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SOME COMMENTS ON QUANTUM PROBABILITY
by K.R. Parthasarathy

Indian Statistical Institute, Delhi Centre
7 S.J.S. Sansanwal Marg, New Delhi 110016, India

This is a short expository lecture* aimed mainly at an audience of classical probability
theorists. Strict adherence to rigour is not maintained.

The expectation of a real valued random variable f on a sample space ~ = {l~... ~n}
with probability distribution (pi, p2, ... pn) can be expressed in two different ways

E/=Ep~O)=(~p2...~.)//(i)B
/(2) )f(n) ~

/pl 0 0 ... 0 B //(!) 0 ... 0 B

= Tr 
0 p2 0 ... 0 0 f(2) ... 0

0 0 0 ... pn 0 0 ... f(n)

If (03A9,F,IP) is a general probability space and f : 03A9 ~ IR is a random variable we can
write

(2)
where p is the orthogonal projection on the one dimensional subspace in the Hilbert

space M = L~(P), , M~ is the selfadjoint operator of multiplication by f and 1 denotes
the constant function with value unity.

Thus expectation can be expressed in terms of trace when the probability measure
and random variable are interpreted as suitable operators in a Hilbert space. If p is a

nonnegative selfadjoint operator of unit trace and A is a selfadjoint operator in a Hilbert
space M then we can construct a complete orthonormal basis {ej such that

~=P~~>0, ;=1,2,..., 
and write

Tr(~)=E,P/~~~~~~E,~~~)>
______ 

=1~’~) (3)
* Delivered at the University of Strasbourg on 9/6/88
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where p’ is the one dimensional orthogonal projection on the subspace 
in M. In other words one can view expectation as a diagonal matrix element of a
suitable selfadjoint operator in a suitable Hilbert space. Such an interpretation enables
us to widen the scope of classical probability by including in ~1) the case of nondiagonal
Hermitian matrices or in (2) the case of selfadjoint operators which are not necessarily
multiplication by functions. To formalize this procedure we introduce a definition.
DEFINITION. Let ?~ be a complex separable Hilbert space. Any nonnegative selfadjoint
operator of unit trace in ?~ is called a state. Any selfadjoint operator in 1l is called an
observable. If p is a state and A is an observable the expectation of A in the state p
is defined to be the (real) scalar Tr(pA) whenever it exists. When A is an orthogonal
projection it is called an event (or the indicator of an event). The quantity is

called the n-th moment of A in the state p . The function ~p~t) = is called
the characteristic f unction of the observable A in the state p . If A = x PA(dx) is the
spectral resolution of A then for any Borel set E C R , is the event that the value

of A lies in E Then the probability measure E -~ on the Borel ~-algebra
of 1R, is called the distribution of the observable A in the state p. .

If A has countable spectrum ...} then A is an observable assuming the
values xJ with probabilities where is the projection on the
eigensubspace of A for the eigenvalue x j. When dim ?~ = d  oo every observable A
assumes at most d values, namely the eigenvalues of A . However, in this case the dimension
of the real linear space of all observables is d2 . This is to be compared with the fact that
on a sample space of d points every random variable assumes at most d values, but the
linear space of all real valued random variables has dimension d. .

We denote by the set of all states in M and by the space of all observables
in x . . is a convex set whose extreme points are one dimensional projections, called
pure states. Such a pure state is determined by a unit vector up to a multiplicative constant
of modulus unity called phase factor. By abuse of language any unit vector u in is called
a pure state; truly speaking it stands for the one dimensional projection on the subspace

.

If dim M = d  oo then as we had already remarked is a real linear space of
dimension d2. If dim ~I = oo an observable is said to be bounded if the corresponding
self-adjoint operator is bounded. The set of all bounded observables is a real linear space.
If A, B are any two bounded observables then AB + BA and i [A, B] = z (AB - BA)
are also bounded observables.

If u is a pure state, A ~ , Dom (A) (the domain of A ), then the expectation
of A in the state u is m = u, Au> . If u E Dom ~A~) then the variance of A is equal
to u, A2u> - u, Au>~ _ ru)u~12 , under the convention that the scalar ~n and
the operator m7 are denoted by the same symbol. For any two bounded observables A, B
and any pure state u one has the inequality 

’

] (4)
where m = u, Au>, , m~ _ u, Bu> . If the spectrum of a [A, B] is contained in the
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set (z : c} then the product of the variances of A and B in any pure state is not
less than c’/4. This is a mathematical description of Heisenberg’s uncertainty principle.
It must be compared with the fact that the convex set of all probability distributions
has extreme points which are degenerate distributions and the variance of every random
variable with respect to a degenerate distribution is zero.

