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GENERALIZATIONS OF GROSS’ AND MINLOS’ THEOREMS

by Jia An YAN
Institute of Applied Mathematics

Academia Sinica, Beijing

The purpose of this note is to give simple proofs, with some extensions, of the well known
theorems of Gross, Dudley-Feldman-LeCam and Minlos, and also of the general version of
Gross’ theorem given by Lindstr~m.

1. Introduction

Let X be a Banach space (or more generally any locally convex space) and X’ be its
dual. Denote by x, y> the natural pairing between X and X~ . Let J~(X~~ , or simply
x if the meaning is clear, be the collection of all finite dimensional subspaces of X’ Given
K E k we denote by S(K) the u-algebra of all cylinder sets based on K , s. e. of all sets
of the following form

~ (x~ J Yl >, .. , , y E ~} a

where belong to K and E is a Borel set in . Let R(X) denote the

algebra UK~K S(K). A non-negative set function p defined on is called a cylinder
(probability) measure if p(X) = 1 and  is u-additive on each u-algebra S(K) . A
function f defined on X is called a cylinder function if there exists some KE x such that
f is S(K~-measurable. The value of a cylinder measure on a bounded cylinder function
is well defined, and denoted Jx In particular, the characteristic functional of
the cylinder measure  on X is the function defined as follows for y E X’

~ (y~ _ x .

In this paper we consider a basic triple (H, B, ~) , where H is a real separable Hilbert
space with inner product ., . .> and norm (. ~ , ~ is a cylinder measure on H and B is
the completion of H under a norm which is weaker than the norm Thus H is
identified with a subset of B. We shall always identify H’ with H so that B’ in turn
can be identified to a subset of H, s.e.

B~ _ ~y E H : : sup  oo} .
x~H,~x~~1

In this way the same notation x, y> can denote without ambiguity the inner product
in H and (for 1 E B, y (: B~ ~ the natural pairing between B and F~. . Since we have

C A:(F), for every cylinder set C ~ S(B) the intersection C nH belongs to S(H) J
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and therefore we can define a cylinder measure p* on B by the relation ~c*(C) = p( CnH) .
We call p* the lifting of  on B . .

A natural question is the following : : under which conditions on p and on the norm
~~’~~ is ~* o-additive on (It can then be extended as an ordinary probability
measure on the u-field generated by R(B), which is also the Borel u-field of B since
B is separable). Lindstr~m’s extension of Gross’ theorem asserts that it suffices that the
norm be -measurable in the sense given below. In the Gaussian case the theorem of
Dudley-Feldman-LeCam asserts that this condition is also necessary. Finally, the theorem
of Minlos asserts that if the characteristic functional P of p is continuous on H then we
can take for ~~-~~ any norm on H of the form = ) where A is a Hilbert-Schmidt
operator on H . .

In the last example, to have a true norm we must assume the injectivity of A , , an
unnatural condition. In reality, we might deal in most cases with a seminorm instead of a
norm. We leave this easy extension to the reader. One may always assume that the linear
support of  is H , which is equivalent to saying that there is no K E K, except {0} such
that ~ coincides on with the unit mass at 0 . However, this hypothesis is used only
in the proof of Theorem 3.2.

We recall the definition of a measurable norm. Let P denote the collection of all

orthogonal projections in H with finite dimensional ranges. It is obvious that for each
the function f(x) = defined on H, is a cylinder function. The notation

between projections means that their ranges are orthogonal.
DEFINITION 1.1. Let (H, B, p) be a basic triple. The norm 11.11 on H is said to be
measurable w.r. t. p if, for every e > 0 there exists a Pe ~P such that

H : > ~}  e for every P l.Pe .

