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Pathwise approximations of processes

based on the fine structure of their filtrations

Walter Willinger Murad S. Taqqu*
Bell Communications Research Department of Mathematics

Morristown, NJ 07960 Boston University
Boston, MA 02215

ABSTRACT

A stochastic approximation technique is developed so that an R -valued random
process X in discrete or continuous time can be viewed as a limit of "simple" quantities
(~~n ~ (n ? 0), subsequently called "skeletons". The important feature of the approxima-
tion is that convergence is understood in the strongest possible sense, not only for the

processes (where pathwise convergence is required), but also for the underlying filtra-
tions (for which a natural convergence concept is introduced): the simple processes ~~~ 1
take finitely many different values at any point in time, change values at a finite number
of times and possess an information structure (filtration) that is discrete and finite. The
constructions provide a tool to explicitly deal with the fine structure of a given filtration
and can be used to gain insight into the dynamic nature of the underlying process. The

sequences of skeletons that are constructed (i) approximate a given random process X

pathwise and (ii) preserve structural properties of X (for example, (sub-, super-) mar-

tingale property, martingale representation property, Markov property) by means of con-

vergence of information. This ability to "deal with information" is illustrated with a

variety of examples, including path wise approximations of standard Brownian motion in
one and higher dimensions.

* 
Research supported by the National Science Foundation grant ECS-8696-090 

at Boston University.



543

1. Introduction

There exist several different kinds of probabilistic convergence that can be applied
when approximating a given stochastic process. The concept of weak convergence (for
which Billingsley (1968) is the standard reference) is certainly the most popular and

widely used concept. It considers two processes identical if they have the same function

space distribution. One of the main uses of weak convergence is in studying the distribu-
tions of functionals of sample paths. However, there exist interesting objects that cannot
be represented as a functional of sample paths; for example, the optimally-stopped value,
g (Y) = sup{E [X~. ] T a stopping time of a process X (see Aldous ( 1981 )).

The concept of extended weak convergence, developed by Aldous (1981), is capable
of approximating optimally-stopped values such as g (X ). Extended weak convergence
was partly introduced in response to the modem French general theory of processes (a la
Dellacherie and Meyer (1978, 1982)). Whereas the general theory stresses sample path
aspects of stochastic processes and emphasises the importance of the underlying filtra-
tions, ordinary weak convergence is concerned with function space distributions and can-
not distinguish between certain processes with dramatically different dynamic structures
(see Aldous (1981)). Extended weak convergence connects these two theories by consid-
ering two processes "essentially" the same if their corresponding prediction processes
(see Aldous (1981)) have the same function space distribution. Consequently, a

sequence of processes (with corresponding filtrations) converges in the extended weak
sense if the associated sequence of prediction processes converges weakly. One of the
attractive features of the notion of extended weak convergence is a series of "almost

structure-preserving" results that take the following form.

(*) If a sequence of processes approximates a given process X in the extended
weak sense and X has a certain structural property (for example, (sub-,
super-) martingale property) then this property "almost" holds for each pro-
cess "far enough out" in the approximating sequence.

There are, however, (limiting) processes X with structural properties which cannot
be even "almost" preserved along sequences that approximate X in the extended weak
sense. One such example concerns d -dimensional Brownian motion ( 1  d  ~) and its

property of completeness, also called the martingale representation property. (Generallyattributed to Ito (1951), different proofs of this property appear in Kunita and Watanabe
(1967), Clark (1970), Dellacherie (1975).) The completeness property is important, for
instance, in the context of the theory of continuous trading where one would like the
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processes approximating d -dimensional Brownian motion to also be complete (see
Harrison and Pliska (1981,1983), Kreps (1982), Duffie and Huang (1985)).

The purpose of this paper is to develop an approximation scheme for stochastic

processes that emphasizes the stronger "structure-preserving" condition (**).

(**)If a sequence of processes approximates a given process X and X has a
certain structural property, then this property holds as well for each pro-
cess along the approximating sequence.

In a subsequent paper (Willinger and Taqqu ( 1987)) we use the approximation scheme to
show that the martingale representation property can be preserved along approximating
sequences and to construct stochastic integrals sample path by sample path. This allows
us to provide a solution to an open problem stated in Kopp ( 1986, p. 169).

We concentrate here on processes X = : o _ t _ T) with continuous sample paths
and postpone a discussion of processes with jumps to a later paper (see Section 5.4, how-

ever, for a process with jumps at fixed points in time). Strictly maintaining a structural

property of X for approximating processes requires explicit manipulation of the fine
structure of the filtration F associated with X. We construct simple approximating
processes ~~n ~ and filtrations (n >_ 0) such that the pairs (F~n ), ~~n )), called skeletons,
converge to (F, X ) in the following two ways:

(i) pathwise convergence, that is,

lim sup ~ Xt (~) - ~,r’~ ) I = 0 ) ) = I , ,
n -~oo 

and

(ii) convergence of information, that is, for each o _ t _ T and for each n >_ 0,

~t = a( U ~ ... ~ ~n ) ~ ... ~ (up P -null sets)
n ?0

This strong dual form of convergence guarantees condition (**) for the approximations
we construct.

The rest of the paper is organized as follows. In Section 2, we derive our basic

building block; namely, a method for simultaneously (i) approximating almost surely an

arbitrary random vector X by a particular sequence of simple random vectors, and (ii)

approximating, 6(X ), the a-algebra generated by X, by certain finitely generated o-

algebras. This approximation scheme is first applied to a simple change of measure
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problem and then used in Section 3 to construct skeletons of discrete-time stochastic

processes X = (Xt : t = 0,1,..., T ). Examples are given which demonstrate the structure-

preserving nature of the skeletons. Section 4 generalizes the skeleton-technique to the

case of continuous-time stochastic processes X = : 0 _ t _ T ) with continuous sample

paths. We present explicit constructions of skeletons which again maintain a given struc-

tural property of X. The ability of the skeleton-technique to explicitly control the flow of

information is illustrated in Section 5 with several examples of skeleton-approximations
of well-known stochastic processes with quite different dynamic natures.

