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Using Stochastic Comparison to Estimate Green’s Functions

Richard F. Bass

Department of Mathematics, University of Washington
Seattle, WA 98195 U.S.A.

1. Introduction Let L be the second order elliptic operator on R defined by

Lf(x) = 1 2 aij(x)~2f ~xi~xj(x).
The purpose of this note is to illustrate a technique by which very good estimates for the Green’s
function for L can be obtained using elementary stochastic calculus, in particular, comparison
theorems. This technique could be applied to many other situations as well.

Suppose the a~J are bounded, uniformly strictly elliptic, and Dini continuous. That is, there
exists A independent of x such that

d d

Z~ (2/1...., E Rd
,=1 i,j-1

and

0+ 03C9(r) r dr  ~,

where = sup |03B1ij(x)-03B1ij(y)|. Let (Px,Xt) be the strong Markov process corresponding

to L ([5]), let D be a bounded domain, and define the Green’s function for L to be a function
9D (x, y) such that

Ex D0 f(Xs)ds = Df(y)gd(x,y)dy

for all f bounded, where

TD = Xt $! D}.

Our theorem is

Theorem 1.1. Suppose the a’j satisfy the conditions above. Suppose d > 3 and 03B4 > 0. Then
these exist constants ci c2 (depending on S~ and a version of gD(x, y) such that

cllx - y~2 d ~ 9D(X, y~  yl2-d

whenever y~  S and dist (x, aD), dist (y, all) > 26.

By a slight refinement of our proof, one can show

9D(x, clx - as y~ -~ o.
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Both the statement and proof of Theorem 1.1 go through for d = 2 provided |x - y|2-d is replaced
by - log ~x - y~.

Theorem 1.1 was first proved (in a partial differential equations formulation) by Gilbarg and
Serrin ~2~ as a consequence of some results of theirs about extended maximum principles. The
extended maximum principles of [2] can also be obtained as consequences of Theorem 1.1. Gilbarg
and Serrin also gave some examples to show that the estimates of Theorem 1.1 need not hold if

the assumption of Dini continuity is removed.
Some notation: if Y is any continuous one dimensional process, let

= Yt = a },

and = A The letter c, with or without subscripts, denotes constants whose value

may change from line to line.

2. Some facts about one dimensional diffusions. We prove some simple facts about certain

one dimensional diffusions. These could also be obtained as consequences of more general results

about diffusions (4~. .

Lemma 2.1. Suppose R > 0, r  R~2, and x solves

dY~ = dW~ + d 1 2Y ’~{Yt) dt, 
where Wt is one dimensional Brownian motion, ,Q is bounded, nonnegative, and

fo  oo. Then

(i) 
if ~  7-/2, Eg  

Proof. Define a function s by

s(x) = 1x y1-dexp(-1y z-103B2(z)dz)dy.

(This is the scale function.) Note that s’(x)  0, hence s is decreasing,

(2.1)   for x  R/2,

(2.2)  ~(.r) ~ for x  R/2,

and

(2.3) ~S 1 u ~x) + d - 1- 2x ~Q(x) s r (x) = 0. 
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Let Z = s(Yt). By Ito’s lemma, Zt solves

(2.4) 

for   where W~ is a Brownian motion and r(2/) = ~(~"~(~)).
Now Zt is a continuous martingale, hence a time change of Brownian motion, and so if

a  7-  R,

 00, Ty,.  Ty,R) =  00,   ~’~.2014 5~~

Letting ~ 2014)’ 0 and observing -~ oo by (2.2) gives (i).
If W~ is a Brownian motion, then it is well-known ([I], page 363) that if a  .r  ~,

~ / = 

where Ga,b(x, y) = { 2(x - a)(b - y)/(b - a), x ~ y if . ~ x ~ y  &#x26;, 0 otherwise.2(y - a)(b - x)/(b - a), x ~ y
If Bt = t003C32(Zs)ds and At = B-1t, then ZAt is a continuous martingale with quadratic

variation , hence ZAt is a Brownian motion. Therefore

Ex TZ,a,b0 h(Zt)dt=Ex TW,a,b0h03C3-2(Wt)dt= Ga,b(x,y)(h03C3-2)(y)dy.
And then

E" / 
,I 

~(~)~ = E~~ , 
, 

/ ~o ~~(~)~7o h(x )dt = h o s~ ~ (Zi )dt

= ~ ~(6),.(.)(~~), 2/)(~-’) o .-’(2/)~
=/~)~)(~),~))~~

the last equality following by a change of variables and the definition of 7.
As a ~ 0, ~ ~, and

2(s(x)- s(b)) s(y))~ s(x) or y ~ xGs(b),s(a)(s(x), s(y)) ~ 2(s(y))- s(b)) s(y) ~ s(x) or y ~ x
boundedly and pointwise.

Therefore

..~-~,.~-&#x26;~"~.,,,..
which proves (it), D

The same proof shows
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Corollary 2.2. If "Q nonnegative" is replaced by ",Q nonpositive" and "" is replaced by

"> ", then Lemma 2,i still holds.

3. Proof of Theorem 1.1 By a change of coordinates, suppose y = 0 E D and a(0) is the
identity matrix. If g(a-) > 0 and L is defined by L f (x) = it is well-known ([5]) that
the Green’s function for L is y) = y)~q(y). So using the strict ellipticity of a(x), we
may assume without loss of generality that z I, where * denotes transpose.

Pick 7 so that = a(x), and let X~ be a solution to

(3.1) Xo = z,

where W is some d dimensional Brownian motion.

Let r = ~ x i, R = 2 = X~ ~ . Then by Ito’s lemma, ~ solves

(3.2) d~ = + (trace (a(X~)) -1)~(2Y)dt, Yo = r,

for t  TV,0 . Since = 1, the martingale part of Vt has quadratic variation t, hence

is a Brownian motion Wt .
Let ,Q be a function that is Lipschitz on compact subintervals of (0, oo), bounded, and satisfies

,Q(u) > trace a(z) - d| +  R,

and fo  oo, (This is possible by the Dini continuity of a.) Let Y be the solution to

Yo = ~’~ 

If we modify the drift coefficients for V and Yt to something smooth and bounded when Vt ~

b,  r, we do not change Y or Y for t  
Since trace (a(x)) > d - ,Q(~x~) + (log(~x~))-2 for ~x~  R, we can apply [3], p.352, to get

~ > Yt, a.s. for t  Since Yt does not hit 0 before time by Lemma 2.1 (i),
we can let b - 0 to conclude Vt > Yt for all t  

If BE is the ball of radius ~ about 0, and e  ~x~~2, we then have, using Lemma 2.1 (ii),

(3.3) E~ TD  E’  E’ TY,R  

7o ~o 
’ 

0 
’

Since y was arbitrary as long as dist (y, ~D) > 6, the estimate (3.3) both tells us that y)
exists and gives the upper bound.

To get the lower bound, let R = 2S, Note that we have  oo, Tv,o  = 0 from

above. We compare the process ~ with the solution Y~ to

Yo = r.
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We argue just as in the upper bound, using Corollary 2.2 in place of Lemma 2.1. p
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