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Spectral Representation of Isotropic Random Currents1

Eugene Wong and Moshe Zakai 2

Department of Electrical Engineering Department of Electrical Engineering

University of California at Berkeley Technion, Israel Institute of Technology

Berkeley, CA 94720 Haifa, 32000, ISRAEL

1. Introduction

The theory of random vector fields originated in the statistical theory of turbulence (cf. the

references in [2], [13]) and led to the study of random fields with second order properties that

are invariant under shift (homogeneity) and under rotation (isotropy). In 1955, K. Ito [2] gen-

eralized these notions by considering random differential r-forms in RN, which for r = 1 are

vector fields, and by considering differential forms with coefficients that are random Schwartz

distributions, namely a random version of the currents introduced by deRham [5].

Roughly speaking, the theory of homogeneous random r-currents in RN is similar to that

of vector-valued stationary random processes on IRN, namely processes parametrized by n-tuples

of test functions, with n = 
N! (n-r)!r!

. Once isotropy is added, the notion of random currents

and the associated operations (e.g., exterior products, exterior derivatives and the Hodge star

operation) become essential.

In [2], K. Ito established a general theory of homogeneous and isotropic random currents

and gave a complete characterization of the spectral measure associated with such processes,

generalizing earlier results of S. Ito [3] for the case r = 1. K. Ito’s characterization shows that,

regardless of the dimension of the space N and of the order of the current r (0  r  N), the

spectral measure of a homogeneous and isotropic current is uniquely determined by two slowly

1 Work supported by the Army Research Office, Grant No. DAAG29-85-K-0233.2 Work done while at University of California at Berkeley.
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increasing, scalar-valued measures on (0, oo) and one real number. For r = 0 or N, one such

measure suffices. The case of random vector fields (r = 1) was also treated independently by

Yaglom ([13], cf. also [14]).

The notion of random currents has recently played an important role in establishing up a

framework for the analysis of Markov fields [10]-[12]. Let Xt, t ~IRN be a random field on 1RN.

A natural definition of the Markov property for Xt. is the conditional independence of

u { Xt, t ED} and , given u { Xt, t }. . It turns out, however, that the

class of random fields having this Markov property is quite restricted. Consequently a modified

definition of the Markov property (viz; germ-field Markov) has been introduced and studied [4]

[6]. This property is considerably weaker than the classical Markov property. Recently, we

have returned to a more direct notion of the Markov property for random fields, as well as gen-

eralized fields, by introducing the u-fields associated with the boundary data. This is done for

random currents that can be "localized" to (N-1) dimensional subsets by defining the Markov

property as to require the (N-1) dimensional boundary field to be a splitting field (cf. [12] for

further details).

The purpose of this paper is two-fold: The first is to present a new and complete proof of

Ito’s characterization of the spectral measure of homogeneous and isotropic currents, of which

only a sketch was given in [2]. In so doing, we shall also present an exposition of Ito’s paper.

The second (section 7 of this paper) is to present a spectral representation for the samples of

homogeneous and isotropic random currents. This representation (see (7.4)) is new and simple,

and an application of this representation yields some new results on the structure of the spectral

measure associated with random currents (proposition 7.2). The representation (7.4) was used

recently to prove a Markov property for certain homogeneous and isotropic currents [12].

Nonrandom differential forms and deRham currents are briefly reviewed in the next sec-

tion. Random currents are introduced in section 3. A special class of random currents -
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random measures that are related to processes of orthogonal increments is also introduced in

section 3. Homogeneous currents (i.e., currents for which the first two moments are shift invari-

ant) are introduced in section 3 and their spectral representation analyzed. Every (smooth,

non-random) vector field (i.e. r = 1) in N = 3 dimensional space is the sum of a constant

(space-independent) vector field, the gradient of a scalar potential and the curl of a vector

potential. This result was generalized to nonrandom currents and for r > 1 or N~ 3 by Hodges,

Kodaira, and deRham [5]. In correspondence with this decomposition of non-random currents,

Ito derived a decomposition of homogeneous random currents into the sum of an invariant com-

ponent, an irrotational component, and a solenoidal component. This is presented in section 4.

