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A FORMULA FOR DENSITIES OF TRANSITION FUNCTIONS

YAN Jia-An

Institute of Applied Mathematics
Academia Sinica, Beijing, China 1

SUMMARY. Let ( be a measurable forward ( resp. back-
ward ) transition function on a measurable space (E,E) and let (~,t)
be a family of a-finite measures on E. Under suitable assumptions
of absolute continuity and duality, Wittmann ~1~ has constructed den-
sities 

satisfying identically the Chapman-Kolmogorov equation p(s,t,x,y)=
for srt . In the present paper we give

a simpler proof of this result under weaker hypotheses. We give an expli-
cit formula ( cf. (4)) for the density. In the last section we construct
a good density for any transition function, without duality hypotheses.

1. THE MAIN RESULT

Let / be s4) and (E,E) be a measurable space. We con-
sider two families of kernels on E ,

(Ps t) and (Ps t) indexed bY /
such that for srt 

’

(1) s,t " , 

(Ps t~’ (Ps t~ are respectively called a forward, resp. backward transi-
tion function. Let ()i-t-) be a family of a-finite measures on E. Through-
out the sequel we assume that Ps t(x,.) is t-absolutely cont inuous
and s-absolutely continuous for all st, xeE, and that

(P~,t) and (P s, t) are in duality w.r.t. (~,t~, i.e.

(2) I f Ps tg d~s - ~ Ps tf S ( S", 

where E stands for the set of all non-negative measurable functions

on E . We don’t assume the transition functions to be submarkovian .

We choose preliminary versions of the transition densities as fol-

lows : pst(x,.) is a density of Ps,t(x, ) w.r.t. ~,t , and 
a density of w.r.t. s. Our starting point is the following
remark :

LEMMA 1. For fixed x,yeE, doesn’t depend on

r f or 

1. This work was supported by the Foundation of Academia Sinica for
Scientific Research. The author thanks P.A. Meyer for comments.
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Proof. Let v be such that srvt . Let us prove first that

(3) 
’ 

To see this, multiply both sides by f(w) (feE ) and integrate w.r.t.
p (dw). The right side becomes P r, t(y,f) A by definition of p rt . The

left side can be written ( if we set 

I f P  = ( dual ity )

By definition is the measure and by (1) the right side
is equal to Pr , t(y,f).

We now prove the lemma : multiply both sides by psr(x,w) and integra-
te w.r.t. r(dw). On the left we replace psr(x,w)r(dw) by 
and

jPs 
= 

On the right side we have and the lemma is

proved.

Given the lemma, we may set without ambiguity

(4) for srt

Some comments about measurability are in order : if the a-field E is

separable and all measures ..(x,.), U ~(x,.) U are bounded ( not neces-
sarily of mass 1 ) it is well known that and can be

chosen to be ExE-measurable, and by Fubini’s theorem p(s,t,.,.) is au-
tomatically ExE-measurable. On the other hand, serious difficulties
can arise if the transition functions consist just of a-finite measures.
The above hypotheses on E and the transition functions will be assumed
in the remainder.of this note - but see however lemma 2 below, and the

end of the paper .
Our main result is the following :

THEOREM 1. The function p defined by (4) satisfies the following pro-
perties, which characterize it uniquely : for srt

(5) 

(6) p(s,t,x,y) = .

If furthermore P~ -~(x,.) is measurable in (s,x)e]-oo,t[xE and

Pt u(x,.) measurable in for all fixed t,x, the transi-
tion density p(s,t,x,y) is jointly measurable on 0394 E E.

Proof. Let p and p’ be two functions satisfying the above properties.
For srt and fixed x,y , we 

P(s,r,x,.)=p’(s,r,x,.) ~ 
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since these functions are the densities of the same measures w.r.t.

. Using (6) we find that p(s,t,x,y)=p’(s,t,x,y).

Uniqueness being established, we prove the first half of (5) ( the

second half is a consequence of (4) and (3). For we have from (4)

 

. 

=  psr(x’’)’ Pr,tf 

(5) being proved, note that the function p defined by (4) doesn’t de-

pend on the choice of the preliminary versions cf the densities. We

may take now psr(x,z)=p(s,r,x,z) and prt(y,z)=p(r,t,z,y), and (6)
follows from (4).

It remains to prove the measurability. In formula (4) fix r rational,

and choose the preliminary versions such that is measurable

on and measurable on Jr,oo [xExE . Then it follows

that p(s,t,x,y) is jointly measurable on where ~r is the set

of all (s,t) such that srt. Taking an union over r gives the joint

measurability over A .

REMARK. . The additional hypotheses done by Wittmann in [1] were the fol-

lowing ( mostly needed to use resolvent t echniques )
- The family (l1t) was assumed to be measurable, and "uniformly o’-finite",

i. e. l1t(f) was assumed to be locally bounded for some 
f>0.

