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Multiplicative Functionals and the Stable Topology

J.R. Baxter and R.V.Chacon

Department of Mathematics, University of Minnesota, Minneapolis, MN 5455, and

Department of Mathematics, University of British Columbia, Vancouver, BC V6T lY4

Abstract
The notion of a randomized stopping time has various applications in probability. Here it is shown that
stable compactness for randomized stopping times is especially useful in the case of randomized
stopping times which happen to be multiplicative functionals . The general results on convergence of
multiplicative functionals are used to simplify the analysis of the convergence of diffusions in regions
with many small holes.

1. Introduction

The stable topology for stopping times and time changes was originally developed as an aid
to various constructions in the study of Markov processes and martingales [2],[14]. It was later used in
the study of optimal stopping problems [11]. More recently [3],[4] it has proved useful in studying the
behaviour of a diffusion in a region with many small holes (see Section 7). Some additional properties
of stable convergence for stopping times associated with multiplicative functionals, which are especially
useful in dealing with convergence of diffusions, were found in [5]. The purpose of the present paper is
partly expository, to draw together these recent results on stable convergence and explain their
applications. We will also give some new results on which relate to pointwise convergence of diffusions
(Section 3), and a uniqueness condition for multiplicative functionals (Section 5). This allows us to
make a considerable simplification in the proofs of earlier results on convergence of diffusions (Section
7). We will also discuss the connection between stable convergence and the variational r-convergence
(Section 6).

2. Stopping Times
Let be a stochastic process taking values in ~d, (Ft) assumed to be right

continuous, and for convenience we also take F to be countably generated mod P. Let x[0,l], and
let E where ~,1 is, ordinary Lebesgue measure on the
Borel sets B1 of [0,1]. We will consider any function on 03A9 to be defined on03A9 in the obvious way. Let
G = Fx{Q~,[0,1]}, > Gt = Ftx{~,[0,1]}. We will speak of a map ~: ~ -~[0,~] which is astopping time
with respect to the fields Gt as an ordinary stopping time for the process (Xt), and a stopping time T
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with respect to the fields will be referred to as a randomized stopping time for the process (Xt).
As a convenient regularization, we will assume that for any randomized stopping time T we consider,
T(w, ~ ) is nondecreasing and left continuous for every co, and T(o, 0)=0 for every co. We should use?
and E to refer to probabilities and expectations on Q, but we will often just use P and E when the

meaning seems clear from the context.

For each (0~ ~, we can define a probability measure F(w, ~) on the Borel sets of by
(2.1) F(o),[0,t]) == sup ~a : T((o,a)  t~.

is a regular version of the conditional probability distribution of T given G, which
we will refer to as the path distribution of T. We will denote F(o),(0,~]) by and will refer to the

family as the survival function of T. It is easy to see that the survival function of a randomized

stopping time determines the stopping time, and the fact that Ft is Gt-measurable expresses the stopping
time measurability of T. Thus the notion of survival function contains the same information as the
notion of randomized stopping time. Throughout this paper we will refer to the path distribution of a
randomized stopping time and its survival function by the same letter, using the t subscript to distinguish
the two quantities.
Definition 2.1 Let Tn, T be a randomized stopping times. We will say that Tn converges stably to T

(with respect to P) if converges in distribution to (with respect to P) for each A in G. We

emphasize that stable convergence is always with respect to some probability measure P. If Tn,T are
randomized stopping times with survival functions Fn,F respectively, and Tn converges stably to T with

respect to P, then we will say that Fn converges stably to F with respect to P.
It is shown in [2] that there is a compact metrizable topology on the space of all randomized

stopping times, which we will call the stable topology, and that stable convergence is just convergence
with respect to the stable topology. We will not bother to define this topology explicity, since we will

only need to deal with sequential convergence. Since stable convergence is just a slightly enhanced
form of weak convergence, its properties follow a familiar pattern. Probably the clearest reference for

general properties of stable convergence is Meyer’s paper [ 14]. We will need the following result from

[5], which follows easily from Theorem 7 of [ 14] :
Lemma 2.1 Let T(n) converge to T stably with respect to P. Let Y : ~x[0,~] -> R be given. We will

write Y(~,t) as Y t where convenient. Suppose Y is bounded and Gx B measurable, where B denotes the

Borel sets on 

(i) Suppose is upper (lower) semicontinuous for P-a,e, co. Then

lim (lim infn .~ ~)  (>) 

(ii) Suppose Y(o),’) is continuous at T, P-a.e. Then

jYTdP.
Corollary 2.1 Let Tn, T be randomized stopping times.