For solving problems in quantum probability it is often useful to identify an observable
A with the one-parameter group !~ = exp itA, t ~ R of unitary operators. Very often
one comes across a strongly continuous unitary representation ~ ’2014~ {7~ of a Lie group
G in the Hilbert space M under considera.tion, and each one-parameter subgroup (~) in
G leads to a one-parameter group ~ = !7~ of unitary operators whose Stone generator
provides an observable of (physical) significance. If u is a pure state, then the positive
definite function M, Ugu> = provides aU the information about the distributions in
the state u of these observables.

We shall now examine how different probability distributions, with support in a subset of
cardinality at most n in the real line, can be realized by observables in the n-dimensional
Hilbert space C~ in the pure state

1
0 

u= 0 (5)

0
where any element of C" is expressed as a column vector. To this end consider a

probability distribution p1,p2,... ,pn over {x1,x2,...,xn} C TL . Define the complex

numbers 03C8j = expi03B8j. where 03B81,03B82,... ,03B8n are arbitrary angles. Consider any unitary
operator U of the form

* ... *

~0 * ... *

U = 

03C8n * ... *

whose first column in the standard basis of C" consists of . Consider the
hermitian operator

x1 0

X= U~ (x2 ) U

0 xn
where t denotes adjoint. If u is defined by (5) then

~X~>=~.p~, > r=l,2,....

In other words the observable X in the state u has the same moments as the random
variable assuming values j~... ,j~ with probabilities pi,... respectively. The abun-
dance of choice for the unitary operator U indicates the tremendous flexibility in realising
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a concrete statistical model in the context of quantum probability. As U varies over the
unitary group of (Co, any probability distribution over xl, x2, ... , xn is realised by the
observable X in the fixed state u. Let d = dim1l  oo Consider k linearly independent
observables Xl, X2, ... , Xk in M. For any state p set

03C6(t1,t2,...,tk) = Tr(03C1ei(i1X1+...+ikXk)) ; tj~IR (6)

p is a real analytic function of k variables, p(0) = 1 and for fixed (tl, t2, ... , t~~, ,
positive definite function of t. If the commute then p is

positive definite in and hence (by Bochner’s theorem) turns out to be the characteristic
function of a probability distribution in Since in this case Xl, X2, ... , Xk can

be simultaneously diagonalized by a single orthogonal transformation, the corresponding
probability distribution in has at most d points in its support. In general p need not
be the characteristic function of any distribution in We do not seem to know which

complex valued functions p of k real variables can be expressed in the form (6).
If A, B are two bounded observables and p is a state in ~I, then the covariance between

A and B in the state p is the quantity Cov(A, B~ = Tr(pAB) - Tr(pA) Tr(pB). In
general Cov(A, B~ is complex. If Al, A2 , ... , are any k observables, then the matrix

= (Cov(A;, is positive semidefinite, and the observables are said to be mutually
uncornetated if = 0 for i ~ j . .
An observable A is called a spin observable if its spectrum is the two point set ~-1,1~ .

Suppose dim H = d  oo and p is the state (which is the analogue of uniform
distribution in a sample space of d points). In ? one can find r~-1 mutually uncorrelated
observables of expectation 0 in the state p. This is because Tr AB = A, ~> is an inner
product in the Hilbert space of dimension We do not know the maximal number

of spin observables of expectation 0 which are mutually uncorrelated in the state p. When
d = 2r this maximal number is ~ - 1. This can be seen as follows. Identify ’H with the
r-fold tensor product C~ ~ ... @ C . Consider the 2x2 matrices op =identity and

= 0 1 o) ~ 02 = . 0 : ~ 03 = O 1 -1 . 0 (7)

02, 03 are the well known Pauli matrices whose eigenvalues are ~1. We have p =
First observe that J3 are mutually uncorrelated spin observables

of expectation 0 in the state oo . Let S denote the set of all observables of the form

AZ ~ ... @ Ar where each A; is any one of the operators o~ , j = 0,1, 2, 3 but not all
the A;’s are equal to Then S is a set of d2 -1 mutually uncorrelated spin observables
of expectation 0 in the state p.