Ito’s characterization of the spectral measure associated with homogeneous and isotropic

currents is discussed in section 6. The proof in [2] is sketched very briefly, the case r = 1 was

derived independently by Yaglom [13], [14]. We give in section 6 a proof of Ito’s characteriza-

tion.

Section 7 deals with the sample representation of homogeneous and isotropic currents. It

is shown that every isotropic and homogeneous current X with zero invariant part can be

decomposed into the sum of the exterior derivative of an (r-1) current Y and the co-derivative

of an (N -r + 1) current Z (X = dY+ *dZ), and that the spectral measures associated with Y

and Z in any Euclidean coordinate system both have orthogonal components.

2. Differential forms and currents

We begin with a short review of alternating multilinear r-covectors in IR.N. Let el, ~ ~ ~ , e~

denote an orthonormal basis in and el, ~ ~ ~ , eN in this order will denote a positive orienta-

tion. An alternating multilinear r-covector, or just an r-covector for short, ar is expressed by

ar =  ai . ei ^ ...  eir ,

=  ai . ei (2.1) 
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where i is the multi-index i = (il, ~ ~ ~ , iy), the summation is over all the ordered r-tuples (i~ and

for any r vectors vl, ~ ~ ~ , vr in RN.

ar (v1, ... , vr) = 03A3 a1 det { (e1l vk) (2.2)
l’l 

where v~) is the scalar product of the two vectors and is the (j,k) entry in an rX r matrix.

Remark: Whenever convenient, we shall use a (Cartesian) coordinate system. It should,

however, be noted that the objects and operations with which we are dealing (differential forms,

currents, double currents) are intrinsic and the results are independent of the coordinate sys-

tem. Thus the left hand sides of equations (2.1) and (2.2) are intrinsic while the right-hand

sides are their representations in a given coordinate system. .

The multiple Kronecker 6: ip; ; jl, ~ ~ ~ , jq) is equal to + 1 if p = q and

{ jl, ~ ~ ~ , jq } is an even permutation of { il, ~ ~ ~ , , iq }, it is equal to -1 if the permutation is

odd and equal to zero otherwise. Let (i, j) denote the concatenation of i and j ; let k = [(i, j)]

then

ap A bq = ~ ai bl e, A ej (2.3)
U)

and

(2.4)
fkl

Let i ~ l denote the cardinality of i (if i = (il, ~ . ~ i ~ = r. Let i* denote the I)

multi-index complementary to i in increasing order, and a~ will denote the complex conjugate of

a. The Hodge star operation transforms an r-covector into an (N - r) covector by

*ar = ~ ~c ~ ( i~ i*) ~ ((1~ 1*)~ et* (2.5)
II)

The interior product of two covectors is defined by

(a,Vb,) = (a,., br) = = *(ar A (*br) )
f~l .

and more generally, for r 5~ p, the interior product is defined by
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bp) = *(ar A (*bp) ) (2.6)
Let e denote a unit covector, consider first a coordinate system with e as one of the basis

vectors (ei, e2, ~ ~ ~ , eN). Then for any r, 1  r ~ N-1, e A (e;l ~ ~ ~ ~ ~ eir) will vanish if

one of the vectors e;~ is e. It follows that for any a~, 1  r  N2014l

ar = e A + eV (e A ar) (2.7)
and

( (e l1 (eV ar) ), eV (e A sr) ) ) = 0 (2.8)
which is an orthogonal decomposition of the covector By into an r-covector "in the e-direction"

and another r-covector, which is "perpendicular to the e-direction." Furthermore,

( (e A A (eV br) ) ) = (eV br) ) (2.9)

and a similar result with V and A interchanged (cf. proposition 2.23 p. 169 of [8]). Note that

the assumption that e is one of the basis vectors was done for the purpose of the exposition

only; equations (2.7), (2.8) and (2.9) are coordinate-free. A little bookkeeping: the number of

terms in the right-hand side of (2.1) is at most N! ((r! (N-r) !) ’1. If e is one of the basis vec-

tors, then the number of components in the first and second terms of (2.7) is easily evaluated to

be (N-1)! / ( (r-1)!(N-r)! and (N-1)! / (r!(N-r-1)! ) respectively.