2. Some lemmas

Let (H, B, p) be a basic triple. Since p is a cylinder measure, it is well known from
Kolmogorov’s theorem that there exists a probability space (SI, ~’, m) and a linear mapping
F from H to the space L(O) of all real random variables on Sl such that for any n > 1, ,

, E E we have

{x ~ X : (x,y1>,...,x,yn>)~E}=m{03C9 : (F(y1)(03C9),...,F(yn)(03C9))~ B} .
(2.1)

We call F, m, F) a representation of p If  were a true measure on H , we might
construct a representation as follows : on some probability space {} choose an H-valued
r.v. 03BE with law JJ, and then define F(y) = 03BE, y> for y E H , so that { = 03A3jF(ej)ej
a.s. for every ONB (orthonormal basis) of H The main idea of our proof is to start from
an arbitrary representation (which we keep fixed in the sequel), and study the convergence
of this sum to a B-valued r.v.. ,

The following lemma is well known (see [1], p. 51), but we include a proof for the reader’s
convenience.
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LEMMA 2.1. The foflowing conditions are equivalent
is continuous at 0 ; ;
is continuous on H ; ;

(c ) F is continuous in probability from H to ;

(d) in H ) ~ (d E > 0 , ~ 

PROOF. Since p(y) = for y~ H (a) means that F(hn) converges in law
to 0 as hn -~ 0 in H This is well known to be equivalent to convergence in probability
to 0 . Thus (a) 4==~ (c) from the linearity of F. On the other hand (c) 4==~ (d) from (2.1),
and (c) =~ (b) =~ (a) is trivial. Q

LEMMA 2.2. Let P E P and (e1, ... , en) be an ONB of the space P( H). . Then the
following random element of P(H)

n

l(P) _ ~ (2.2)
j=1

doesn’t depend on the choice of the ONB (e~ ) . Moreover, we have

l(P), h> = F(Ph) for every h E H (2.3)
: t (P) (w) E C} = for every C ~ S(P(H)) (2.4)

PROOF. We need only prove (2.4), the other properties being obvious. Given C E
S(P(H)) there exists some such that

C = ~(x E H : ( x, el >, ... , x, en > ) E E} . .
We have by (2.2)

~w : " " (F(e1 )(w ), ... ~ F} .
Thus (2.4) follows from (2.1). 0

We denote by ~ the partial ordering of P defined by (P ~ Q) ~=~ (P(H) ~ Q(H)) . .
Then we consider the mapping 1 ( . ) as defining a net of B-valued (rather than ~-valued)
random variables, indexed by the directed set (P, -~) . Note that, to prove the convergence
in probability of this net to a B-valued r.v., it is sufficient to prove that 1 (Pn) is a Cauchy
sequence in probability for every sequence (Pn) of projectors which increases to I , the
identity operator on H. .
LEMMA 2.3. The norm ia measurable w.r. t. p iff the net l (P), P~P of B-valued
r. v.’. converges in probability in B. .
PROOF. The order relation P ~ Q between projections can be written as Q = P+R, ,
where R is a projection orthogonal to P, and then we have t (Q) - l (P) = . Using
this remark and the relation (2.4)

the lemma becomes obvious.
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The following result is Minlos’ lemma (see lemma 3.1, p. 119 of Hida [4]; the same proof
works though here the probabilities of two ellipsoids are compared instead of an ellipsoid
and a sphere. This will be necessary to our generalization of Minlos’ theorem). See also
Bourbaki Intégration, Chap IX, nO 6.9, Prop. 10.
LEMMA 2.4. Let  be a probability measure on 1Rn and 03C6 be its characteristic function.
Set

n n

Sl = ~x = (zl, ... : ~  ~ S2 = ’~x = (zi, ... , xn) : ~ ~ t~I
;=1 ;=1

where ~, t, ~j, 1; (1 ~ j ~ n) are non negative number. Then the property ~~p(x)-1 ~ ~ ~
on Sl implies

(Sc2) ~ C(e + 2 03B2j03B3j) with C=(1-e-1/2)-1. (2.5)a t 

3. Generalizations of G ross’ and Minlos’ theorems

Our first result will be the following extension of Gross’ theorem, inspired from Kallian-
pur [5] (the cylinder measure p isn’t assumed to be Gaussian, however).
THEOREM 3.1. Assume that the characteristic function  is continuous on H. If there
exists an increasing sequence Pn C P such that Pn t I and for every c > 0

H : ~Pnx - Pmx~ > e} = 0 , , (3.1)

then the lifting * of  is u-additive on .