(i) Let o be an ordinary Gt-stopping time. If T stably then Tna stably.

(ii) Let aj be a sequence of ordinary Gt-stopping times, If Tn~03C3j ~ T~03C3j stably for each j, then
T stably.

Corollary 2.2 Suppose that the process X. is continuous P-a.e.. If T(n) --~ T stably then XT
in distribution.

Corollary 2.1 says we can truncate stopping times if we find it convenient to do so, when
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studying their stable convergence. This allows us to localize arguments, as in the proof of Theorem 7.3
below.

It should be noted that the result of Corollary 2.2 actually holds for any reasonable process,
not necessarily continuous [2] [14]. However, this result is not quite as elementary as Lemma 2.1, and
will not be needed in this paper, so we omit it.

Corollary 2.2 is a statement about the part of the process X which is stopped at time t. It is

natural to also examine the convergence of the part of the process which is not yet stopped at time t.
Before doing this, let us add a little more structure.

Let X) be a Brownian process taking values in Rd. Here Px is the

probability measure such that PX(Bo = x) = 1, and we will as usual let P~ denote the probability measure

such that Bo has distribution v with respect to PV . Also, 9t denotes the usual shift operator, so that

Bt03B8s = Bs+t. We do not assume that Q is the space of continuous functions, but we do assume that B.
is continuous with probability 1. .

Our previous definition of stable convergence applies to the Brownian motion case, of

course. Since there are many probability measures Pv available now, we will use the following
terminology: : if a sequence of randomized stopping times Tn converges stably to a limit T with respect
to Pv, we will say T~ converges to T v-stably. and we likewise say that the survival functions converge
v-stably. If Tn converges v-stably to T for some v such that Lebesgue measure m on Rd is absolutely
continuous with respect to v, then we will say that Tn converges to T Lebesgue-stably. If Tn converges
v-stably to T for v equal to the point measure concentrated at x, we will say Tn converges to T x-stably.
Theorem 2.1 Let Tn,T be randomized stopping times for Brownian motion with Tn  T stably with

respect to Pv. Let v(n,t), v(t) denote the (defective) distributions of Bt restricted to ~Tn > t}, ~Tn > t~,
respectively. Let sn,s be such that sn -~ s and Pv(T=s)=0. Then v(n,Sn) ~ v(s) in total variation norm
as n 2014~ oo.

Theorem 2.1 is proved in [3]. It is a straightforward consequence of the continuity of the
Brownian transition probabilities. It is significant here because it provides the link between stable
convergence and Problem A of Section 7.

The following trivial consequence of the definition of stable convergence is sometimes
useful:

Lemma 2.2 Suppose Tn converges stably to T with respect to a probability measure P. Let Pi be any
probability measure which is absolutely continuous with respect to P. Then Tn also converges stably to
T with respect to Pl. .
3. Multiplicative Functionals

Once again let (Q,FJFt,Bt,9t,PX) be a Brownian process taking values in Rd. We will say
that a property which holds Px-a.e. for all x holds almost surely (a.s.). A stopping T will be called a
terminal time if

(3.1) ~ = t + ~ o 9t on {~ > t} a.s..
Any first hitting time has this property. The analogous property for randomized stopping times is
conveniently expressed in terms of the survival function: let T be a randomized stopping time with
survival function (Ft). We will say that is a multiplicative functional_ if for all s >_ o, t >_ o,
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(3.2) Ft+s = Ft Fs°et a.s..
Naturally, the survival function of a terminal time is a multiplicative functional. Unless otherwise

stated, we will always assume that a multiplicative functional is exact (see [17]), by which we mean that
for every t > 0 and every sequence e(k) of positive real numbers with ~(k),~0,
(3.3) = Ft a.s..
The survival function of a first hitting time is exact.

A general reference for multiplicative functionals is [6].
Theorem 3.1 The space of multiplicative functionals is a closed set under Lebesgue-stable convergence

with respect to Pv, in the following sense: if a survival function F is the stable limit with respect to Pv of
a sequence of multiplicative functionals, where v is a probability measure which is mutually absolutely
continuous with respect to Lebesgue measure, then we can find a multiplicative functional M, such that

F=M, Pv-a.e..

Theorem 3.1 is proved in [5]. Theorem 3.1 simplifies the conceptual picture of convergence
of hitting times, as we shall see.

The next lemma gives a typical property of multiplicative functionals. It follows (cf.[5])
from the fact that the Brownian transition densities are absolutely continuous with respect to Lebesgue
measure.

