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Abstract

The probabilistic counterpart of the theory of strings is the theory of quasi diffu-
sions. The concept of quasi diffusion (generalised diffusion, gap diffusion) genera-
lises the concept of one-dimensional diffusion in that it does not require the speed
measure to be strictly positive. This note focuses on some connections between the

spectral theory of strings and the excursion theory of quasi diffusions. The main
difference in our approach compared with the previous ones is that we are using
Krein’s theory for "killed" strings as a primary tool instead of dual strings. It is seen

that this approach provides a natural setting for various spectral representations
for quasi diffusions. In particular, we discuss representations for first hitting time

distributions, Levy measures of inverse local times, and different quantities con-
nected with the Ito excursion law. We consider also the characterisation problem
for inverse local times. In fact, it is seen that this is equivalent with the inverse

spectral problem for "killed" strings.
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1. Introduction

We use Dym, McKean [3] and Kac, Krein [5] as our basic references. The notation
is mainly adopted from [3]. . References to Krein’s original papers can be found in
[3] or [5].

Let lmk be a string in the sense of [3] p. 147, and X = {Xt ; t > 0} the
corresponding quasi diffusion. In the singular case I + m(I-) = oo the process X
is obtained from a Brownian motion B via a random time change based on the
additive functional

03B1t := +~0- Lt(x)dm(x),o-

where (t, x) -~ Lt(x) is the jointly continuous version of the local time of B (with
the Ito-McKean normalization). In the regular case 1 + m(I-)  oo X is a random
time change of a Brownian motion killed when it hits I + k, 0  k  +00.

The process X is a Hunt process. Its state space is E := closure(Im), where
Im is the set of the points of increase of the function m. It is assumed that 0 
Recall that in this case 0 is always a regular, reflecting point for X.

The infinitesimal generator, G, of X acting on M := L2(~0, I~, dm) is the gene-
ralised second order differential operator d2/dm dx. Its domain is a subset of (see
[3] p. 151)

D_( G) := Da( G) n ~,~ : ,~-(o) = o}.
The notation Imk is used for a string, which is defined as lmk but instead of

D_(G)
we use

D_ ( G) := Do( G) n f(o) = o}. °
For lmk it is always assumed that m(0) = 0. The corresponding quasi diffusion,
X, is obtained via a random time change as above using a Brownian motion killed
when it hits zero. Therefore, the string Imk is called a killed string.

For the operator G associated with lmk and lmk we introduce as in [3] p. 162-
176 the functions A, D and C. For any complex number w these functions are
solutions of the equation Gu = -w2u. In particular, A(O;ú) = 1, A-(o; w) = 0,
and C(0; w) = 0, C-(o; w) = l. For w2 E C- := C1~0, +oo) 

~ ~ 

(1.1) Do] W> # lim 
+ (1.1) = 

kA + (x; w) + A(x; w) 
.

In fact, in the singular case I + m(l-) = o0

(1.2) w = lim w) 
.(, ) 

xrl 
.
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Recall also the Wronskians

A+D - AD+ = A-D - AD" = 1, ,
C+D - CD+ = C-D - CD- = D(0).

The Green functions (w.r.t. the measure induced by the function m) for the
processes X and X are given by (w = ib, b > 0)

G03C9(x,y) = A(x;03C9)D(y;03C9) 
if x ~ Y,
A(y;03C9)D(x;03C9) if x ~ y,

and

C(x; 03C9)D(y; w) if x  y,

03C9(x,y) =C(y;03C9)D(s;03C9) D(0;03C9) 
if x ~ y,

respectively. For w = ib, b’> 0, the functions x ~ A(x;03C9), x ~ C(x; w) are
increasing, and x -+ D(x; w) is decreasing.

In the next section we discuss the relationships of the strings Imk and Imk to
their principal spectral functions ( i.e. Krein’s correspondence theorems ). In fact,
for killed strings the principal spectral function alone does not determine the string
uniquely.

In the third section the principal spectral function of the string Imk is used to
derive representations for the first hitting time distributions and Levy measures of
the inverse local times for the process X. Moreover, a number of representations
connected with the Ito excursion law of X are presented.