With each t ERN we associate now an r-covector

~r (t) _ ~ ~i (t) e; (2.10)
m

if ~r (t) are Coo (i.e., dmerentiable of all order) functions on RN then (2.10) is said to be a

differential form. For a differential r-form ~r, the exterior derivative d~ is the differential (r+ 1)
form

(d03C6t)(t) = ~03C61(t) ~tk ek ^ ei 
(2.11)

and the codiflerential is the (r-1) form

~~r = (-1)Nr+N+1*(d*~) (2.12)
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and

 ,~ (~r ~t)? .. ~ dt, (2.13)
RN

Let S denote the Schwartz space of real-valued fast decreasing functions on RN i.e. ~ E S if

~ and all its partial derivatives of all order multiplied by any polynomial (of any order)

converge to zero as I t I - oo. A sequence 4J(’r.) , k = 1 , 2, ... 4J(k) E S converges to zero if, for

any partial differential operator Q (of any order) and any polynomial in t (of any order) P(t),

converges to zero uniformly in The space Sr will denote the space of

differential forms with ~; E S for all i.

A deRham recurrent is, roughly speaking, a form of type (2.10) in which the coefficients

~~( ~ ) are Schwartz distributions. More precisely, an r-current Ur is a continuous, real valued

linear functional on ~ ESN-r ([5] and chapter IX of [7]). It is, therefore, natural to define

the exterior derivative, the Hodge star operation and the interior differential for currents, as fol-

lows :

dUr (~) _ (-1)~ 1 Ur (d~) ~ ~ 1 (2.14)

*Ur~~) - ~Ur~*~))~ ~ ~ EsN-r (2.15)

~Ur = (*d*Ur) (2.16)

The exterior and interior product of currents with differential forms is defined by

(~q(’) A Ur) ~~‘) ’ ‘Y) ~ ~’ aq 2.1?

(aj’) V Ur~ ~~’~ = EsN-r+q, aq (2.18)

We conclude this section by introducing the Fourier transform of a current. For any

~ E S r, ~ _ ~ ~~ e~, ~ i ~ = rand ~~ E S, hence ~~ possesses a Fourier transform ~. Define the
1’1

Fourier transform r of an r-form 03C6 as
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~)= 
’ 

!’) 

’

~)= (2.19)
RN

Remark: Our definition of the Fourier transform of a current follows that of [2] which is

different from the definition of [7].

Returning to (2.19), recall that ~ 6~ implies ~ 05’. For any r-current U~ define its Fourier

transform U~ as the r-current satisfying

Ur(~)= 
for every ~ Therefore U~ is also a current and every r-current is the Fourier transform
of an r-current. Note that

(2.20)

(~=(-l)~i.(~vU,) (2.21)
where i = I and for any point 03BD ~IRN the one-form 03BD is just the vector from the origin to

the point v. (We are using here 03BD to denote both a point in and a one form, since 03BD as one-

form is used only in conjunction with the B/ or A operations and there is no danger of ambi-

guity).

3. Random currents and random measures

Let H denote the Hilbert space of zero mean random variables on some fixed probability

space. A random current U~ is an H-valued deRham current, namely a continuous linear map-

ping from to H. Note that the elements of are nonrandom and for every ~ 

is a zero mean L~ random variable and moreover k = 1,2,.... converges in L~ to

whenever converges to ~ in (cf. § 8 of [5]). A sequence of random currents

{ k = 1 , 2, ..... } is said to converge in L~ to a random current Ufi if converges in
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LZ to for every ~ in The definition of the operations d, *, 6 for random currents

is the same as for deRham currents and is given by equations (2.14), (2.15), and (2.16). The

exterior product of currents with non-random differential forms is as defined by (2.17) and

(2.18).

The class of random measures, which is a special class of random currents, will now be con-

sidered. The random currents to be considered in this paper - homogeneous and isotropic

currents - are in general not random measures; however, their spectral representation is a ran-

dom measure.