Lemma 3.1 Let T be a randomized stopping time whose survival function is a multiplicative functional.
Then for any t > 0, PX(T=t)=0 for all x.

Definition 3.1 Let be a multiplicative functional. A point x.such that k called a

permanent point for M. By the Blumenthal .0- 1 law, if appoint x is not a permanent point for M then

pX(MO=I)=1 (Note 
Lemma 3.2 Let M(n), M be multiplicative functionals such that M(n) converges Lebesgue-stably to M.
Let x be permanent point for M. Then M(n) converges x-stably to M.

Proof Let Jlt denote the distribution of Bt with respect to PX. For t > 0, ~,t is absolutely continuous with

respect to m. Hence, by Lemma 2.2, M(n) converges stably to M with respect to pJlt. Using Lemma

2.1, or simply noting that stable convergence implies convergence in distribution, for any s?0 lim

supn~~ E t[M(n)([s,~))] ~ E t[M([s,~)]. Ex[M(n)t+s] ~ E t[M(n)([s,~))] for all n, by the

multiplicative property and the Markov property, so lim for all s > r > 0.

For any u>0, taking 0su, letting t approach 0, and using exactness, we have lim 

for all u> 0. The result then follows from the definition of stable convergence, since T(n)2014>0 in Px-

probability.
Lemma 3.3 Let M be a multiplicative functional, T the associated randomized stopping time. Let f be

bounded and continuous on [0,~], such that with probability 1 f is continuous at T. Let Y be integrable
and G-measurable. Suppose Mn is a sequence of multiplicative functionals and MnM Lebesgue-

stably. Then for every e>0 and every measure v, for all t>0.

Proof Let Jl be distribution of B£ with respect to Pv.

using Lemmas 2.1 and 3.1.

Lemma 3.4 Let M(n),M be multiplicative functionals such that M(n)eM Lebesgue-stably. Let v be
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any probability on Rd. Then for any t>0, and any nonnegative integrable G-measurable function Y,

(3.4) lim 

If F is any survival function which is a stable limit point of (M(n)) with respect to Pv then Pv-a.e.

Proof Let f be a bounded nonnegative continuous function on (R)d, and let Fix t>0.

Let 0et.

by Lemma 3.3. Thus

lim 

Fix 8>0. For all sufficiently small e, ~]8.

Hence lim for all sufficiently small e. Letting and

using (3.3) proves (3.4) for our special choice of Y. But such Y are dense in so (3.4) is

proved. Lemma 2.2(i) gives the rest of the lemma at once, since lim 

Lemma 3.5 Let M(n),M be multiplicative functionals such that M(n)-~M Lebesgue-stably. Let v be
any probability on Rd, such that

(3.5) limt~0lim infn~~Ev[Mt(n)]=1.
Then M(n)~M v-stably.

Proof Let F be any v-stable limit point of (M(n)). We must show that F=M, Pv-a.e..

By Lemma 3.4 we have Pv-a.e.. Thus it is enough to show that for each t>0, By

right-continuity we may restrict ourselves to t such that Fix 8>0. Choose e>0 such that

~t and lim We have

Hence for sufficiently large n. Hence, by Lemmas 2.1, 3.1, and 3.3,

and the lemma is proved.

Theorem 3,2 Let v be any probability on Rd and let M(n),M be multiplicative functionals such that
M(n)--~M v-stably and Lebesgue-stably. Then there exists a subsequence nk such that M(nk)--~M x-
stably for v-a.e. x.

Emof Fix t>O. Let By (3.4), lim By Lemma 2.1(ii) and
Lemma 3.1, Since fn is uniformly bounded, it follows that fnef in Let V be

a countable dense set of times t>0. We can choose a set A with PV(A)=1 and a subsequence (nk) such
that for x in A, for each t in V. Let x be in A. Let F be any x-stable limit point of
(M(nk)). By Lemma 2.1(i), for any t in V and any st, It follows by Lemma 3.4 that
F=M, Px-a.e., and the theorem is proved.
The next theorem is proved in [5], as Remark 3.2.

Theorem 3,3 Let M(n),M be multiplicative functionals such that M(n)-~M Lebesgue-stably. Let v be
any probability on Rd which gives measure 0 to polar sets. Then M(n)-~M v-stably.

We now discuss the semigroup and resolvent associated with a multiplicative functional.
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Definition 3.2 With any multiplicative functional M=(Mt) we associate the (sub-Markov) semigroup

Pt(M) defined by
(3.6) >

for every bounded Borel function h.

We note that Po(M) is not necessarily the identity operator. If Pt denotes the usual heat semigroup
associated with Brownian motion, Pt=Pt(l) in the present notation.