2. An almost-sure approximation scheme for random vectors

In this section, we develop an almost-sure approximation technique for random vec-
tors X and their associated 6-algebras a(X) which serves as the foundation for our subse-

quent constructions. As an application, we solve a simple change of measure problem
and illustrate why the information contained in the filtrations along the approximation
suffices to solve problems about X .

2.1 Notations, definitions, and a construction

Consider an arbitrary d -dimensional (d > 1), half-open rectangle R in Rd and let
y = (y 1, y 2 ,..., Y d) denote an interior point of R. Then y gives rise to a natural partition
of R into D = 2~ half-open, d -dimensional subrectangles R ( 1), R (2) ,..., R (D ), where
for i E ( l, 2,..., D },

.

Here, x0(i )y is shorthand for x~ > y~ or x~ _ y~ depending on whether the jth digit in
the binary expansion of i -1 is 0 or 1 (j = l, 2 ,..., d ). The use of A(.) is convenient for

describing in a unique manner the position of subrectangle R (.) relative to the point
y E R. For a simple illustration, see Figure 2.1.1.

Next, we introduce a particular indexing scheme for systematically enumerating all
the pieces obtained by partitioning a rectangle in Rd successively into smaller and
smaller subrectangles. For n > 0, let M (n ) denote the set of all D -adic words of length
n (i.e. all words of length n over the alphabet {1,2 ,..., D = 2d } ). We define M (n ) recur-
sively as follows:

(0) .
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Figure 2.1.1 Partition of a rectangle R (d = 2, D = 22 = 4).

(1) For n > 0, assume defined and set

. 

,

(Here, for m 1 e M (n 1) and m 2 e M (n 2), m 1 m 2 denotes the word of length n 1 + n 2 in

M (n 1 + n 2) which is the concatanation of the words m 1 and m 2. Note that

0m = m f~ = m. ) For example, in the case d = 2, we have

M (o) _ { ~ }, M ( 1) _ { 1, 2, 3, 4 }, M (2) _ { 11,12,13,14, 21, ..., 43, 44 }, etc.

Lastly, fix an arbitrary probability space (Q, ~, P )and consider an integrable random

variable X with values in Rd (1 _ d  that is, assume that Ep [ I X ]  ~ where

Ep [.] denotes the mathematical expectation with respect to the probability measure P .

We call a random variable simple (or elementary) it it takes only finitely many values.

Our goal is to construct a sequence of simple random variables Xn with

values in Rd and a sequence of finitely generated, nondecreasing a-algebras ,~n
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such that

(i) Xn X P -a.s. as n -~ oo,

and

(ii) 6{ U = 6{X ) (up to P -null sets).
n ?0

The idea of the construction is to subdivide Rd (and consequently Q) successively into
smaller and smaller "pieces". This "size" of each piece will be determined by the random
variable X to be approximated and the underlying probability measure P. .

The following recursive procedures uses the notation introduced above and com-

pletely describes our approximation scheme.

Explicit construction of the approximation scheme for X

(0) For n = 0, set .

R (f~) = Rd ,

A {~) _ ~ ~

and define

A0 = {Ø, 03A9} ,

(1) For n > 0, assume that {R(m): m E M(n-1)}, (A(m): m E M(n-1)}, 
and are already defined. For all m E and for i =1, 2 , ..., D set

{x E if P[A(m)] > 0

R(mi) = 

R (m ), if P [A (m )] = 0

(where x (m ) denotes the value of on A (m )),

R(mi)} ,
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and define

~n - ,

(11P [A (m )]) E [X ; A (m )J, E A (m ) for some

Xn (0) = m E M (n ) with P [A (m )] > 0,

Xn-l (0) , otherwise .

Here, means f so

A(m) )

Therefore, Xn =Ep[X j ~n ) P -a.s.

The definition of Xn given above specifies its values even when 0) belongs to a set of P -
measure zero. Figure 2.2.2 provides an illustration in the case d = 2. Observe that the
recursive procedure always yields elements R (m ) (m E M (n ), n >_ 0) which are subrec-

tangles in Rd . Moreover, the size of each ~ R (m ) is uniquely determined by X and the
underlying probability measure P .

2.2 Probabilistic and geometric properties of the approximation scheme

. Theorem 2.2.1 below summarizes the probabilistic properties of this approximation
scheme. In particular, it shows that the sequence (Xn)n converges to X almost surely
and that ~ ) and o(X) contain the same information.

Theorem 2.2.1 .

(1) For each n > 0, Xn is a simple random variable with values in Rd .

(2) For each n > 0, Jitn = o(Xn) = where ~n denotes the partition of Q generated
by the elements of the set {A (m ) : m E M (n ) }.

(3) The sequence satisfies a(X) = ~n ) ~ ... ~.n ~ ~n _i ~ ~ ~ ~ ~ ~O
= {~,5~ (up to P -null sets).
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(4) is a uniformly integrable Rd-valued P )-martingale and therefore,

X n X P -a.s. --~ ~.