The problem concerning spin observables mentioned in the preceding paragraph has a
classical analogue which is also open * . Suppose H is an n point sample space with uniform
distribution and n is even. What is the maximal number of mutually uncorrelated random

* Marshall Hall, Combinatorial Theory, John Wiley &#x26; Sons, New York 1967, Chapter 4,
p.206.
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variables of expectation 0 on ft assuming the values ~1 ? This is related to the problem
of Hadamard matrices. If n is divisible by 4 it is a conjecture that the maximal number
is n - 1. If n = 2r the conjecture is easily shown to be true by considering the matrix

1 -1 of order 2 whose first row consists of 1’s only, remaining rows consist of
JL1 and any two rows are orthogonal.
We now illustrate one of the significant qualitative features of quantum probability

by constructing two spin observables A, B such that the spectrum of A + B is the
interval [-2,2] Let

~I = L2 [ 0, 2 ~c ] ~ ~~ [ 0, 2~r ] , ,
so that any element of 1l can be expressed as a column vector (’L~ of two functions of

[0, 2a~] . Define

A f = ( f . B (f(03B8)) = cos 8 sin 03B8) (f(03B8)) .9 - 9 i cos 8 - cos 9 g 
’

It is clear that A and B are observables with spectrum equal to the two-point set ~{-1,1~ . .
The operator A + B which is matrix multiplication b 1 + cos 6 has

Lebesgue spectrum of multiplicity 2. In any state A and B have a distribution with sup-
port ~-1,1}, but A+B has an absolutely continuous distribution in the interval [-2, 2] . .

There do exist well known examples (from physics) of unbounded observables A, B with
absolutely continuous spectra such that for every r > 0 A+eB is defined as an essentially
selfadjoint operator whose closure has discrete spectrum.

The quantum probabilistic analogue of the cartesian product of Borel spaces is the tensor
product of Hilbert spaces. If i =1, 2, ... , n are Hilbert spaces and p; is a state in ?~,
for each i then p = pl ~ p2 ~ ... ® pn is a state in H = H1 ~ H2 ~ ... If P; is
an event in for each i and P = Pi o P2 ~ ... ~ Pn then P is an event in ~ and

= 
.

If ~t denotes the algebra generated by all bounded observables of the form A1 ~
A2 @ ... ~ A; ~ I ~ ... ~ ~, ~ denoting the identity operator on any Hilbert space,
then Bi C 82 C ... ~" and the hermitian elements of ~s describe all the bounded
observables concerning the "systems" described by H1, H2, ... . In other words the

increasing sequence ~~, i = 1, 2, ... , n provides the analogue of a filtration in classical
probability.
We now make a remark concerning the standard choice of complex Hilbert spaces instead

of real ones for doing quantum probability. If H2 are two real spaces of dimension
dl, d2 respectively then

dim Q(Hi) = di(di
+ 1) 2,i = 1, 2 ; dim H1 ~ H2 = d1d2(d1d2

+ 1) 2

and therefore dim(H1 ~ H2) > for dl, d2 > 1. . By our method of
putting two quantum systems together through tensor products we seem to get more
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observables than we should from a purely dimensional point of view. On the other hand if
H1, H2 are complex Hilbert spaces then dim Q(Hi) = , 

=

dim(1lI). and the anomaly disappears.
The analogue of a Bernoulli trial in quantum probability is the Hilbert space ~2 with

the pure state m. . Thus n independent Bernoulli trials are described by the n-fold

tensor product ... ~ ~~ and the pure state 0 1 t~ ... ~ 4 . This Hilbert space is
called baby or toy Fock space in [5]. By letting and making appropriate passage to
limits it is possible to construct objects like Fock space, quantum Brownian motion and
Poisson process, quantum diff usions, etc. In such a context the Poisson process may be
viewed as a "perturbation" of Brownian motion just as the harmonic oscillator in quantum
mechanics is viewed as a perturbation of a "free wave". In classical probability one builds
the Gaussian model from Bernoulli trials. Quantum probability enables us to construct
discrete models like Bernoulli and Poisson distributions from the Gaussian model in a

natural way. Unfortunately this cannot be achieved in this short lecture. We have given at
the end some of the references where an enthusiast may find more detailed explanations in
the light of my comments.
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