Spectral representations for the diffusion hitting times have been considered in
Kent [7] and [8]. In fact, in [8] Theorem 1.1 the canonical measure is identified with
a spectral measure of a killed process. However, the point we want to make here
is that these representations should be seen as a link in a chain of representations
- first transition density, then hitting time distribution, and thirdly Levy measure
of the inverse local time.

Representations for Levy measures of inverse local times have been considered
in Knight [9], Kotani, Watanabe [10] p. 248 , and [11]. In [10] and [11] the discussion
is based on the concept of dual string (see [3] p. 622), and not on the properties of
killed strings. Also in [9] the solution of the characterization problem is obtained
without explicit use of killed strings. It is seen below that the spectral theory of
killed strings is a natural setting for this problem.
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2. Principal spectral functions for lmk and Imk

We assume that 0 is a point of increase of m and m(0) = 0. The latter assumption is
necessary for D( G) to be dense in M. Probabilistically this means that the inverse
local time at zero of the process X has no drift (see Ito, McKean [4]). A simple
condition in terms of the principal spectral function of Imk for this to hold can be
found in [3] p. 192, and is given in (2.3)(ii) below.

For the definition of the generalized differential operator G and the domain
D+( G) see (3~ p. 147-149.

2.1 Theorem The operator G acting on the domains (i) D(G) := 
D+( G) and (ii) D( G) := D_( G) n D+( G) is in both cases self-adjoint and non-
positive for each permissible choice of k , 0  k  oo.

Proof of these well known facts can be found for ( G, D( G)) in [3] p. 153-158.
The case with ( G, D( G)) can be proved similarly with obvious modifications and
using the amplification in [3] p. 167. a

Definitions (i) The odd non-decreasing function A is a principal spectral fun-
ction of the string lmk if the Green function Gw, w2 E C-, can be represented
as

(2.1) G03C9(x,y) = 1 03C0+~-~ A(x;03B3)A(y;03B3) y2 - 03C92d0394(03B3)
for 0  x, y  l, x and/or y = l excluded in the singular case 1 + m(l-) = oo.

(ii ) The odd non-decreasing function 0 is a principal spectral function of the
string Imk if the Green function Gw, w2 E C-, can be represented as

(2.2) y) _ - d~(’Y)
for 0  x, y  l, x and/or y = / excluded in the singular case 1 + m(I-) = oo.

The following theorem is a restriction of a deep result of M.G. Krein to the
strings lmk with m(0) = 0.

2.2 Theorem For lmk there exists a unique principal spectral function A. It
has the properties

(2.3) (i) +~-~ d0394(03B3) 03B32 + 1  oo, (n) d0(’Y) = oo.
Conversely, for a given odd non-decreasing function 0394 with the properties (2.3)
there exists a unique string lmk having A as the principal spectral function.
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Proof is given in [5] or [3] (see p. 176). The condition (2.3)(ii) is due to the
assumption m(0) = 0 (see [3] p. 192). a

2.3 Theorem For lmk there exists a unique principal spectral function ~ such
that .

(2.4) (i) 
+~-~ d(03B3) 03B32(03B32 + 1) 

 ~, (ii) +~-~ d(03B3) 03B32 
= ~.

Conversely, for a given odd non-decreasing function 0 with the properties (2.4)
there exists a killed string lmk having ~ as the principal spectral function.

Proof The existence and the uniqueness of 0 with the properties (2.4) is stated
in [5] p. 81-82, and can be proved by modifying the proof for the string lmk in [3]
p. 176.

For the converse introduce

(2.5) (0;03C9) := +~-~(1 03B32 - 03C92 - 1 03B32)d(03B3),
where w2 E C". The function D is well defined by (2.4)(i). Functions representable
as in (2.5) are called S-1- functions in [5] Theorem Sl.5.2 . By [5] Lemma Sl.5.2
the function

w2 -~ D*(0; w) :_ _ ~ 1

is an S-function i.e. there exists an odd non-decreasing function A and a constant
c > 0 such that (w2 E C- )

D*(0;03C9) = c + +~-~ d0394(03B3) 03B32 - 03C92.
Because D*(0; w) > 0 for w2  0 it is easily seen that

c = lim D*(0; w)

(cf. [5] Remark 5.1). Consequently, c = 0 because

lim = lim +~-~ z w2 2 - d(03B3) = w
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by Fatou’s lemma and (2.4)(ii). According to Krein’s correpondence , i.e. Theorem
2.1 (without (2.3)(ii)), there exists a unique string lmk having A as the principal
spectral function. We claim that for this string m(0) = 0 or equivalently

+~-~ d0394(03B3) = ~.