Proof : Properties ( 1 ), (2) and the fact that the ~ ’s are nondecreasing are immedi-

ate consequences of the construction of the sequences (Xn and Moreover,

we obviously have 6{X) ~ and to complete the proof of (3) it therefore

suffices to show that ~ ) ~ (up to P-null sets). However, for every pair
a , b E Rd with a  b (i.e. aj  bj, j = 1, 2, ..., d ), one can find a sequence (Ak)k of
pairwise disjoint sets in with

Q:a Ak . By definition,

a(X ) =  b ; a,b E Rd) which proves the result. Property (4) is stan-
dard martingale theory (for example, see Dellacherie and Meyer (1982, p. 26)) after

observing that Xn = E [X ] P -a.s. and X E L ~’, P ). 0

Remarks 2.2.1 1) In addition to properties (1)-(4), it is easy to see that the

sequence (Xn also has the Markov property, that is

I Xn ~

provided the conditioning events have positive probability. Indeed, Xn = xn indicates the
partition cell of ~n in which X (~} falls, and this specifies X 0 ,..., Xn -1 ~

2) The approximation scheme can also be used to approximate an arbitrary probabil-
ity measure  on (Rd, , B (Rd )) with  x p,(d,x )  ~ by a particular sequence of

probability measures. Simply, set Q = Rd, ~F= B (Rd ), P = p,, let X denote the identity
mapping and for n > 0 define ~un = Jl the image of p under Xn. . Then for each
n > 0, Jln is a discrete probability measure with finite support in Rd and moreover, ~.n
converges weakly to p as n -~ ~. This is the context in which Dubins (1968) originally
introduced this approximation scheme in the one-dimensional case. Dubins used this

construction as a main tool for his new proof of the Skorohod-embedding of martingales
which works only when d = 1. A beautiful presentation of Dubin’s construction (as it
became known) can be found in Meyer (1971) (see also Billingsley (1979, p. 459)).

3) The approximation scheme provides an almost sure convergent sequence ?o

of simple, R -valued random variable even when X is not assumed to be integrable.
Simply, set

Y = arctan X (componentwise)
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Figure 2.1.2 Approximation scheme for d = 2.

(a ) n = 0: * value of X0
(b ) n =1: x values of X I
(c)~=2: : ° values of XZ
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and note that since arctan is one-to-one, o(X) = 6(Y ). In addition, Y is a bounded ran-

dom vector so that our approximation scheme applied to Y and P yields sequences
and with

(i) Yn = E [Y P -a.s. as n 

(ii) 0’( U B) = cs(Y ) (= a(X ), up the P -null sets).
n ?0

Therefore, the sequence with Xn = tan Yn P -a.s. (n >_ o) satisfies

The construction of the approximating sequences (Xn }n,~ and (~.n )n,~ together with
the results of Theorem 2.2.1 suggest a geometric interpretation of the martingale nature
of the approximation scheme. The corresponding geometry is provided by Theorem
2.2.2 below. It uses some concepts from convex analysis which we now introduce

Consider a simple, Rd -valued random variable Y taking values ,..., yn . The

convex hull of the set : ~ e S~ } is

conv ({Y(03C9):03C9 ~ 03A9}) = {y ~ Rd:y =  03BBkyk ,  03BBk = 1, 03BBk ~ 0 ~ k }
k=1 k=1

and its affine hull is

aff ({Y(03C9):03C9 ~ 03A9}) = {y ~ Rd : y = 
03A3 

03BBkyk , 

n 

03BBk =1} .
k=1 I 

When dealing with convex sets C in R , the concept of interior is replaced by the more
convenient one of relative interior, reflecting the fact that C, regarded as subset of Rd,
does not have an interior when dim(C )  d . The relative interior of C , denoted ri (C ), is
the interior of C when C is viewed as a subset of aff (C ). Formally

ri (C ) _ { y e aff (C) : 3 E > 0 such that C ~ (y + E B ) n aff (C ) }

where jv _ 1 denotes the Euclidian unit ball in Rd . .

Theorem 2.2.2. For each n > 0, set Cn = conv ({Xn (00) : 00 e Q}). Then we have:

(1) For each n > 0, Cn is a bounded polyhedron, that is, a convex polytope, and hence
closed.
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(2) For each n > 0, Cn , and moreover, ri (Cn ).
(3) Cn)= U ri(Cn).

n?0 n Z0 

Proof. (1) follows directly from Theorem 2.2.1(1) and the definition of Cn. To
prove (2), note that in this case, the martingale property of the sequence 
(Theorem 2.2.1(4)), namely the fact that for each n > 0,

Xn = EP[Xn+1 | An] P-a.s. , ,

can be paraphrased as follows: each value of Xn is a convex combination of certain

values of the random vector Therefore, Cn for each n >- 0. To show that

ri (Cn ), note that the martingale property of (Xn)n prevents Cn from being
entirely contained in the relative boundary of Cn+1; i.e. for each

n >_ 0, ~? Cn. ~ The conclusion ~ r~i (Cn ), n >_ 0, follows from a
straightforward application of Rockafellar (1970, Corollary 6.5.2).

Finally, we prove property (3). In order to show that u ri (Cn ) ~ r~i Cn ), we
n ?0 

*

can assume without loss of generality that for all n > 1, dim (Cn ) = d’ _ d (otherwise,
neglect the first few with dim {Cn )  d ~. In fact, we can assume that d’ = d (other- .
wise, the problem can be reduced to one in Rd , ). Now let x E Cn ). By
definition there exists E > 0 such that

(2.2.1) u Cn =~+eB) , ,
n ?0

where B denotes the Euclidean unit ball in Rd. Let x 2, ..., denote the d + 1 ver-

tices of a d -dimensional simplex Sx d with center x inscribed in the ~-ball with center x .
Since for each n , , Cn is convex and ~ Cn ~ Cn is convex and hence, there

exists 0  n* with xi E Cn* (i =1, 2, ..., d + 1 ). Thus, Cn* ~ Sx d , that is, there

exists e > ~’ > 0 with

(2.2.2) Cn* ~ x + E’ B ,

i.e. x E ri {Cn* ) and consequently x E ri (Cn ). On the other hand, for each m >_ 0,
and in order to conclude that we only have to

show again that Cm is not entirely contained in the relative boundary of i.e.
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. This is done as in the proof of (2). D

2.3 A simple application: changing probability measures

In this subsection, the approximation scheme is applied to a simple problem involv-

ing transformations of the underlying probability measure P. . First, we introduce some

notation. A probability measure Q on is said to be absolutely continuous with

respect to P (Q « P ) if P [A ] = 0 implies Q [A ] = 0 (A E ~. Q is said to be equivalent
to P (G - P ) if P and Q are mutually absolutely continuous (i.e. Q « P and P « Q ).