A random Schwartz distribution is just a zero random current. A random r-current Ur and

a fixed (non-random and independent of t N-r covector induce a random Schwartz

distribution (Ur) a N-r ) by setting for every ~ ES

(~) = Ur (~’ aN-r) (3.1)

Let ( M (~), ~ E 5~ be a random Schwartz distribution, namely a zero current. ( M (~), ~ is

called a random measure with respect to a u-finite measure m (dtl, ~ ~ ~ , dtN ) on IR if for any

03C6 and 03C8 in S.

E (~)) = f ~~(t) m( dt) (3.2)
RN

In this case, it is known that

J m dt  oo

RN (1+ It 12~k

for some integer k (cf. p. 242 of [7]). Note that if M(~), ~ E s is a random measure, then M(~)

can be extended beyond S by continuity to all measurable functions f(t) for which

J ~f(t),2 m(dt)  o0

RN

Let E be a bounded set in RN, set M(E) = M(xE) where xE is the indicator function of the set
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E. This yields the representation

M (~) = f ~(t) M(d t) (3.3)
RN

A random r-current Ur is said to be a random measure of degree r, if there exist a-finite

measures mIJ(dt) such that for every i, j , ~ i ~ I = r and ~, ~ E S

E { A ef)’ A ej) } = f 03C6(t) 03C8c(t) mi,j (dt) (3.4)
RN

Remark: , |i| = |j | = r, define a double current in the sense of deRham (cf. sections

12, 13 of [5]).

4. Homogeneous Currents

Consider k ERN. For ~ E S define the shift fr~ ) (t) = ~(t+ h) for every t For

~ set T~~ _ ~ and
f~l

Th Ur (~) = 

Definition: A random current is said to be homogeneous if for every h ~, ~ ESN-r ,

E { = E ~ Ur(~)Ur (~) } (4.1) )

If Ur is a homogeneous current, then for i fixed, E S defines a generalized wide-sense

stationary random field on RN, indexed by ~ E S. That is, setting

{ V‘(~) = Ur (~ei)i ~ E S, i ~ = r }

yields a generalized wide-sense stationary vector-valued field with N!/(r!(N-r)!) components.

By well-known results for generalized wide-sense stationary processes, we have the following:

Theorem 4.1 : If Ur is an homogeneous current, then there exist random measures 
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with EMt(dv) = 0 and

E { } = n dv’) (4.2)

such that for any ~ ~’S’

Ur(~’~t)= ; 
RN

where  denotes the Fourier transform of , (cf. equation {2.19)), 03C6 ES. For 03C8 E SN-r define the

random r-measure Mr by

= ~’1’ eIi)
!’!

== EMi(~), r

lil

Then for all 03C6 E SN_r

= Mr( 4» (4.3)

Moreover, if ~, ~ ~’S’, then

e,)’ U~(~’ ej) = J (4.4)
RN 

’

and there exists a finite integer k, such that

mi,j (d03BD) (1 + |03BD|2)k  ~ (4.5)

for all i, = r. The measures m;, j( dll) will be called the spectral measures associated with Ur.

Remark: If U~ is homogeneous and ml, i ~ [ = r is the spectral measure associ-

ated with Ur, then *Ur is also homogeneous and i,j (dv), the spectral measure associated with

*Ur, satisfies for i = [I], j = (j~, ~ j ~ _ ~ j ~ = N-r,

mt’, ~’ (4.6)
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Let Uy be an homogeneous r-current and the corresponding random measure

defined by (4.3). We now consider a decomposition of which will play a key role later in

this paper. First define = by A { 0 }), i.e., is the part of

the random measure supported by the point v = 0 and it corresponds to the "D.C."

part of Uy. Let e~ denote the unit vector in the direction from 0 to v,

Set

= 
,

which corresponds to the "A.C." part of U~, and decompose into a component in the

radial direction and one perpendicular to the radial direction (cf. (2.7)) as follows:

(4.7)

M~(d~)= . (4.8)

(i) stands for irrotational and (s) stands for solenoidal, as will be clarified later. By (2.7)

= + + > (4.9)

corresponding to (4.9), define

U, = + + (4.10)

Since for any vector a, a A a = 0, aa = 0, it follows by (2.20) that the solenoidal part U(i)r
characterized by )’ = 0 and 0. Similarly by (2.21), the solenoidal part is

characterized by (u~ ) " = 0 and = o. is called the invariant part and is charac-

terized by ~U~ = 0, = o.