As a consequence of the exactness of M, equation (3.3), we have for each t > 0,

(3.7) lim~~0 PePt-e(M)h = Pth.
If h > 0, the limit in (3.3) is nonincreasing. As a consequence, for any h ~ 0, the function

Pt(M)h is upper semicontinuous.
Definition 3.3 We will denote the resolvent associated with the semigroup Pt(NI) by Ra(M). That is,

(3.8) Pt(M)dt.
We note that it is a standard result, with an easy proof, that the resolvent (Ra(M)) (and

hence the semigroup ~Pt(M)) ) uniquely determine the multiplicative functional M.

Both Pt(M) and Ra(M), a > 0, extend from operators on bounded measurable functions to

bounded linear operators on LP(m), where m is Lebesgue measure on Rd.

The following theorem is proved in [5]. The proof is simplified by Theorem 3.2.

Theorem 3.4 Let (M(n)), (M) be multiplicative functionals. The following statements are equivalent:

(i) M(n)-~M Lebesgue-stably.

(ii) For each t>0, Pt(M(n))-~Pt(M) strongly on L2(m).
(iii) For each a>0, strongly on L2(m).

Proof (i)=~(ii). Since we may work with a dense set of functions in L2(m), such as

continuous functions with compact support. For such a function f, m-

a.e. for some subsequence (nk) of any given subsequence, by Theorem 3.2 and Theorem 2.1. It follows

that Pt(M(nk))f->Pt(M)f in L2(m), and (ii) is proved.
(ii)==~(iii) is obvious, and (iii)=>(i) follows from the compactness of the stable topology and the fact that

the resovent characterizes the multiplicative functional.

It may be useful to give a summary here of the facts that we have proved concerning

Lebesgue-stable convergence:
1. Lebesgue-stable convergence obeys a selection principle (Theorem 3.1).

2. Lebesgue-stable convergence implies
(i) x-stable convergence when x is a permanent point of the limit functional (Lemma 3.2);

(ii) v-stable convergence when (3.5) holds (Lemma 3.5);

(iii) x-stable convergence for Lebesgue a.e. x (Theorem 3.2);

(iv) v-stable convergence for any v which does not charge polar sets (Theorem 3.3);

(v) strong convergence of the associated semigroups (Theorem 3.4).

4. Potentials and Additive Functionals

For what follows, we need to introduce the notion of the resolvent potential operator Ga.

First, let denote the usual transition density for Brownian motion on Rd. That is,

(4.1) ~t(x) _ [21tt]d/2 exp(-x2/2t), t > 0, x in Rd.
Define the a-resolvent kernel ga by
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(4.2) ga(x) = 

For any finite measure  we then define the resolvent potential G03B1  by
(4.3) GaJl = ga* ~,.
We note that is a function, defined pointwise on Rd. It is the density of the usual resolvent
measure associated with p. G0  is infinite for d=1 and d=2. In all other cases we define G03B1  is finite

quasi-everywhere, and we define Gay for signed measures y by additivity. We note that Go is the usual
Newtonian or electrostatic potential operator when d=3. Ga, a > 0, may be regarded as a potential that
has the same behaviour as Go at short range, but drops off rapidly at long range. The larger a, the
shorter the range of Ga. We note in passing that Ga is sometimes called the "Yukawa potential" when
d=3.

For any two signed measures ~, and v, we define the a-mutual energy by
(4.4) Jl,v>a = 

whenever where ~ denotes the total variation measure of p.
We turn now to the construction of particular multiplicative functionals. We note that the

logarithm of a multiplicative functional should be an additive functional, where we define a
(nonnegative) additive functional A=(A~) to be a map A from Q to such that for any s,t > 0,
t finite, if we write A(. t)=At, 

’

(4.5) At+s = At + As03B8t a.s..
We assume that the analogue of exactness holds, i.e. for every t > 0 and every sequence e(k)

of positive real numbers with ~(k).~0,
(4.6) limk~~At-~(k)03B8~(k) = At a.s..
Of course if Ao is finite a.s., so that Ao = 0, (4.6) is equivalent to lim~~,p A£ = 0 a.s..