The change of measure problem under consideration can now be formulated as fol-
lows. For an integrable, Rd -valued random variable X, let m E Rd denote its mean vec-
tor and assume that m ~ 0. What are necessary and sufficient conditions (on X and .1)
for the existence of a new probability measure Q on (Q, ~), equivalent to P and such
that X has zero mean under Q ? Thus, we are looking for condition which allow us to
redistribute probability mass among the "possible" events in F so as to "center" X around
the origin.

The solution to this change of measure problem is given in Theorem 2.3.1 below and

requires an application of our approximation scheme to the random variable X and the

probability measure P. The resulting sequences (Xn)n and are shown to con-

tain all the relevant information needed for such an equivalent measure transformation.
The main idea of the proof can be illustrated as follows.

As stated in Theorem 2.2.1(2), the elements of Pn = {A (m ) : m E M(~)} form the
cells of the minimal partition of Q generating the o-algebra jfn (n > 0). By invoking the
law of total probability, for any B E jf and n > 0 we can write

P[B] = ~ P[B 
A(m)E M(n)

_ E P[B .

A(m)E M (n )

Here, Pn denotes the restriction P ~n of the probability measure P on the a-algebra
and each conditional probability P [ . ( A (m )] is defined in an elementary way (with

the convention 0/0 = 1). This decomposition of the measure P into an "initial distribu-
tion" Pn and "transition probabilities" P [. ) A (m )] contains the fundamental property of
our change of measure problem. In order to find 6 - P such that EQ [X ] = 0, it suffices
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to be able to change Pn in an equivalent way so that Xn becomes "centered". Whereas
the original problem typically involves a random variable which takes more than count-

ably many different values in R , the latter is concerned with a simple random variable
(Theorem 2.2.1 ( 1 )) and hence constitutes a finite-dimensional problem. However, such a
finite-dimensional change of measure problem has already been studied in Taqqu and

Willinger (1987).

Theorem 2.3.1. The following statements are equivalent.

(I) 0 E (n >_ U).

(II) There exists no (nonrandom) vector ae Rd such that a-X>0 P -a.s. and

(III) There exists a probability measure Q on (Q, y) with Q ~ P and such that

EQ[X]=0.

Proof. 1) First, we prove (I) ==~ (HI). Statement (I) implies that there exists

0  n*  00 with 0 E ri (Cn* ). We then focus on the n* -th step in our approximation
scheme, namely on the random variable Xn* , the partition P n* of Q, and the probability
measure Pn* = P L on (Q, ~.n* ). The change of measure problem in such a finite

setup (involving (Q, ,~.n* , Pn* ) and Xn*) has been solved in Taqqu and Wilinger (1987)
and by applying their Proposition 3.1, we conclude: there exists a new probability meas-

ure Qn* on (Q, ,~.n* ) with Qn* - P n* such that [Xn* ] = 0. Next, for each B E ~’, we

set

Q [B ] = L P[B .

(Interpret Qn* [.] as "new initial distribution", P [. ~ A (m )] as "transition probabilities".)
Clearly, Q defines a probability measure on (Q, y) and moreover, Q - P with (setting

(0/0=1)

(dQ IdP )(.) _ ~ [A (m ))lPn* [A (m )l) lA (m )(~) 
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Thus we have X E L 1 (~, ~F, Q ) and

EQ [X ] = EQ [EQ [X 

- EQ[Ep[X ~ %~* ]] (Q[. . . P-a.s.)

= E~ [Xn*] is a P )_

martingale with Xn = Ep[X |An] P -a.s.)

- [Xn* ~ cQn* - Q I * )

=0 ,

that is, Q has the desired properties.

2) Next we show (III) => (n). Let M = dQ I dP denote the Radon-Nikodym deriva-
tive of Q with respect to P. Since Q - P, the Radon-Nikodym theorem states, among
other things, that 0  M P -a.s. and hence Q -a.s. Moreover,
MX E L 1(S2, ~’, P ) iff X E L ~, Q ) and consequently,

,

i.e. for any a E R , we have
.

Thus, there cannot exist a vector a E Rd with

a.X >_0 

3) Finally, we prove (II) => (I) by contradiction. Assuming that 0 ri (un Cn ), we
will show that (II) cannot hold. First we note that Cn is a convex set in Rd (use
Theorem 2.2.2(2)). Therefore, our assumption provides us with two non-empty convex
sets, namely { 0 and un Cn, whose respective relative interior have no points in com-
mon, i.e. ri ( { 0 } ) n ri Cn ) = 0. However, this condition guarantees (see Rockafel-
lar (1970, p.97)) the existence of a hyperplane separating 10 } and ~n~0Cn properly.
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That is, there exists ao E Rd (independent of n ) such that for each n > 0, we have

(2.3.1 ) .

The martingale nature of the sequence (Theorem 2.2.1(4)) together with (2.3.1)
will allow us to show that Oo also satisfies .

(2.3.2) > 0 P -a.s. and P [oco . X ~ 0] > 0

Indeed, on the one hand, almost-sure convergence implies

(2.3.3) lim Xn ) = lim oco >_ 0 P -a.s.
n n 

In the other hand, L 1-convergence yields for each n ? 0,
(2.3.4) 

Together, (2.3.3) and (2.3.4) show that Oo satisfies (2.3.2) which proves the desired con-
tradiction.

The equality ri(~n~0 Cn) = ri (Cn) results from Theorem 2.2.2(3). CJ

The results of Theorem 2.3.1 do not depend on the particular (i.e., rectangular) shape
of the elements R (m } c Rd (m E M (n ), n > 0) constructed in Step 1 of the approxima-
tion scheme. In fact, any partition of Rd works as long as the corresponding partitions of
Q become finer along the approximation. More precisely, we have the following result
the proof of which is identical to the one given above.