The decomposition (4.10) was derived via (4.9), namely by a spectral decomposition argu-
ment, and it is this approach that will be needed later. We conclude this section by showing
that there exists a random current such that
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Ur -U~~} = d6wr + 6dwr (4.11)

namely U~ -U~°~ _ where  is the generalized Laplacian

(4.12)

since dd( ) = 0, ~6( ) = 0, (4.11) implies that = dsg and = Taking the Fourier

transform of both sides of the equation Ur = (assuming U~°} = 0) yields via (2.20), (2.21),

(4.11), and (4.12)

U,= (_1)r + 1 |03BD|2r (4.13)

If v ~’2 Ur is a current then equation (4.13) yields a solution for wr by inversion; however,

~ v ~’z Ur need not be a current, because of the singularity at v ~ 1 = 0. A solution to (4.11) can

still be derived as follows [2].

Let q(v) = 1 if 1 and zero otherwise. Let

G (t, ~) _ ~ ~ ~-Z ~e-~(~, t) _(1 _i (v, t) ) q (v)~

Set .

~) = E f J’ G (t, v) e~ (4.14)
(II RN J

and

~) l1 M (dv) (4.15)
’ ’ 

RN

where M is the random measure associated with U. Then

(dwr)(~) = f ~) A M(dv) (4.16)
RN

By letting 8(t) E S integration by parts yields

 G(t, 03BD) ~03B8(t) ~tj dt = -  03B8(t) ~G(t, 03BD) ~tj dt
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= -i 03BDi |03BD| 03B8(t) e-i(v,t) - q(v) |v|dt (4.17)

Repeated differentiation and substitution into (4.16) that as defined by (4.15) solves (4.11).

Note that c,~ satisfying equation (4.11) is not unique since if satisfies (4.11) so does 

where pr is a solution to ~ r~r = 0 and A is as defined by equation (4.12).

5. Isotropic Currents

We start with a few words regarding the transformation of differential forms and currents

induced by a rotation. Let A and B be replicas of RN, a rotation g defines a transformation

from A onto B and every tangent vector in A is transformed into a tangent vector in B. Every

differential form in B, ~== E~!’~ defines a differential form on A as follows: let

i = (il, i2, ~ ~ ~ , let vl, v2, ~ ~ ~ , vr be vectors in A. Define by

(03C3g( 03C61(t) . ei)) (03BD1,03BD2, ..., 03BDr) =  03C6i(g.t).ti) (g03BD1, g03BD2, ... , g03BDr)
5.1

= ( 03C6i(g.t)(g’ei1  g’ei2  ...  g’ eir) (03BD1, 03BD2, .., 03BDr)
where g’ is the adjoint of g. Until this point g could have been any non-singular transforma-

tion. In particular, when g is a rotation or reflection g’ = This defines 7g for differential

forms, for currents set

Ug Ur j~N-r ) = Ur ( Ug’ (5.2)

Let G denote the whole group of orthogonal transformations (rotations and reflections) in

RN. .

Definition: A random current Ur is said to be isotropic if for all in and all g EG

E = E Ur (5.3) )
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Lemma 5.1:

(a) If a random current U~ is homogeneous, then so is dU, *U (and consequently ~U).

(b) If a random current is isotropic, so is dU, *U, 6U.

(c) If Ur = dUr _1 and Ur is homogeneous (isotropic), then Ur _1 is not necessarily homogene-

ous (isotropic).

Proof: The proof of (a) follows directly from the definitions, since d and * commute with Th

and Og. Turning to (c), by letting r = N = 2, vl = at2 dtl where a is a zero mean Gaussian

random variable, then we see dvi is both homogeneous and isotropic, but VI is neither.

