)

+ a P( sup I M"’

- 03A3 0394J1~[0,t] Mm 0394J2~[ 0, t] 
Mm| > 03BB)

+ a P( sup I E L1 
J1~[0,t](Mm-M) 

1 ° JZnCo.t) Mm| > 03BB)

+ 03BB P( sup |  0394J1~[0,t]M 0394J2~[0,t](Mm-M)| > 03BB)
~ c1 { ~(Mm - M)1~2 (~Mm1~2 + (proposition 2)

+ a P( sup t E 
- 

1 

m In I > À),
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with a constant c~ which does not depend on X, k,l,m. Since the first

term after the last inequality sign in (3) does not depend on k,l, and

since for mEN the martingale sequence

converges uniformly in 

for any according to what we already proved, the left hand side of

(3) is seen to converge to 0 for any À>O. This is what we had to show. D

Our final result is concerned with the continuity properties of the

mixed martingale part of a square integrable martingale. Given the re-

presentation formula of theorem 1 and the fact that we know about the

continuity properties of all other processes appearing therein, this is

an easy task.

Theorem 2. Let M be a regular square integrable martingale, M the

regular martingale according to theorem 1. Then the set of discontinui-

ties of M is contained in the set of discontinuities of M and
I) M has no 0-jumps, if M has no 0-jumps,
il) ~t has at most i-jumps, if M has at most 1-jumps, i==l,2,
iii)  is continuous, if M is continuous.

Proof: This follows from theorem I, theorem (1.1) and proposition 1. 0

Remark. It is possible to describe the jump components and the con-
tlnuous component of M by the respective components of M. We will

refrain from doing so here.
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