- p s,t (x,.) and Ps , t(x,.) had to be jointly measurable and of 
mass l.

We are going now to state the version of Theorem 1 which applies 
to

the homogeneous case.

Let (Pt) and ( P t) be transition functions on E, which are in duality
with respect to a o-finite measure 11, and absolutely continuous with

respect to it. We define 
_ _

, st ) .

Then we may apply theorem 1, and deduce from it a transition density

p(s,t,x,y) given by (4). In this formula, we may choose preliminary

versions psr(x,z) and depending only on r-s, ’ t-r, ’ and then it

is clear that p(s,t,y,z) depends only on t-s. Then we have proved

THEOREM 2. Let (Pt) and (Pt) be transition functions in duality w.r.t.
11 and absolutely continuous w.r.t. it . Then there exists a unique

function p(t,x,y) on measurable in (x,y) for fixed t,

such that

(7) 
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(8) p(s+t,x,y) = 

Furthermore, if the two transition functions are measurable (in (t,x))
the transition density is jointly measurable.

In particular, a symmetric transition function which is absolutely
continuous w. r. t. ~, has a s~ymmetric trans it ion density.

Dynkin has proved in [2], for the homogeneous case, a result which

is partially stronger than Theorem 2. Namely, he doesn’t assume the
existence of the dual transition function (Pt), but only the absolute
continuity of (Pt) w.r.t. ~ ; ; then he constructs a transition density
p(t,x,y) satisfying (8) and deduces from this the existence of a dual
transition function ( neither p(t,x,y) nor Pt are unique ). Dynkin’s
proof is valid for a measurable space which isn’t separable, provided
one can show the existence of a preliminary version q(t,x,y) of the
density Pt(x,dy)/(dy) which is jointly measurable in (x,y) for fixed
t . The following lemma ( due to Ma [3] ) shows that such a version
always exists. See the end of the paper for the non-homogeneous case.

LEMMA 2. Let (Pt) be a transition function on an arbitrary measurable
space (E,E) which is absolutely continuous w.r.t. a a-finite measure ~
on E. Then there exists a version q(t,x,y) of Pt(x,dy)/(dy) such that
for any t>0, q(t,.,.) is measurable on ExE. If furthermore (Pt) is mea-

surable, p(t,x,y) can be chosen to be measurable on 

One may note that this lemma also frees theorem 2 from separability
assumptions.

Proof. For n=1,2,... define on ExE a measure

This measure is absolutely continuous w.r.t. x, and hence has a densi-
ty an(x,y) measurable on ExE . One has for fixed feE

’~(dz)-a.e.
If we set 

for nt 1 1 n-1
it is easy to see that q fits our requirements.