Assume this is not the case. Then we obtain by monotone convergence

+~-~ d0394(03B3) = - lim +oo 2 
=- lim 03C92D*(0;03C9) = lim 03C92.- - W2--~-00 hm cv D (o, cv) = W 2 hm ~-~ W ) 

.

But

lim (0; 03C9) 03C92 
= lim 

+~-~ d(03B3) 03B32(03B32 - 03C92) 
= 0

again by monotone convergence using (2.4)(i). Consequently, m(0) = 0. Next, we
claim that the string lmk has infinite length i.e. I = oo and/or By [3]
p. 192 this is equivalent to

(2.6) lim D*(0;03C9) = 
1 03C0 +~-~ 

d0394(03B3) 03B32 = +~.
The claim (2.6) follows from

lim (0;03C9) = lim +~-~ 03C92 03B32(03B32 - 03C9 2) d(03B3) = 0,

which is obtained using (2.4)(i) and dominated convergence. From the infinite string
lmk, m(0) = 0, we construct the corresponding killed string lmk. This string has
0 as the principal spectral function (see [5] p. 82), and the proof is complete. a

Remarks (i) As is seen from the proof above the function A does not determine the
string lmk uniquely. Note also that the quasi diffusion corresponding to the above
constructed string lmk is recurrent. We refer to Knight [9] for some constructions of
different killed strings with the same principal spectral function. The terminology
in [9] is however different.

(ii) It is seen in the next section that the function A can be used to give the spectral
representation for the Levy measure of the inverse local time at zero of the process
X. Therefore, Theorem 2.2 gives the solution of the characterization problem for
inverse local times.

(iii) Note that the condition (2.4)(ii) quarantees that 0 E 1m for the killed string
lmk (see [5] p. 82).
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3. Spectral representations for quasi diffusions

Let X and X be quasi diffusions corresponding to Imk and Imk, respectively. Recall
the assumption m(0) = 0. Using the spectral representations for the Green fun-
ctions it can be proved that the processes X and X have symmetric transition
densities (w.r.t. m). These are denoted with p and p, respectively, and are given by

p(t;x,y) = 1 03C0 +~-~ exp( -03B32t)A(x; -03B3)A(y;03B3)d0394(03B3),

(3.1) (t; x, y) = 1 03C0 +~-~ 

exp(-03B32t)C(x; -03B3)C(y; 03B3)d(03B3),

where 0 _ x, y  I, x and/or y = I excluded in the case I + m(l-) = oo. The

functions A, A and C, A are as in (2.1) and (2.2), respectively.
We use (3.1) to obtain additional spectral representations for the process X

(and X). All our representations are connected with the Ito excursion law for the
excursions from zero. Therefore, it seems to be motivated to derive these using
the Ito excursion law as a tool. This approach - after some basic facts from the
excursion theory are assumed known - leads quite easily to the results.

Let (U, U) be an appropriate excursion space for excursions of X from zero.
Elements in U are denoted with ~. The life time of an excursion , denoted with

(, is infinite if the excursion never returns to 0. In this case there exists a random
time point to such that t = f for all t > to. Here, t is the cemetary point. The
Ito excursion law is denoted with v. For sets in U, which we are considering, the

following description of v is sufficient (see Pitman, Yor [12])

(3.2) 03BD{.} = lim x(.) x,

where Px is the probability measure associated with X when started from x.

Let To := inf ~t : Xt = 0}, and denote the Px-density of To with nx(~; 0). The
notation Px is used for the probability measure associated with X when started
from x.