According to lemma 2.3, the condition (3.1) is satisfied whenever the norm is

measurable w.r.t. 03BC. We will see in Theorem 4.1 that these two properties are equivalent
under some conditions on the cylinder measure ~ . Also, if B is reflexive we give in Theorem
3.3 a condition which is easier to verify.
PROOF. Condition (3.1) implies that converges in probability in B to a r.v. ~. .
According to (c) in lemma 2.1, for every y 6 H the real valued r.v. _ ~l (Pn), y>
converges in probability to F(y). On the other hand for y E B’ it converges to ~, y> . .
Therefore F(y) = ~, y> m-a.a. for y ~ B~ , , implying that the law y of the r.v. ~ is a

countably additive extension of p* . 0
There is a slightly different version of the preceding proof, which implies the version of

Gross’ theorem given by Lindstr~m in [7], with a proof based on non-standard analysis.
THEOREM 3.1’. Let (Pn) C P be such that Pn~I and (3.1) holds, and let L =
B’ n (u , Let denote the collection of all cylinder sets in B based on

subspaces of L. Then ~* is o-additive on R( L) .
We remark that if the norm is measurable w.r.t. ~, the net (~ (P), P E ~) converges

in probability to a B-valued . Let v denote the law of { . We can find for any
finite dimensional subspace K of B’ a sequence P,~ fi I such that l(Pn) converges in
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where yl, ... , yp ELand E~B(IRp). We define the image measure v o 03C6-1 on RP and
(though  is just a cylinder measure on H) we define the image measure o03C6-1 by the
formula

~ o = ~ H : (~~ ... , ~~ , (F E B(RP)) . .

The result we have to prove amounts to the equality of these two measures on RP, and
to this order we need only show that they have the same characteristic function. Again
this amounts to showing that = Em for every y E B’ which is a linear
combination of yl, ..., Yp’ . Now by the definition of L all the y’ belong to Pm(H) for
some m, , and for all n ~ m we have fj(y) = . Since ~ 03BE in

probability the result is obvious.
In particular, if the norm is measurable w.r.t. ~c, the whole net (l(P), converges

in probability to a B-valued r.v. ~ . Therefore the measure v of the preceding proof doesn’t
depend on the approximating sequence, and we can find for any finite dimensional subspace
K of B’ a sequence Pn t I such that l (Pn) converges in probability to 03BE and .

Then ~~ coincides with v on S(K) so it is u-additive on R(B) (Lindstr~m’s result),
without any assumption on the continuity of p as in Theorem 3.1.

As an application of Theorem 3.1, we prove the following theorem which generalizes
Minlos’ theorem. The two classical cases correspond to .4i = ~, , Az being of Hilbert-
Schmidt type (Sazonov’s theorem) and to A2 = I , A1 Hilbert-Schmidt. The meaning
here is that trace class operators are "radonifying", , a.e. map cylinder measures with a
continuous characteristic functional into Radon measures. However, our hypotheses add an
unessential injectivity restriction, which could have been avoided if we had used seminorms
from the beginning.

THEOREM 3.2. Let A1 and A2 be two bounded operators operators on H such that A1
commutes with A2 and A~* (hence also Aa commutes with A1 and and is of
Hilbert-Schmidt type. We set for x E ~I

= 
a 

= 

and assume that ~~~~I ~ . Then if ~i is continuous on H w.r.t. the seminorm 
the lifting * of  on B is u-additive on R(B). . 
We might replace ~~’~~ by ~~’~~1 from start, and thus get a measure carried by the

completion of H w.r.t. a smaller space than B . Thus the weaker is (s.e. the
stronger is the continuity assumption on the characteristic functional), the smaller is the
support of the measure.
PROOF. Let Bl. and B2 denote the bounded self-adjoint operators Ai A1 and ,

Our hypotheses imply that Bi and B2 commute, and their product is a compact
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operator B . . Using a joint spectral representation of the Hilbert space H as a space
~Z(v) and of these operators as multiplication operators by bounded functions bl, b~ , we
can see that the product function 6 = only takes a countable set of values An (the
eigenvalues of the compact operator B) and each set ~b = ~,~~ is a finite union of atoms

of v except possibly for the eigenvalue 0 . Our hypotheses imply that Bi is injective. On
the other hand the hypothesis that the linear support of  is H prevents  from being
equal to 1 on a non trivial subspace, and therefore A2 from having a non trivial kernel,
and ~z from having the eigenvalue 0. Thus we may assume that ~ is purely atomic.
This implies the existence of an ONB (ej) of H in which the operators Bi = and

Bz = Ag Az are diagonal, with non-negative eigenvalues ~J and Explicitly
00 00

Ai Aix = ~ 7J x~ e~> e> ; ~ ~~ x~ es> .