6. The characterization of the spectral measure associated with homogeneous and

isotropic random currents

A (scalar-valued) u-finite measure m(dv) on IRN is said to be spherically invariant, if

m(A) = m(gA) for every Borel set A in IRN and every g in G. Let Sp -1 denote the sphere of

radius p in RN (i.e. SP -1= {v: lv = p ~ ) and let denote the uniform measure on

Sa -1 where 8 = p . v/ ~ v ~ and ’1 = N . ~Iz pN -1 1’ (N + ~ ) -1. Then m(dv) is

spherically invariant if and only if there exists a measure J.t(dp) on (0,oo)

J m(dv) (C n {~ : : ~ v = P}) (6.1)
C (0, o)

for every compact C in Assume from now on that m(C n { 0 } ) = 0. Let v be a point

in lv 0, and (03BB, 03B8), 03BB 0(0, oo), 0 ~ SN1 , the coordinates of v in a ( O,oo) X 

coordinate system, then B= ~v (, 8 is a point on the unit sphere corresponding to

v2/~, ~ ~ ~ , vN/a). If m(dv) is spherically invariant then for any bounded and measurable

f(v), define 0) = f(v) and the following equality holds:

J f(7) m (dv) = J ’1(dO) F (da) (6.2)
RN (0,00)X 
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where

~ (de) _ (de) ~ >

= (6.3)

and is as defined by (6.1).

A double (non-random) r-current is a continuous bilinear map from X to the

reals (cf. [5], in our case rl = r2 = r). A double r-current L is said to be spherically invariant if

L (g~~ g~) = L(~~ ’~) (6.4)

for all g EG, ~, ~ Define agL through

(ugL) (~’~ Y~) = L (6.5)

then L is spherically invariant if and only if 03C3gL = L.

Theorem 6.1 : Let L be a spherically invariant double r-current, such that there exist slowly

increasing measures ml, j(dt), for which

L ~t’ e~* = f mt, j (dt) ~t(t) 
RN 

’

for all i ~ I = r, then there exist two scalar-valued spherically invariant meas-

ures on RN - { 0 } m(i)(dt), m(s)(dt) with m(i)(dt n { 0 } ) = 0, n { 0 } ) = 0 and a

constant F~°~ such that for all i, j, I i I = r

etv ej) m(i)(dt) + (et A A ej) + ej) F°’6(dt) (6.6)

where ~(dt) is the Dirac unit measure supported by t = 0.

Remarks:

(a) Recall that if (m(s), is a spherically invariant measure on RN - { 0 }, , then it is

uniquely determined by a measure on (0, oo) and if q = i or s, then
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m(q) (at) _ ~(q) (d ~(d8) = (d t ~ ) ~ )t -1~(d B) = (d t ~ ) 

(b) For the case of r = 1, et = and is the zero covector

t;/ , hence etej) = t;tj/ )t 2. Turning to (et et A ej), note that

et A e; = (et -ei) A e;. Therefore for i = j,

(et A ei~ et A ei) _ ~ tq I I t 1 )~ - I t 2 = 1 - I t I 2
q - 1

Fori  j, let e = [ e; [ Then

(et A ei, et A ej) = ( (e + (tj/ 1 t I) ej ) A e.. (ë + (tj/ 1 t I )ej ) A ej )

ej )

- (6.7)

Hence

mi,j(dt) = tjti |t|2 m(i) (dt) + (03B4ij -tjti |t|2 )m(s)(dt) + 03B4ij F0 03B4(dt) (6.8)

(c) Let e0 be one of the basis vectors e1, e2 ..., eN. Then for |i| = |j | = r,

( (eovej) ) = 0 f otherwise 1 if (ij = (jJ and eo is one of the vectors forming ei ( eo A e; = 0 ) (6.9)
and

otherwise 1 
if (i~ _ ~j~ and eo is not included in e; (eo A e;~ = 0 ) 

(fi.10)

and the sum of the two products is ± ~j ( = (ei, ej))

Proof: Let m(dt) denote the double r-current induced by the spectral measure

i ~ = r } , i.e.
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m(dt)= E (6.11)
Ul

and for ~, t~ in 

m(~, = f ~ A m(dt) (6.12)
RN

For g eG, define

where

... g-1 e~r (6.14)

Then, since L was assumed invariant,

’~) = m Ugf/; )

= 

where the second inequality follows from (6.12) by a change of variables. Consequently

= m(dt) (6.15)