It is clear that if A=(At) is an additive functional, then M=(e-At) is a multipicative
functional. So in order to construct multiplicative functionals, we construct additive functionals. Let p
be a finite nonnegative Borel measure on Rd. Fix (if d= 1 or d=2, a>0). Suppose that G03B1  is finite
everywhere. By [6] we know there is a unique additive functional such that for all 

(~i>0 if d=1 or d=2),

(4.7) = 

A(Jl) is everywhere finite and A.(Jl) is continuous.
Of course, if p, happens to have a density h with respect to Lebesgue measure on Rd, the

additive functional A(~) has a particularly simple form: We will sometimes write

A(h) for in this case. Also, if v has a bounded density q with respect to ~, then A(v) is given by
(4.8) At(v) = 

Let M denote the finite measures ~ such that GaJl is finite everywhere for some (and hence
for all) ocz0 (a>0 if d=1 or d=2). We have defined A( p) for p in M. Let M1 denote the set of all
measures such that  is absolutely continuous with respect to some measure in M. Let denote
the limit where is an increasing sequence of measures in M converging to p. Let

It is a straightforward matter to show that A(p) is an exact additive functional in our
sense, and that A.(Jl) is a continuous function on the interval where it is finite.
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Definition 4.1 For any  in we define the multiplicative functional associated with 

by 
5. . The Integrated Condition for Uniqueness
Theorem 5.1 Let be an additive functional in the sense of Section 4, and assume that A is finite

and continuous, even at t=oo. Let M=(Mù be a multiplicative functional, and let T be the randomized

stopping time associated with M. Suppose Mo=1 a.s.. Then M=(e-At) => for all x.

We note that

(5.1) 

Proof of Theorem 5.1 ~ is a simple computation, so we prove only ~. Let Y t = The

Markov property and the multiplicative functional property, together with the hypothesis, show easily

that (Yt) is a Gt-martingale. Since Mt is nonincreasing and [0,t]MtdAt is nondecreasing, Yt has paths
of bounded variation. Yt is clearly right continuous. Since (Gt) is the family of fields generated by
Brownian motion, Yt must have continuous paths, and hence Y. is constant a.s.. The theorem then

follows easily.
In order to apply Theorem 5.1 conveniently, we will prove an auxiliary lemma.

Lemma 5.1 Let T be a randomized stopping time whose survival function M is a multiplicative

functional. Let A be a finite and continuous additive functional on [0,oo]. For each a>0, let V(a) be the

randomized stopping time whose multiplicative functional is (e-at). Extending our original sample

space if necessary, we will consider V(a) to be defined (in defiance of our usual convention) so that it is

independent of T as well as G Suppose that for sufficiently large a,

(5.2) 

Then Furthermore, for sufficiently large a then T

has no permanent points.
Proof Modifying our original sample space if necessary, we may consider an iid sequence Vj(a) such
that all the Vj(a) are together independent of T as well as G. We also assume the Vj(a) are unaffected

by the shift 0t. Let For sufficiently large a we have 

where we define L(a) to be

the first Hk(a) which is greater than or equal to T, L(a)=oo if no such Hk(a) exists.

As L(a)-~T in probability. Since A is finite, we can use the dominated convergence

theorem to conclude that and the first statement of the lemma is proved. The

hypothesis of the second assertion says that so the lemma follows at once.

6 The Variational Approach
Definition 6.1 Let M be a multiplicative functional. Let (if d= 1 or d=2, a>0). We will define the

associated M-potential operator Ga(M) as follows: for any finite p,
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(6.1 ) G >

where we define as the measure such that for any Borel set D in Rd, Jl(M,a)(D)=

Since ~ is finite, Gap and are finite quasi-everywhere, and
is defined quasi-everywhere.

Lemma 6.1 is the density of JlRa(M) with respect to Lebesgue measure m.

Proof Let D be a Borel set in Rd. 

1D(Bv)e-avdvM(dt)]= ( 1-Mt) 1D(Bv)e-avdv] _ and

the lemma follows. 

Since a potential is determined by its integrals over balls with respect to Lebesgue measure,
Lemma 6.1 shows that then quasi-everywhere.
Lemma 6.2 Let v be any measure in M. Then

= = 
>

where Ta is the randomized stopping time associated with 

Proof The second equality follows at once from Fubini. For the first, let At=At(v). Using the symmetry
of Ga, f G e-03B1udA u]= 

= 

and the lemma follows.