;=1 J=1

Since C = A1A2 is a Hilbert-Schmidt operator and C*C = B1B2 , Tr(C*C) _ 03A3j03B2j03B3j
is finite. We set for n > 1
n

Pnx = ~ x, eJ .

J’=l

Then Pn~P and Pn fi 1. For n > m we have
n n

~Pnx - Pmx~21 = 03A3 03B3jx,ej>2 = 03A3 03B3jPnx - Pmx,ej>2 (3.2)
j=m+1

By the continuity of  w.r.t. we see that for every e > 4 there is a a > o such that,
for all n, m with n>m we have

n

E 03B2j Pnx - Pmx, s2 ~ | (Pnx - Pmx) -1 |  a ,

;=mt1

Consequently, by Lemma 2.4 we have for n>m

{x E H : ~Pnx - Pmx~ > t}  I ~Pnx - ~Pmx~1 > t}
n

= {x ~ H: 03B3jPnx - Pmx,ej>2>t2}

C(e+ 22 03B2j03B3j)~ t 

from which (3.1) follows. On the other hand, the semi-norm ~I’~~2 being weaker than
the norm ~~’~~, the continuity of p w.r.t. ~I’~~Z implies its continuity w.r.t. thus by
Theorem 3.1 p* is o-additive on . fl

The following theorem can be considered as another generalization of Minlos’ theorem, ,
since condition (3.4) below is weaker than condition (3.1).
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THEOREM 3.3. Assume that B is reflexive. H p is continuous on H and there exists a
sequence with Pn i ~ such that

lim lim ~~~ E H: : sup > N } _ ~ , ,
N-3oo n-too 

then p* is q-additive on .

PROOF. Let (eJ ) be an ONB of H such that Pi is the projection on the subspace
generated by (el, ... , We then have

~ .

;=1

Since by (2.1) and (2.2) we have

m{03C9 : sup ~l)(Pk) (w) ~ > H } _ p{.t: E H : sup > N} (3.5)

it follows from this and (3.4) that

m~w ; : sup I) ~l (w) II = °°,} = lim lim m~w : : sup (w)~~ > N ~ = o . .
t 

’ 

_ _ 

(3.6)
On the other hand by Lemma 2.1 F is continuous in probability on H . Consequently, for
any y E B’ we have m-a.s.

limsup = lim sup  sup~l(Pn)~~y~B’. (3.7)

Now we use a theorem from Badrikian [1] p.42, according to which our representation of
p may be chosen so that, for every 03C9 ~ 03A9, F(.) (w ) is a linear function on H (in this
representation, Q is taken to be the algebraic dual of H ). Let r be a countable dense
subset of B’ According to (3.6) the r.v. supk = C(w) is m-a.s. finite, and by
(3.7) we a.s. have F(y)(w)  for all yEr. Deleting a set of measure 0 we may
assume that these properties hold everywhere on H. Since F is linear and r is dense in
B’ we may extend the mapping F(. ) (w) to a bounded linear functional F(. ) (w ) on B’ ,
and the reflexivity of B implies the existence of a unique ~(w) E B such that

F(y) (w ) _ ~(w ), y> for y E B’ .