Corollary 2.3.1 Let , o be a non-decreasing sequence of finite partitions of Q
such that each cell of Pn (n > 0) has positive probability, and set Bn = (n > 0).
Assume that o(u Bn ) = 6(X ) (up to P -null sets) for some random vector

n ?0

X E L 1(a, y, P ). If the sequences (Xn )~ ~ and (C~ )~ ~ ~ are defined by

Xn = Ep [X ~ P -a.s., n >_ 0 , and
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Cn = S~ } ), n > 0, resp.,

then the results of Theorem 2.3.1 hold.

The next result follows directly from the proof of Theorem 2.3.1 and states explicitly
the most appealing feature of the change of measure problem under consideration,
namely its finite-dimensional nature. Note that this reduction to finite dimensions is a

consequence of the approximation scheme and can be viewed as a first example of a

"structure-preserving" result (see property (**) in Section 1).

Corollary 2.3.2 There exists a probability measure Q on (0, 1) with Q - P and
such that EQ [X ] = 0 if and only if for some 0  n there exists a probability measure

Qn ( ~ n and such that EQn [Xn ] = o.

Finally we observe that the solution to the change of measure problem stated in
Theorem 2.3.1 does not impose any conditions on the underlying information structure,
mathematically modelled by the a-algebra  In fact, the proof of Theorem 2.3.1 makes
it clear that all the information relevant for finding Q - P with EQ [X ] = 0 is contained in
a(X), an intuitively obvious result. However, when one focuses on the uniqueness of
such a Q, the situation changes and F plays a crucial role. In order to see this, we first
observe that if Q is to be unique, the approximating sequence has to terminate,
that is, all the Xn must be equal for n greater than some finite n* . . Indeed, it is easily
seen (recall the proof of Theorem 2.3.1 ((I) => (ill))) that in the case of a non-

terminating sequence (Xn )n~0 all choices of n _> n* are suitable (where n* is such that

0 E ri )), and each choice yields a different Q . Thus, for Q to be unique, it is neces-
sary that X be a simple random vector (up to P -null sets). In that case the finite sample
space results of Taqqu and Wilinger (1987, Theorem 4.1 and Corollary 4.1) are applica-
ble (see also Remark 2.3.1), and they provide the corresponding sufficient conditions.
We thus obtain the following uniqueness result for the change of measure problem.

Corollary 2.3.3 There exists a unique probability measure Q on (Q, 1) with Q - P
and such that EQ [X] = 0 if and only if there exists n > 0 with the following properties:
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(i) X = Xn P -a.s.

(ii) 0 E ri (Cn )
(iii) dim { span 03A9}} = cardinality (A ~ Pn : P [A j > 0) -1

’ 

(iv)  = o(X) (up to P -null sets).

Observe first that because of the definition of Xn on a partition set A with P [A ] = 0,
we can write

cardinality (A P [A ] > 0)  number of distinct values of Xn .

But Xn can take at most 2nd different values and therefore,
cardinality (A E P [A ] > 0)  2nd.

However, since Xn takes values in Rd, condition (iii) imposes the more stringent restric-
tion

cardinality (A E P [A ] > 0) _ d + 1 . .

Furthermore, together with (ii), condition (iii) states that there is a unique convex combi-
nation of the values of Xn representing zero; that is, the different values of X~ are affine
independent. Thus, condition (iii) relates the values of Xn with the fine structure of the

F.

Remarks 2.3.1 1) Taqqu and Willinger (1987) work in a strictly finite "world", i.e.

they assume ~ S~ ~ )  oo. Therefore, each reference to that paper implicitly assumes an
identification of the probabilistic setting presently under consideration with its finite-
dimensional "counterpart". . For example, when proving Theorem 2.3.1 ((I) => (III)), the

probabilistic setting at the time we apply Proposition 3.1 of Taqqu and Willinger (1987)
consists of the triplet (S2, , Pn* ) and Xn*. . Although Xn* is simple, Q is arbitrary.
But one can identify (~, .~~* , Pn* ) and Xn* with the corresponding finite "version"

(Q’, J4’, P’) and X’, respectively, as follows.
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~’ ~ } ,

.~’ = 2~ - set of all subsets of ~’ , ,

P’[ { t~’ } ) - Pn*[A(m)] where ,

X’(~ ~ = if ~ E A (m ) and 

(= means "corresponds to"). This identification yields a framework to which the results
of Taqqu and Willinger ( 1987) are directly applicable. It also allows a re-interpretation
of these results in the original setting consisting of (Q, ~n* , Pn* ) and Xn* . .

2) Condition (I) (or equivalently, condition (II)) of Theorem 2.3.1 is also sufficient
for the existence of an absolutely continuous probability measure Q on (0, 1) (Q « P )
with EQ [X] = 0. However, it is easy to construct simple examples for which necessity
may fail. A common feature of all these examples is that zero is contained in the relative

boundary rel ~( u Cn ) of u Cn rather than in the relative interior and that the relative
n Z0

boundary, has positive probability. Thus it should be clear that our approximation
scheme can also be used to find necessary and sufficient conditions for the existence of

Q « P with EQ [X ] = 0 (see Willinger ( 1987)).
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3. Path wise approximation of stochastic processes: the discrete-time case

This section defines and provides explicit constructions of skeleton-approximations
for discrete-time stochastic processes. Skeletons take only finitely many values at any
point in time, and they have finitely generated filtrations. The dynamic structure of a
skeleton can be uniquely described by a tree-structure: the nodes represent possible
values the process can take, and the branches depict the flow of information over time.
The skeleton-approach is illustrated with examples and then used to solve a change of
measure problem.