3.1 Theorem The function nx(t; 0) has the spectral representation

(3.3) nx(t;0) = 1 03C0 +~-~ exp(-03B32t)C(x ;03B3)d(03B3).
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Proof Recall (see Getoor [2], and Csaki et.al. [1])

E dx} = nz (t; 0)dm(z ).

By (3.2) we have

03BD{03BEt ~ dx} = lim y(t ~ dx y).

Consequently,

nx (t; 0)= lim (t;
x, y) y

(3.4) = lim 1 03C0 +~-~ exp(-03B32t)C(x;03B3)C(y;03B3) yd(03B3).

The function x ~ C(x;03B3) is for every, the unique solution of the integral equation
(x ~ 0)

f(x) = x + 03B32 x0 dy y+0 f (z)dm(z)
(see [5] p. 29-30). Therefore, we can take the limit inside the integral sign in (3.4).
This completes the proof. a

Remark. The representation (3.3) can also be found - perhaps in a slightly implicit
form - in Kent [8].

For x E E let Lx = {Lf; t > 0} be the local time of X at x having the
Ito-McKean normalization i.e. for all A E B(E)

t0 1A(Xs)ds = ALxtdm(x) a.s.

Consider the local time at 0, and denote it with L. Let a be the right continu-
ous inverse of L. Then a is an increasing Levy process with the Levy-Khintchin
representation

(3.5) Eo(exp(-aat)) = exp(-t(c + / (1 - 
where c := l-1 in the case = oo, and c = (t+k)-1 in the case l+m(l-) 
oo, and n is the Levy measure of a.
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3.2 Theorem The measure n in (3.5) is absolutely continuous w.r.t. the

Lebesgue measure, and the density n(t) has the spectral representation

(3.6) n(t) = 1 03C0 +~-~ exp(-03B32t)d(03B3).

Proof It is obvious that

v{( Edt} = n(dt).

By (3.2) we have

03BD{03BE ~ dt} = lim x(0 ~ dt) x
.

Therefore, consider

n(t) = limnx(t;0) x = lim 1 03C0 +~-~ exp(-03B32t)C(x;03B3) xd(03B3)
= 1 03C0 +~-~ exp(-03B32t)d(03B3)

by (3.3) and a similar argument as in the proof of Theorem 3.1. a

Remarks (i) Combining Theorems 2.3 and 3.2 we have a solution of the charac-
terization problem of inverse local times. Note that the condition (2.4)(ii) implies
that the measure n has infinite mass i.e. a is not discrete.

(ii) In Knight [9] a more direct approach is used to solve the characterization pro-
blem. This does not seem to give the identification of the representing measure.
See also Kotani, Watanabe [10], where the concept of dual string is used.

In the case I + m(d-)  oo we consider the decomposition

v{( > t~ = v{~ > = t} + v{( > E}.

In fact, 7Vi(t) := v~~ > = j’} = t} therefore, t - N1(t) is non-

decreasing. The function N2 (t) := v{( > E J~} is non-increasing.

3.3 Proposition The measures induced by the functions Ni and N2 are ab-
solutely continuous w.r. t. the Lebesgue measure, and the densities nl (t) and n2 (t),
respectively, have the spectral representations

1 03C0k +~-~ exp(-03B32t)

C(l;03B3)d(03B3) if 0  k ~ ~,

(3.7) n1(t) =
-1 03C0 +~-~ exp(-03B32t)C+(l;03B3)d(g) if k = 0,
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and

(3.8) n2(t) _ - / C+(J; (3.8) n2(t) = 03C0 -~ exp( -03B32t)(1 - C+(l; 03B3))d(03B3).