Lemma 6.3 Let ~, be in M. Let M=M(~,). Then for any Borel set D in Rd,
= 

Proof Let in Lemma 6.2. We find 

Jl(M,a)(D), so the lemma is proved.
For any measure ~, in we define the set of finiteness W(~,) for X to be the union of all

finely open sets D with finite X-measure (see [5]). Because the fine topology has the quasi-Lindelof
property, W(~,) is X-measurable and finely open up to a polar set.
Theorem 6 1 Let be in MI, Let For any Borel set D in Rd,

= 

Proof Since  can be approximated from below by measures with bounded potentials, we may assume
without loss of generality that Gap is bounded. For ~, in M, the result is already given in Lemma 6.3.
Let ~,(n) be a nondecreasing sequence of measures in M such that Let M(n)=M(7~,n). Then

stably. Hence for any v in M, by Lemma 6.2 
Hence quasi everywhere. Let U be a finely open set with We can find
fine continuous functions fk with fk=0 on UC, and fkTlU quasi everywhere. Since fk(Bt) is a
continuous function of t, by Lemma 2.1 as n By the dominated
convergence theorem we have Thus = 

for all k, and so = dJl(M,a)(U). This gives the statement of the theorem provided that
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we restrict ourselves to D contained in W(~,). But since for all n,

we have Since is fine continuous, we see that quasi-everywhere on

the complement of W(~,), and the theorem is proved.

Remark It would probably be better to study the complement of the set of permanent points of M(~,)

instead of W(~,) (cf. Lemma 6.3 of [5]), but that would lead us further into technicalities.

Let ~, in M i be fixed. For each a>0, define on L2(dm) by where g is the

weak solution 

(6.2) = f.

We interpret (6.2) to mean that

(6.3) ~g.~hdm + jghd( = jfhdm,
for all h in with compact support. The existence of a unique solution to a weak equation of

this form is shown in [8] (see also [5]).
The following is an easy variation on a standard fact (cf. [13]):

Lemma 6.4 Let Jl be in M, with G03B1 d ~. Let Then u is in HOI, and for any h in Hpl,
~u.~dm+03B1uhdm=hd .

We wish to show

Theorem 6.2 If f in L2(m) is the density of a finite measure ~, then 
Proof Let Let M=M(~,). Since Ga is a bounded operator on L2, Hence

G03B1  is in HOI by Lemma 6.4. Similarly, using Lemma 6.1, so is

in Hol by Lemma 6.4. Hence q is in H()l. By Theorem 6.1, = 

= G03B1 d   oo. Thus q is in Let h be in with

compact support. hd  by Lemma 6.4 and
Theorem 6.1, and the theorem is proved.

Theorem 6.2 is proved in [5] by a more complicated argument.
Theorem 3.4 shows we can characterize Lebesgue-stable convergence of multiplicative

functionals in terms of strong resolvent convergence. Since the operators are uniformly bounded, we

need only consider dense subsets of L2(m). Since the variational r-convergence studied in [7],[8] is also

characterized in terms of strong resolvent convergence (cf. [5]), Theorem 6.2 links the two forms of

convergence.

7 Convergence of Stopped Diffusions

We will now discuss the problem of describing the behaviour of a diffusion in a medium

containing many small absorbing bodies (see Problem A below). This problem was solved by

Papanicolaou and Varadhan [15]. Working with N.C. Jain, the authors were able to prove a stronger

result along the same lines [3], using the compactness of the stable topology. The compactness of the

stable topology made it possible for the proof of convergence to be reduced to a convenient uniqueness

question. In the present exposition, we will use the fact that the set of multiplicative functionals is

closed, and the uniqueness result of Section 5, to make the proof shorter. In addition, the results of

Section 3 give criteria for convergence of solutions of the diffusion equation at a point, once Lebesgue-

stable convergence has been shown, so we need only consider Lebesgue-stable convergence.
Problem dealing with media containing many small bodies have been considered by many

authors, beginning with Mark Kac [12]. The earlier papers considered time-independent problems such
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as the Dirichlet problem, which are somewhat easier to deal with than the time-dependent diffusion

case. Recent papers on other time-dependent problems include [16].
We now give a more precise definition of the the basic diffusion problem, which we call

Problem A Fix d > 1. Let Dn be a closed set in Rd, for n=l,2,.... Let some finite initial distribution
measure v be given. For each n, letpn(t,x) denote the solution of the diffusion equation
(7. la) = dpn on D nC,
with intial condition

(7.1b) pn(t, ’)-~v on Dn as t.1 0,
and boundary condition

(7. Ic) Pn(t,x) = 0 for x in aDn.
Condition 7.1c represents the absorption or "killing" of the diffusing material on the

boundary of Dn. When v has a density f, Condition 7.1b means ’)-~ f() on D n. Condition 7.1b

is to be interpreted in the sense of generalized functions otherwise. We will shortly reexpress all of
Problem A in a more natural way using Brownian motion.