Now, let ~ E Sr, consider 1RN -0; let et denote the unit vector in the t direction; set (cf. (2.7))

Ii) 
~ 

and

~- _ ~ _ ~1

Let to be fixed, and consider an orthonormal basis with eta as one of the basis vectors. Assume

that the support of ~ , t~ is in the vicinity of to. Let g be the reflection transforming et

into -et with all other basis vectors unchanged. Then = -~1, y Hence
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(assuming first that m~, j(dt) have continuous densities and then approximating the by

such measures,

m(~-L,~-)= m g~, ~

= m -~-, ~’

= -m(~,~-)

=0 (6.16)

Let vi, ... vN be an orthonormal basis with eto = vi and dt = (d t ~ JX dO) where ( ~ t ~ , , 0) is

the spherical representation of t. Then by the reflection argument above, with respect to any of

the basis vector, we have

v; /~ m(d l t ~, v~ = U , ~i~ ~ Lj~ (6.17)

Let tl ( ~ 0) be a point in 1RN and vl,v2, ’ ’ ’ , vN an orthonormal basis with v; = etl. Let

t2 be another point in with |t1| = |t2| and wl, w2, ’ ’ ’ , WN another orthonormal basis

with et2 = wi. Now, let Vi = vil A vi2 A vir, i = [i] and wj = wh A Wj2 A wir, j = [j] be r-

covectors. Is there agE G, such that gti = t2 (namely, gvi = wl) and 03C3gwj = vi? Since

gti = tz, it is necessary that either the index is in both i and j or in both i* and j*. This con-

dition is also sufficient: we define g as follows: let a = (i, i*) be the concatenation of i with i*

and similarly ,e = (j, j*). « = al, a2, ... ~~ ,8 = y, ~2, ’ . ’ ). Set

g vak = w~~ , k = 1, 2, ~ ’ ~ , N, then vgwl = WI (equation 5.1) and the necessary condition

assures that gVI = wl. Let Qi be the collection of multi-indices i with the index 1 in i and Q2

the collection of those with 1 in i. Then, in view of the above observation (with ti = t2) and

the spherical invariance of m, there exist two spherically invariant measures,
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03A61 (dÀ X dO) = F(’) (dX) ty (dO), , 03A62 (dÀ X dO) = Fa (dO), such that

(6.18)

Equations (6.17) and (6.18) characterize m(dv) in terms of local coordinates

vl(t) , v2(t) ,..., with vi(t) = et. In order to restate these results in a fixed coordinate

system ei, ... eN) in consider el A m(dt) A e~. Then

ei = E ak Vk + E ak Vk
k ~ Q1 k ~ Q2

ej= E L 
1 k E Q2

Hence, by (6.18) and (6.17)

e~ _ ~ ak ~k (d It I) n (de) + ~ ak ~k (a It I) n (dO) (6.19)
k ~ Q1 k ~ Q2

By (2.7) to (2.9)

03B1k 03B2k = (et  (etei), st (et  ej))

= (etvi, etej)

and

E 
Qz 

Qk 03B2k = et V (et /1 et V (et 11 ej))

= (et A el, et A ej)

Substituting the last two equations into (6.19) yields (6.6).
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Theorem 6.2 representation theorem) : Let U~ be an homogeneous random r-current

and , )i) = )j) == r} the spectral measure induced by U~. A necessary and

suflicient condition for Uy to be isotropic is that there exist two spherically symmetric measures,

and ~(d~)F~(dX) where are slowly

increasing measures on (0, ~) and a measure supported by v = 0 , F o6(v) such that

(d~) =

(d>’) + ((e, A (e, A (d>’) +(ei, ej)F0 03B4(03BD)

(6.20)

Proof: Let

L~, ~) = E (u,~) U~(~) ), ~ .

Now set

L(~)= L~(~~)

where ~ is the Fourier transform of ~. In view of theorem 6.1, all we have to prove is that Up is

isotropic if and only if L is spherically invariant. From the definition of L, it follows that

L(~)= L~,~)

hence,

~ 

L(f~, = Li ((g~)’, 
Since g and the Fourier transform commute,

gV’) = Li(6-~, g’~)

= 

= L(~, V.)
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which completes the proof.