3.1 Definition of a skeleton 

We fix a stochastic base (S~, ~, P , F) where (Q, F, P ) is a an arbitrary probability
space and F = t = o,1,...,T  ~) is a given filtration, that is, a nondecreasing

sequence of sub-a-algebras of ~. Without loss of generality we shall assume that

~’o = { 0 ,Q} and ~T = y. Next, let X = (Xt: : t = o,1,...,T ) denote an Rd -valued stochas-
tic process defined on (Q, ~,P ) with component processes Xl, ... Xd ( 1 _ d  ~). We

require each component Xk to be integrable and F-adapted, i.e. Xr is measurable with
respect to (we write X; E for each k and t .

The process X gives rise to the so-called minimal (or natural) filtration

FX = ( ~X: t = o, l,..., T ), where denotes the a -algebra generated by X o, X 1, ... , .

Whereas the minimal filtration is based on knowledge of past and present values of X

only, an arbitrary filtration F is capable of modelling additional information such as

knowledge of certain future "outcomes". .

A skeleton of the stochastic process X and the underlying filtration F is defined as

follows.

Definition 3.1.1. . A skeleton of the pair (F, X ) is a pair (F~,~) consisting of a filtra-
tion F~ _ (~: t = 0,1,...,T ) (the skeleton-filtration) and an Rd -valued stochastic process
~, = (~,t : t = 0,1,...,T) (the skeleton- process) such that
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( 3.l.Ia ) for each t, is finitely generated, exists a minimal partition ~’~

of Q such that y~ = a(~~),

(3.l.lb ) for each t, ,~ (in particular, ~ _ { ~,5~ ~ ), and

(3.1.1c) for each 1? .

For example, if we set ~,t = Ep [Xr P -a.s. (t = o,1,...,T ), then (3.1. lc) obvi-

ously holds and the skeleton-process § is simply a projection (in the sense of a condi-
tional expectation operator) of X onto a finitely generated filtration and therefore

automatically F03BE-adapted and simple. The latter means that for each t, 03BEt is a simple ran-
dom vector. In general, we require only that ~ be measurable with respect to the finitely
generated 6-algebra 17 (t = 0,1,...,T). As a result, skeletons are completely described by
their corresponding tree-structure and can be dealt with using elementary probability
theory.

It follows from Definition 3.1.1 that a skeleton-process provides a more or less accu-
rate description of X depending on whether the skeleton-filtration is capable of capturing
the essential features of F. Consequently, a successful use of skeletons for the purpose
of approximating X depends almost exclusively on our ability to explicitly construct

"good" skeleton-filtrations. For this purpose, the approximation scheme of Section 2
turns out to be extremely useful as shown below.

3.2 A general construction of skeletons and skeleton-approximations
A general construction of sequences of skeletons of the pair ( F, X ) based on the

approximation scheme of Section 2 is given next.

Explicit construction of skeletons of (F,X)

Step 0. For each t = o,1,...,T , choose an increasing sequence of

non-negative integers.
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Step 1. For t = 0,1,...,T, apply the approximation scheme of Section 2 to

and the random vector Xt. Consider the resulting sequences

{~ {t ))n,p {t = 0,1,...,T ).
Step 2. For each n ? 0, set

t

~n ) = 6( U ’‘~m s n {S )) (t = ~~ 1 ~...,T ) ~

~ ~~n )] P -a.s. (t = o,1,...,T ) ,

and consider the pair ),~~n )) where

F~)=(~~=0,l,...,r), , and

~(n ) _ (~~ n ): t = o,1,...,T ) . .

When the underlying filtration F is minimal (i.e. F = FX) then the sequence
(F{n ), ~,~n ))n ~ resulting from the above construction will be called a skeleton-

approximation of the pair Such an approximation always exists. In general, it is
not unique since it depends on the choice of the sequences (m (t,~))t~,l,...,T (set of "free
parameters"). The properties of skeleton-approximations of (F ,X) obtained this way
are stated in the following Theorem.

Theorem 3.2.1. For each t = o,1,...,T , let (m (t ,n ))n,~ denote an increasing

sequence of non-negative integers and consider the resulting skeleton-approximation
(F~n ), ~~n ))n,~ of the pair (Fx X ). Then the following properties hold.

(1) For each n ? 0, (F~n ), ~~n ?) defines a skeleton of the pair (FX , X ).
(2) T FX as n -~ ~, that is, for each t = 0,1,...,T,

~X = ~ (Uk ~ ~ (k )) ~ ... ~ ~(n ) ~ ~(n -1 ) ~ ... ~ ~a) (up to P -null sets)
("convergence of information").

(3) ~,~n ~ --~ X as n (uniformly in t ) P-a.s., that is,

lim max ("pathwise approxima-

tion").



563

Proof. All the results follow directly from (i) the properties of our approximation
scheme (see Theorem 2.2.1), and (ii) the particular construction of the sequence

{F~n ~, ~~n 1)n,~. Indeed, properties (1) and (2) rely on Theorem 2.2.1 ((2),{3)) and the
definition of In order to prove (3), it is enough to observe that for each

t = 0,1,2,...,T, the sequence {~,r n ~)n,~ is a uniformly integrable ~)n,~, P ) -martingale
with ~rn ~ -~ Xr P-a.s. as n -~ ~. V

Observe that the a -algebras (t = 0, 1 ,...,T ; n >_ 0) obtained in Step 2 of the con-
struction increase not only when n is fixed and t varies is a filtration) but also when

t is fixed and n varies (i.e. for each t = o,1,...,T T a( U = FXt (up to P -null
k?0

sets, as n -~ . This kind of "convergence of information" is expressed as

asn -~~. .

Suppose now that the minimal filtration FX is replaced by an arbitrary filtration
= 0, 1 ; .. ,T : = ( ~,5~ j, = ~ with respect to which X is adapted. Our

construction yields sequences (F~n ~, ~~n >)n,~ of skeletons that in general no longer pos-
sess property (2) of Theorem 3.2.1. . Instead they satisfy

F =3 Fx , i.e. ~r ~ ~X = a ( U (t = o,1,...,T ).
n ?0

Except for very special cases (for example, when Ft ~ FXt is generated by a countable
partition of Q; t = o,l,...,T), we cannot "close the gap" between and Ft by construct-
ing additional skeletons of (F, X ) based on the information in F 1 FX alone and such that
property (2) holds along the "extended" skeleton-approximation. Properties (1) and (3)
of Theorem 3.2.1 are still valid, however, since they involve only knowledge about X
reflected in FX . ..