2. AN APPLICATION TO FEYNMAN-KAC TRANSITION FUNCTIONS

Assume now that the transition functions ( P 
s t ) and ( P ) are

markovian ( the submarkovian case can be reduced to the markovian case
as usual ). Let (Xt) be a Markov process on a probability space 
with these forward and backward transition functions. This means 

~~~
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a.s. P 

P s, t(Xt,B) a.s. P

Put and Then there exist probability mea-

sures- Ps,x on F~s and - F~t such that

Ps,x(Xt~B)=Ps,t(x,B) , Pt,x(Xs~B)=Ps, t(x,B) .
We assume that the transition functions (PS t) and (P s, t) satisfy the
hypotheses of section 1 With respect to a family ( t) of 03C3-finite mea-

sures on E, and denote by p(s,t,x,y) the corresponding transit ion den-

s ity.

Now let V(s,x) be a bounded Borel function on RxE. Put
t

(9) es t - exp s V(u,Xu)du
( 10 ) , t)

( Some measurability is necessary to define (9), and some regularity

on the space (~~,~) is needed to guarantee the existence of the measures.

We don’t want to insist on technical details of this kind ). It is

well known that and are forward ( resp. backward )

transition functions : we call them the Feynman-Kac transition func-
tions associated with V(s,x).

LEMMA 3e For any we have
~ 

t

(11) ~ s~t f(x) _ + 

= P S, tf(x) + s ,~ 
C.1~) Qs + s ~ 

_ tf(x) + °

Proof. We have

(l3) 1 + t0V(u,Xu)es,udu = 1 + 

The first ( resp. second ) relation (11) follows from (10) and the

first ( second ) relation (13). The proof of (12) is analogous.

It is well known that the duality of transition functions implies

a time reversal property for the process itself, namely

LEMMA 4. Let Z be a non-negative r.v., measurable w.rot. 

and let Then we have

( 14 ) fit ’ f Cy) e
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Taking Z=e s, t we have that (Qs, t) and (Q s, t) are in duality w.r.t. (pt).
Since absolute continuity is obvious, we can apply theorem 1, and cons-

truct a transition density q(s,t,x,y).
The main result of this part is the following theorem.

THEOREM 3. The transition density q(s,t,x,y) satisfies the following
equations

t
(15) q(s,t,x,y) - p(s,t,x,y) +  duq(s,u,x,z)V(u,z)p(u,t,z,y) u(dz)
(16) q(s,t,x,y) = p(s,t,x,y) + s 

s

Proof. We are going to prove (15), the proof of (16) being analogous.
We denote by the right side of (15). According to (11) and
(12) we have

Then according to theorem l we have, for 

(17) = = 

Therefore

= + 

= d (dz) +
+ trduE Qr,u(z,q(s,r,x, .)V(u, z) Pu,t(y, dz) ( from (17)).

On the 2nd line we replace rsdu q(s,u,x,z)V(u,z)p(u,r,z,w) u(dz) by
by definition of q ( remembering that in

the first integral ). The line has become

f (dw)(18) E A 
N 

r

= p(s,t,x,z)
On the other hand the last line can be written

(19) r j du  Pu t(Y, [ q(s,r,x,.)V(u,.)])
= Qr , t(y, q(s,r,x,.)) - r 9.Cs,r,x, . ) ) from (12)

The first term on the right is q(s,t,x,y)
since q(s,r,x,.) is a density for Adding then (18) and (19)
we get simply the theorem is proved.

Please see also the additions on next page.
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NOTE ADDED IN PROOF

The following improvements to the text couldn’t be added in time to the
paper. We apologize to the reader for the inconvenience.

1. In theorem 1, we are going to show that the measurability of the
transition density ps ~t( o , . ) on is true without any separability

assumption as well as the joint measurability of p (.,.) if the addi-
tional properties of measurability in time hold as stated in thm. 1.

Four uv we define a measure on ExE by

and let S(u,v,x,y) be a density of vu v Then for any

fE+ we have

u~, ,

which impl ie s that f o r 

= jPs ,vf(z)
= Ps,vf(x)

since Ps,u(x,.) u . This means 

jPs ps 
from which and from (~+) it follows that

(’’) 
This implies that p(s,t,.,.) is ExE-measurable.

Now assume that (Ps t) and (Ps t) satisfy the additional measurability
condition stated in the theorem. Then from (~=) we see that p(s,t,x,y)
is measurable on 0394u,v E E for uo, where = Taking
an union over rational (u,v)ea gives the joint measurability of
p(s,t,x,y) on 0394 E E.

2. In this section we are going to show that without assuming the exis-
tence of a dual transition function, any transition function ,(PS .-.)

always has a transition density p(s,t,x,y) which is measurable in (x,y)
and satisfies the Chapman-Kolmogorov equation. This extends the result

given in ~2 for the homogeneous case.
We would like to state our result in the most general case. For

tR let (Et,Et) be a measurable space and let t be a 03C3-finite measure

on it. Assume that transition function such that

Ps for all (s,t), xEs . For uv define a measure on
Eu Ev03BDu,v(dx,dy) = Pu,v(x,dy) u(dx)
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and let be a density of W.r.t. 
,

LEMMA 5. Set for S«t

zo> p * f 
S, E S’

u

Then ps , t(.,.) is measurable and 

Proof. For any we have

Et03B2(u,t,z,y)f(y) t(dy) = Pu,tf(z) t(dz)-a.e.

Integrating both sides on E w.r.t. P (x,dz) we getU S,U

( * P S, ff(X) .
The measurability is obvious on (20).

THEOREM 4. There exists a function ps.t(x,y) on measurable in

(x,y) for fixed (s,t), such that for 

zi> , t(X,dy) * 

(22) p(s,t,x,y) = 

Moreover, if we set

- 

* 

then (P s,t) is a backward transition function in duality with (P 
W*"*t* 

Proof. The following proof is inspired by Dynkin [2]. For we

define by 20> with u=s+t>/2 for example. set for ur«

(23) = fP (X,dy)p (y Z) .
Since we have for usv

= 

(verification left to the reader), one sees easily that for 

(z4> f = f 
~ 

Therefore, if we set

25> N = pru,v x,z>=p x,z> Yu,r rationals,~ ~’~ ~’~ ~ 

1
then NvEv and = 0 .

Now let (u,v)eA and let r and s be rationals such that ur«v.
Then for all zNv and xEu we have by (25) and (23)

P§ ,v(x,z) = Pu,r(x,dy)pr ,v(y,z) = fP , , y z> -
= Pu,r(x,dy)Pr,s(y,dw)ps,v(w,z) = Pu,s(x,dw)ps,v(w,z) =

= 

’ ’ ’ ~’
= 

u,v (x, z ) .
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Thus, for zNv, xEu pru,v(x,z) doesn’t depend on the rational re]u,v[,
and we denote it by p(u,v,x,z). For every vR we choose arbitrarily
a zvNv and put, if xEu and zNv

p(u,v,x,z) = .

Then p(u,v,x,z) is well defined on 0394 Eu Ev . It is easy to see that all
our requirements are fulfilled.