7. A sample function representation for U,

It will be assumed throughout this section that the invariant part of Ur, is zero.

Theorem 7.1: Let U r be an homogeneous and isotropic r-current, with spectral measure

Then there exist an (r-"l) random measure satisfying

EY.(d.).Y,(d~)=~,~~ ~~ (7.1)

and an (N2014r20141) random measure satisfying

E i (d03BD) cj (d03BD’) = {0 , [i] ~ [ji]m(a) (d03BD ~ d03BD’), 

i = j (7.2)

with Y= 0 if r = 0,Z= 0 if r = Nand

E 2, cj (d03BD) = 0 , (7.3)

such that

iN (i03BD |03BD|  (d03BD) ) +  */N-r(v) A -!"T-A (7.4)

Proof: Set

= + e~ A 

I (dv) = * Mr(dv) ) + * (7.5)

where Mr is the random measure associated with Ur, is a random (r -2) measure

independent of M~ and satisfying

E = ~(;~~~ . = jji) [ = (r -2) ~
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and Wb(dv) is a random (r+ 2) measure independent of Mr and W", satisfying

E Wbi(d03BD)Wbj(d03BD’) = {0, [i] ~ [j] (7.7)m(s)(d03BD ~ d03BD’), i = j, |i | = (r+2)

Substituting (7.5) into the right-hand side of (7.4) and using the identity (ei A *M)

yield for the right-hand side of (7.4):

J ~N-r A A (ell V M(dv) ) + J ev V (ev A M(dv) )RN 
’ ’ 

RN 
’ ’

which, by (2.7) is just the left-hand side of (7.3). It remains, therefore, to be shown that Y(dv)
and as defined by (7.4) satisfy equations (7.1), (7.2), and (7.3). This follows directly from

(6.20) by considering at point v a coordinate system with ey = ey, which completes the proof.

From the previous results, it is clear that if Ur is homogeneous and isotropic, then U(~ 

and are, in general, not orthogonal. However, as an application to the sample function

representation it will be shown now that "if i diflers considerably from j," then they are orthog-

onal. For this purpose we define A(iJ) to denote the number of indices in i which are not in j;

thus i = 1, 2, 3, j = 2, 3, 5, j) = 1. Note that A(j, i) = j) = 0(i*, j*) for

= Ij I. . Hence 0  min(r, N-r).

Proposition 7.2 : then

EU( 4» = 0 whenever A(i, ib) > 2 . .

Proof: Consider first = 0, then (d03BD) = 0 and by theorem 7.1:

EU(03C6)Uc(03C8) = E f ((03BD) A ’v A Y(dv) (~) A A Y(dr!) )c
Since Y is of orthogonal increments,

EU(03C6)Uc(03C8) = E J A i03BD |03BD| A Y(dv) A 
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Let ia , ib be two r-multi-indices with [ia] = ia, = ib, set ~ _ then

= f E 
E A. )( (P, E Ab )c (7.8)

where AI. is the set of pairs (k, j) with |k| = 1, jj ) ( = r-l, U = j and [k, j] = ia and Ab is

defined similarly by Ab = { (p, m): [p,m] = ib } . . By the orthogonality of Yj, Ym, [m] 7~ ~j~

and (2.6)

EU(03C6)Uc(03C8) = RN f E P) 03BDk03BDp |03BD|2 ( (ekeis , (ep  eib)) m(i)(d03BD) (7.9)

Note that, at most, one term in the above sum will be different from zero, cf. (2.6), which proves

proposition 7.2 for = 0. Turning to the case where = 0, let 03C6 = 03C6aei*a,

U(03C6) = a(03BD)eia /1 i03BD |03BD  (d03BD)

Hence,

EU(03C6)Uc(03C8) = E f ( E B. 03BDk |03BD| j d(U) ’ ( 03BDp |03BD| Zm (7.10)

where Ba is the set of pairs (k, j), = ’ = N -r -1 and such that [k, j] = ia, and Bb
is defined similarly with p, m] = i;.

Hence,

U(03C6)Uc(03C8) = a(03BD)cb(03BD) S P) ( , (7.11 )

which completes the proof.
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