Proof We have

(3.9) v {03B6 > t 03BEt = ~} = lim x(X03B6- = l,03B6 
 t) x

,

where on the right hand side in the parentesis we have simplified the notation by
omitting "hat" :s. In the case 0  k  oo we have

x(X03B6- = l, 03B6  t) = t0 ds E 03BA(dy)(s;x,y)

(see [4] p. 184), where 03BA is the killing measure of the process X. Here

( y) " 

where E~ is Dirac’s measure at 1. This leads to (3.7). In the case k = oo the point I
is reflecting and the left hand side of (3.9) equals zero. Hence, (3.7) holds even for
k = ~. For k = 0 we have

x(X03B6- = l, 03B6  t) = x(l  t) = t0 nx(s;l)ds
and

nx(s;l) = lim -(s;x, y) l - y
,

which leads to (3.7). For (3.8) consider

N2(t) := 03BD{03B6 > t,03BEt ~ E} = E nx(t;0)dm(x)

= E dm(x)1 03C0 +~-~ d(03B3)exp(-03B32t)C(x;03B3)
= 1 03C0 +~-~ d(03B3)exp(-03B32t) E dm(x)C(x;03B3)," - oo E

where the change of the order of the integration is permitted because l+rra(1-)  ~.

We may also differentiate under the integral sign to obtain

n2(t) = 1 03C0 +~-~ d(03B3)exp(-03B32t) E dm(x)03B32C(x;03B3)
= 1 03C0 +~-~ exp(-03B32t)(1 - C+(l;03B3)d(03B3),
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where we have used the fact that C(~; ~y) is a solution of Gu = -~y2u. The proof is
complete. o

Remark. Making use of the boundary condition

+ = 0

it is seen (cf. (3.6)) that
= n2(t) - W (t)~

which is quite obvious.

We conclude by presenting a more implicit spectral representation connected
with the Ito excursion law of the maximum, M, of an excursion. For this consider
the process X killed when it hits a given point x E E, x > 0. Denote this process
with Xx and let Xo = y  x. Further, denote with nx the density of the Levy
measure for the inverse local time at zero of the process Xx. .

3.4 Proposition Let n(t) be as in 3.2 Proposition and as above. Then

v~~’ E du, M > x~ = (n(u) - 

V{( = 00} = 1 l + k, V{M > x} = -, 
and

03BD{03B6  ~, M ~ x} = 1 x - 1 l + k.
Proof We use the formula (x E E, x > 0)

(3.10) 03BD{03B6 ~ dt, M ~ x} = dt x t0 n~0(s; x)nx(t - s; 0)ds,

where

n~0(.; x) = lim  ny(.; x)
yio y

i.e. ni is the first hitting time density for the process X conditioned never to hit 0.
The formula (3.10) is a straight forward generalization of the corresponding formula
for a Brownian motion (see [13]). Taking the Laplace transforms in u on the both
sides of (3.10) we obtain

03BD{ exp( -03BB203B6); M ~ x} = 1 x x C(x;i03BB) D(x;i03BB) D(0;i03BB)

_ 
A(x; ia) 1

’ 

C(x; ia) D(0; ia)’ 
’
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where we have used the definition of D (see [3] p. 175). Further, (see [3] p. 172)

1 
- 

where Dx is "the function D" for the string lmk, / = = 0, i.e. for the process
Xx. From [5] p. 82

-1 Dx(0;i03BB = -1 x + 1 03C0 +~-~ (1 03B32 + 03BB2 - 1 03B32) dx(03B3)
- c ~o

by Fubini’s theorem and (3.6). Similarly, using D(0;iA) = / + k, we obtain

’D(~A)=’7’~"~ 
Consequently,

a-} =  oo,M  a-}

= ’7~ + ~ /"~ ’ °

Letting A 2014~ 0 we obtain

~cc,M~)=~-~
because

lim ~0 (1 - exp(-03B32u))n(u)du = lim ~0 (1 - exp(-03B32u))nx(u)du = 0.

Consequently,

A~); (  oo,M  ~} = / (1 - 
which gives

~{( e du,M > ~} = (n(u) - 
Finally, from the description of X as a random time change of a Brownian motion
it follows 

03BD{03B6 = ~} = 1 l + k.
The proof is complete. []

Remarks (i) Note also the formulae

.Ko.,M~}=~, ,
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and

(3.11) v{( E du, x  M  y} = (nY(u) - 

where x, y E E. The probabilistic explanation of (3.11) is quite apparent.

(ii) In [11] Cor. 4.6 the above result is proved for recurrent quasi diffusions in terms
of dual strings. The well known result > x} = is due to Williams (see
[14]).
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