Finally we note that when dealing with skeletons, the sample paths of X , t -~ X ~
are the fundamental objects of study and the natural mode of convergence is almost-sure
or pathwise convergence. To fully appreciate the skeleton-approach for obtaining path-
wise convergence results, we refer the reader to Sections 4 and 5 concerning continuous-
time stochastic processes.

We conclude this subsection with examples that illustrate the "structure-preserving"
character of our construction. In particular, we show that by appropriately choosing the
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"free parameters" or by slightly modifying the basic construction, a given structural pro-
perty of X can be maintained along the entire skeleton sequence. The examples concern
the martingale- and Markov-property of (F,X), but other properties can be considered as
well. Note that the results below do not depend on whether the underlying filtration is
minimal.

Example 3.2.1. (Pathwise approximation of a martingale). In the case where X is a

(F,P) -martingale, any choice of sequences (m (t,~))t~,l,".,T of increasing, non-negative
integers (i.e., for all t, take m (t,n ) = n ) yields a of skeletons of

(F, X ), such that each skeleton (F(n ), ~,(n ~) along the sequence is a 
Indeed, for t = 0,1,...,T-1 and for each n > 0,

Ep ~~r+~ ( tt n )] = Ep [Ep ~] (by Step 2 of the construction)

= Ep [ ~r ] (~ r+1 j ~ r )

I ~(n )] (~ ~ ~~)

(Xis a (F, P )-martingale)

_ ~,f n ) P -a.s. 
’

Thus we obtain a pathwise approximation of the (F,P)- martingale X by 
skeleton-martingales ~(n ) (n > o); if moreover F = F~ then we also have the convergence
of information F(n ) t FX (i.e. a skeleton-approximation).

~ 

Example 3.2.2 (Skeleton-approximation of a Markov process with a stationary dis-

tribution). Let the pair (Fx ,X) define a time-homogeneous Markov process with

transition-kernel P (~,~), with the stationary distribution p, as its initial distribution (typi-

cally } ~,5~ } ), and with state space Rd  Let P ~ denote the
unique probability measure on (0,1) for which

(i) P E A ] _ A E and
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(it) " A ’ A " °( R~ I’
and recall that the stationary distribution  satisfies

P (A) = (A), A ~ B(Rd), where

pP (A ) * j 
R~

Using the following construction based on p, P (.;) and the approximation scheme, of
Section 2, we obtain a skeleton-approximation (F(n),03BE(n))n~0 of the Markov process X
consisting of time-homogeneous finite Markov chains.

Step 0’. Choose an increasing sequence (m (n ))n ~0 of non-negative integers.

Step I ’. Apply the approximation scheme of Section 2 to (03A9,03C3(X0), P ,) and X 0.
Step 2’. Using the same notation as in Section 2, I , for each n > 0, we set

S ~~ ~ " l Ep,lXo ) A (I )l ~ P ,lA (I )1 > 0, I " M ("l (~ )) l ,

EP [X0 ’ A I >i if P , iA I >1 > 0 and Xt(03C9) e R I >, I e M m n »
§ (n )(~~y) =03BE(n)t(03C9) = EP [X0 |A(i)] if P [A(i)] > 0 and Xt(03C9) ~ R(i), i ~ M(m(n)) 0 otherwise

= «(§/~ ~: s = 0, 1 ,... ,t ) (t = 0, 1 ,2,...) ,

p(n) = ~p 

With I xo e R I >i I ,j e M m n »>,

"~~ ~ ~ ~"/~ ~)i e M (m (n ))

with (n)i = P [X0 ~ R(i)] (i ~ M(m(n )).
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This construction yields a sequence (F~n ~, ~~n ~)n,Q of skeletons satisfying properties
(1)-(3) of Theorem 2.3.1 and such that each skeleton ç(n) is a time-homogeneous finite
Markov chain, defined on (5~,~, with transition-matrix P ~n ~, with the stationary distribu-
tion as its initial distribution and with S ~n ~ as its state space. In particular, note that

converges weakly to p as n - oo. 
,

3.3 A skeleton-characterization of the uniqueness problem of an equivalent mar-
tingale measure

The change of measure problem discussed in Section 2.3 has a natural analog in the
context of (discrete-time) stochastic processes. We are interested in a new probability
measure Q on (S~, ~, equivalent to P and such that the discrete-time stochastic process
X = (Xr : t = 0,1,...,T) becomes a martingale under Q and with respect to the filtration F;
that is, X must satisfy

(i) (t = 0, 1 ,... ,T ), and

(ii) EQ = X t Q -a.s. (t = 0,1,...,T-1).
Such a probability measure Q is called an equivalent martingale measure for (F, X ).

In the simple case of a single period stochastic process X = the problem of

finding an equivalent martingale measure for X and the change of measure problem con-
sidered in Section 2.3 are obviously identical: in both cases the goal is to obtain Q - P
with E~ [Y ] = 0 where Y However, Corollary 2.3.2 states that this problem
can be reduced to a finite-dimensional one involving skeletons of (a(Y ),Y ). This sug-

gests that skeletons provide a natural setting for addressing the more general change of
measure problem.

We consider here the uniqueness question for an equivalent martingale measure for
the R -valued, discrete-time stochastic process X = t = 0,1,...,T ) defined on the sto-

chastic base (Q, F). Recalling Corollary 2.3.3, the uniqueness result for the single
period case, and applying it to each time period, we observe that for Q to be unique, the

pair (F, X ) must have the structure of a skeleton. In fact, the conditions of Corollary 2.3.3

applied to (F,X) are both necessary and sufficient. Thus, we obtain the following result.