For every y~0393 we have m-a.s. F(y) = F(y) _ 03BE, y> , and therefore the right side is a
random variable. Therefore ~ itself is a B-valued r.v., and it only remains to prove that
its law v is an extension of p* Now the characteristic functions of v are equal
on the dense set I‘ C B’ and since p is continuous on H its restriction to B’ is also
continuous in the stronger topology of B’. . 0
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4. A simple proof of the Dudley-Feldman-LeCam Theorem

In this section we assume that ~ is Gaussian and the lifting to B of the cylinder measure
~ is u-additive on R(B) , and we prove that the norm is measurable. The symmetry
of  will be used in the proof, as well as the following characteristic property of Gaussian
measures : for any orthogonal system (hl, ... , hn) in H one has  (03A3i hi) = 03A0i(hi) ,

We begin with a few remarks. Since p* is u-additive on R(B) we extend it to a
probability measure on the Borel a-field B(B) and define a representation of  as follows : :
we take ~’, m) to be (B, ~(B), ~*) and the random variable { : : S~ ~ B to be the

identity mapping. Then F(y) = ~~, y> is well defined for Since B’ is dense in H

and  is continuous on H, Lemma 2.1 shows that F can be extended as a linear mapping
from H to which is continuous in probability. Thus we have defined a representation
of .

We also observe that, for every sequence P which increases to I and satisfies

(3.1) ( i.e. the random variables (from n = B to B ) converge in probability)
~ (Pn) converges to the identity mapping on B . Indeed, denoting the limit by q we have
q(~), y> _ ~~, y> for y ~ B’ .

The next result is the Dudley-Feldman-LeCam theorem for centered Gaussian cylinder
measures.

THEOREM 4.1. Assume that p is Gaussian. Then the following statements are equivalent
(i~ ~a* is u-additive on 

~~’~I is a measurable norm w.r. t. p,. .

(iii) There is a sequence Pn ’~ ~ such that (3.1~ holds.
(iv~ For any sequence Pn f I condition (3.1) holds.
PROOF. We assume (i), and we use the representation of p constructed above, with 0 =
B Let (Pn) C P increase to I , Set

~(Pi) . , ~~ = - ~~Pk-1)~ k > Z .

Our assumption on p and (2.1) imply that (~~) is a sequence of independent symmetric
B-valued random variables. We have for y E B’

n

lim E[exp(i 03A3 03BEj,y>)] = 
J=l

= lim n-ao

= .

Since p* is a measure, a theorem due to Ito-Nisio and to Buldygin (see [8], p. 2’ll) implies
that = converges to a B-valued random element ~ . Since the sequence
Pn was arbitrary we have proved (iv), and the net .t (P), converges in probability.
By lemma 2.3 the norm 11.11 is measurable. All the other implications are easy, and left to
the reader.
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5. Some remarks on the lifting of functions defined on H
Let (H, B, ~~ be a basic triple, and (SI, ~’, m) be a representation of IJ. Adapting an

idea of Kallianpur and Karandikar, we denote by L(H, ~~ the class of all real functions
f defined on H such that, for each PEP, , (P~~ is a random variable and the net

( f (~ (P~~, converges in probability to a r.v., which we call the li f ting of f and
denote by l. .

It is easy to see that the class .~(H, p) does not depend upon the choice of the
representation. If f is a cylinder function based on P(H) (i. e. f is 
then .

We shall consider the case where the norm 11.11 ( is measurable and p is continuous on H
and therefore p* is countably additive on ?~ (B~ . Then we may take f Z = B , and we are

lifting functions from H to B. The following theorems generalize to this situation, with
simpler proofs, results of Gross concerning abstract Wiener spaces.
THEOREM 5.1. For any continuous function g defined on B, , the restriction f = 9~H
belongs to L(H, ~~ and the lifting of f is a.s. equal to g . .

PROOF. Apply 2.3 (a), the remarks at the beginning of Section 4, and Lemma 2.3.
For the next result, due to Gross and proved here in a simpler way, we use the following

notation. Given P ~ P with P(H) ~ P’, we define for x E B

_ 

n

, (5.1)
j=1

where (ei, ... is a ONB of P(H~ . It is easy to see that Pjc doesn’t depend on
the choice of this ONB.

THEOREM 5.2. Assume that p is Gaussian and the norm is p-measurable. Then for
any continuous function g defined on B and any sequence P With Pn ~’ ~ and
Pn(H) C -S~; , g(Pn) converges in probability to g as n --~ oo .
PROOF. It is easy to see that nx = and by Theorem 4.1 (3.1) holds. Hence
by the remarks at the beginning of Section 4 we have -~ I, the identity mapping
of B . .
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