We now suppose that the sets Dn are the union of many small bodies, which become more
and more finely divided as The first part of Problem A is to give conditions under which the
solutions Pn converge to a nontrivial limit . The second part of Problem A is to identify the limit of the

sequence pn.
We will give the precise solution to this problem later. In order to describe the limit of the

sequence pn, it is necessary to consider a second problem, which we will call

Problem B Fix d ~ 1. Let ~, be a nonnegative measure on Rd, which is not necessarily finite or even
Radon (that is, even the measure of compact sets may be infinite), but gives measure 0 to all polar sets.
Let some finite initial distribution measure v be given. Problem B is to find the solutionp of the
diffusion equation with "killing measure" ~,, namely
(7.2a) = Ap - 3Lp,
with intial condition

(7.2b) 
There are two parts to Problem B. The first part of the problem is to explain what equation

(7.2a) means, for a general measure ~,. When ~, has a density h, we can interpret (7.2a) pointwise as
aplat = Ap - h p. In general we can consider (7.2a) as the shorthand for a variational problem which
defines p. This approach, due to Dal Maso and Mosco [8], [9], is described in [5]. We will not
approach Problem B is this way, but will instead use the standard Feynman-Kac construction. The fact
that the variational and the probabilistic solutions are consistent is shown in [5].

Assuming for the moment that we can deal with Problem B in a satisfactory manner, we can
now state the connection between Problems A and B, namely that the limit p of the sequence pn of
Problem A is the solution of the equation in Problem B, for an appropriate choice of killing measure x,
The killing measure ~ is of course determined by the sequence (Dn). Not all sequences Dn determine a
killing measure, but it will turn out (Theorem 7.2) that if a sequence (Dn) does have a killing measure ~,,
and ~, is reasonably nice, then the sequence pn must converge to the solution of Problem B, that is, no
further conditions need be imposed to give convergence. We will refer to the measure ~ as the
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"limiting capacity measure" for the sequence (Dn) (See Definition 7.1 below).
Let W be a compact set in Rd. If d=1 or 2, let a > 0. Otherwise, let a > 0. There is a

unique measure on W such quasi-everywhere on W. We will refer to this measure

as the a-equilibrium measure of W. We define the 03B1-capacity of W, ca(W), by

(7.3) ca(W) = 

Now let a sequence (Dn) of closed sets be given. For any compact set W, let

(7.4) ya(W) = lim ca(WnDn).
It can be shown (see Lemma 7.1 below) that there is a unique minimal outer regular

measure ~,(~ya) such that ~,(ya) >_ We shall call this measure ~,(~ya) the total a-capacity measure for
the sequence (Dn). This measure is in fact independent of a (see Lemma 7.5), so that we may denote it

simply by À.
Definition 7.1 If any subsequence of the original sequence of sets (Dn) has the same total capacity
measure À, then we will say that À is the limiting capacity measure for the sequence (Dn).

Naturally, for this definition to be useful, we need a verifiable criterion for a sequence (Dn)
to have a limiting capacity measure. Such a criterion is given in [4] , (generalizing a result in [15]), and

we extend this criterion slightly (with essentially the same proof as in [4]) as

Theorem 7.1 Let Let Dn=B(n,l)u...uB(n,k(n)). Fix p
~ 0 (if d= 1 or > 0). For each n and i, let ’I’(n,i) denote the ~3-equilibrium measure of B(n,i). Let

Àn = y~(n,1 ) + ... + Suppose ~ converges weakly to a limit ~,, and that the "uniformity
condition" holds:

~,~> ~ -~ ,

Then ~, is the limiting capacity measure for the sequence (Dn).
We can now give a more precise statement of the limit result described above.

Theorem 7.2 Let (Dn) be a sequence of closed sets in Rd, with a limiting capacity measure À, such that
the restriction of ~, to any bounded region is a measure in M. Let v be any finite measure which measure

0 to polar sets. Then the limit of the sequence pn of Problem A is the solution of Problem B. The limit

is in the sense of L1(m)-convergence of 03C1n(t,.) on Rd for each t, where m denotes Lebesgue measure on

Rd, and the convergence is uniform over t in bounded intervals in [0,oo).
We note that more can be proved, in particular one can say something about the pointwise

convergence of the pn (see [3],[4]). However, the results of Sections 2 and 3 show that these results, as

well as Theorem 7.2, follow at once from the following:

Theorem 7.3 Let (Dn) be a sequence of closed sets in Rd, with a limiting capacity measure ~,, such that

the restriction of ~, to any bounded region is a measure in M. Let In denote the first hitting time of Dn,

and let T denote the randomized stopping time associated with M(~,). Then "en converges Lebesgue-

stably to T.
From now on we will simply concentrate on proving Theorem 7.3, since it gives everything

else. We will follow the arguments in [4] but will be able to simplify the proof considerably by using
our earlier results.

Definition 7.2 A set function y from the collection of compact subsets of Rd to [0,~] will be called a c-

function if is subadditive and maps the empty set to 0.
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Lemma 7.1 Let y be a c-function. There is a unique minimal outer regular measure ~y. For G open,
(7.5) 
where the sup is over all disjoint sequences W 1,...,Wk of compact subsets of G.

This lemma is undoubtedly a well-known result. A proof is given in [4]. Several interesting
properties of this type of construction are given in [1].
Definition 7.3 We will refer to the measure ~, of Lemma 7.1 as ~,(Y).
Definition 7.4 A collection U of bounded open sets will be called a good base if it is a base for the usual

topology on Rd and is closed under finite unions.
Lemma 7.2 Let y be a c-function, U a good base. Then ~,(y) is uniquely determined by the values of y
on the collection of closures of sets in U.

This result is immediate from (7.5).

Lemma 7.3 Let 03B31, 03B32 be c-functions, 03B4>0. Suppose for all compact W with diameter8.

Then ~,(~y2).
Proof for all open G with diameter8 by (7.5). Hence ?L(y~)(A) for all
Borel A with diameter8, and the lemma follows.
Lemma 7.4 For every ( if d= 1 or d=2), for every ~>o, there exists 8>o such that

for W compact with diameter8.

Proof It is easy to see that there exists 8>o such that

(7.6) if 

Let W be compact with diameter03B4. Then quasi everywhere on W, so
on W, and hence on all of Rd by the domination principle. The lemma

follows.

Lemma 7.5 Let (a>o if d=1 or d=2). Let 03B303B1 defined by (7.4). Then 03BB(03B303B1) is independent of a.
Proof Immediate by Lemmas 7.3 and 7.4.
Lemma 7.6 Let (Dn) be any sequence of closed subsets of Rd. Then there exists a subsequence 
with a limiting capacity measure.

Proof Let U be a countable good base. Fix a?o (a>o if d= 1 or d=2). Choose a subsequence (n(k))
such that exists for W the closure of a set in U. Any subsequence of (Dn(k)) must
give the same total capacity measure as (Dn(k)), by Lemma 7.2, so the lemma is proved.
Lemma 7.7 Let D be compact, and let Dn be a sequence of subsets of D. For each a?0 (a>o if d= 1 or
d=2), let va be a weak limit point of Suppose (Dn) has a limiting capacity measure ~,. Then

in total variation norm as aeoo.

Proof This argument is just as in [4], Theorem 4.1.
Proof of Theorem 73 (i) Case 1. We first assume that there is a compact set D with Dn contained in D
for all n. Let T be a Lebesgue-stable limit point of In. We must show the survival function of T is
M(~,). Let M denote a multiplicative functional which is the survival function of T.

Fix a>0. Let V(a) be the randomized stopping time with survival function (e-at). Since
is a martingale with respect to the Brownian motion with lifetime V(a), we find as usual

that Let J..l be a probability measure on Rd which is absolutely
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continuous with respect to m, and has a bounded density, so that Gap is bounded and continuous. We

have

(7.7) 

Let us extend our sample space if necessary, and consider V(a) to be defined so that it is

independent of T as well as G. Let Àa be a weak limit point of Then by Lemma 2.1 and

Lemma 3.1 we have

(7.8) 
That is,

(7.9) 

Thus for all x and all t>0, Letting we have

(7.10) 

In particular, for all a>0,

(7.11) 

By Lemma 5.1,

(7.12) Mo=1 a.s.,
and

(7.13) 
For any a>0, for we have Hence by

Lemma 5.1,

(7.14) 

Letting aeoo, since a.s. uniformly in t, we see that and so by

Theorem 5.1 M(~,) is the survival function for T, so the theorem is proved in Case 1.

(ii) The general case. Let H(j) be a sequence of bounded open sets with H(j)TRd. Let Dn(j) be the
intersection of Dn with the closure of H(j). Without loss of generality, by choosing a subsequence, we

may assume that has a limiting capacity measure Àj for each j. If denotes the first

hitting time of Dn(j), we have by Case 1 that Lebesgue-stably as for each j, where T(j)

is the randomized stopping time with survival function M(~,j). Clearly on compact subsets of H(j).

Let o. denote the first exit time of H(j). ° Clearly T(j)naj=Tnaj, for each j, where T is the randomized

stoppping time with survival function M(~,). By Corollary 2.1(i), as

for each j. Hence, by Corollary 2.1 (ii), and the theorem is proved.
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