Theorem 3.3.1. There exists a unique equivalent martingale measure Q for the sto-
chastic process (F, X ) if and only if there exists a skeleton (F~,~) of the pair (F, X ) with
the following properties:
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(i) (F, x) and (F~) are indistinguishable (i.e. up to P-null sets, and
~(M)=~((o);~= 0,1,...,?’}]=!).

(ii) (F~, ~) satisfies condition (Ce):
(C03BE) For each t = 1,2,...,7B and for all Rd-valued random variables a 6 

~]() = 1 P-a.s. =>

~[a(~~_,)=o)~](.)=l P-a.s.

(iii) (F~, ~) satisfies condition (C~:
(C~ For each t = 1,...,T, and for each A e with P [~ ] > 0,

dim(span{03BEt(03C9) - 03BEt-1(03C9): 03C9~ A B A 0(t,A)}))

= cardinality (~ ’~ ’P~: A ~~ ’) - i

(where = u M -e A ~~ - P [~ -j = o}). .

Moreover, a skeleton with these properties is unique (up to P -indistinguishability).

Thus for an equivalent martingale measure Q to be unique, the stochastic process(F,X) must not only have the structure of a skeleton (condition (i)) but must also satisfy
the stringent requirement of condition (iii) of Theorem 3.3.1. That requirement involves
the fine structure of the filtration, relating the flow of information between times .-1 andt to the possible changes of the value of X from .-1 to t along each sample path It also

shows that the minimal filtration is necessary for uniqueness. In the sequel, we consider
continuous-time stochastic processes and show that one can continue to deal with the finestruture of the filtration through conditions of the type (C03BE’).
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4. Continuous-time stochastic processes and the skeleton-approach

In this section, the skeleton-approach introduced in Section 3 is extended to the case
of a continuous-time stochastaic process X = (Xr : 0 _ t _ T ) with continuous sample
paths. We present explicit constructions and discuss their ability to explicitly deal with
filtrations.

4.1 Basic assumptions
We consider a fixed probability space (S2, ~’, P ) and a given finite time horizon

T (0  T  We shall assume (Q, 1’,P) to be complete: that is, if there exists A ~ B

where A is such that P [A ] = 0, then B must necessarily belong to JF (and clearly,
P [B ] = 0). We also specify a filtration, i.e. an increasing sequence F = (~t : 0 _ t _ T ) of
sub 6-algebras of y, and we require that F satisfies the following, so-called "usual condi-
tions" (Dellacherie and Meyer ( 1978, p.115)): 

.

(i ) ~o contains all P -null sets (i.e. ~o is complete) .

(4.1.1)

(ii ) F is right-continuous = ~t+= ns >t ~s ~ fi  t  T ).

In fact, for convenience we require ~o to be almost trivial (i.e. ~o contains only sets of
P -measure zero and one) and 1’T = :r.

Next we let X = {Xr: 0 _ t _ T) denote a given Rd -valued stochastic process,

defined on {S~, ~, P ) and with component processes X 1, ... , Xd . Here each

_ k _ d ) represents an F-adapted integrable (real-valued) stochastic process with
continuous sample paths. By requiring the sample paths of X to be continuous, we

exclude stochastic processes with jumps. The development of an appropriate skeleton-

approach for jump process is the subject of current research and will appear in a later

paper. (See Section 5.4, however, for a process with jumps at fixed points in time.) We

identify two F-adapted stochastic processes X = 0 _ 1 _ T ) and Y = (Yt: : 0 _ t _ T )
if they are indistinguishable i.e. if P [{ w E S2: Xt (w) = Yr (co) for all t E [o,T J }) =1.

Finally, let F~ denote the minimal filtration satisfying the usual conditions. By this
we mean that defines the sub-o -algebra of F generated by the set {Xs: s _ t } of ran-

dom vectors Xs and all P -null sets. Thus is the completion of

G = a(x s _ t ) (o _ t _ T ) and right-continuity of FX follows from the sample path
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continuity ofX. .

4.2 Skeletons and skeleton-approximations of continuous stochastic processes
We start by generalizing the idea of a skeleton to the case of a continuous sample

path process. More precisely, we consider the given R~ -valued stochastic process X,
together with the underlying filtration F, and define a continuous-time skeleton of the

pair (F,X) to be a piecewise constant (and, of course, right-continuous) skeleton. For-

mally, we have the following:

Definition 4.2. t. A continuous-time skeleton of the pair (F,X) is a triplet
(/ ~, H ~), consisting of a deterministic index-set / ~, a filtration F~ = (J~: 0  ~  T)
(the skeleton-filtration), and an Rd -valued stochastic proces 03BE=(03BEt:0~t~T) (the
skeleton-process) such that

(4.2.1a) .7~={~(~0),~(~l),...,~,~)}with0=~,0) ° ° ° ~,A~)=r, ,
~00.

(4.2.1b) 2022 for each t ~ I 03BE, F03BEt is a finitely generated sub- 03C3-algebra of Ft, i.e. there exists a
minimal partition ~ of Q such that ~ ~ = J~.
2022 for t ~ I03BE, we set

 ~~
each t ~ 7~, ~ is an R~ -valued, ~ -measurable random variable.

2022 for t ~ I03BE, we set
~ = ~) if t e [~(~~), ~+1)) for some 0  ~  ~~.

Next we extend the notion of a skeleton-approximation to the continuous-time case.

Definition 4.2.2. A sequence (7~,F~,~)~ of continuous-time skeletons

(/ (n),F(n),03BE(n)) of the pair (F,X) is called a continuous-time skeleton-approximation of
the pair (F,X) if the following three properties hold.

(4.2.2a) Dense subset property:
The sequence (/ the finite and detenninistic index-sets satisfies

(~ t/~f= max t~(~~)-~(~~-l))-~0as~~~. .
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(ii ) 1= U 1 is a dense subset of [o,T ] . .
n Z0

(4.2.2b) Convergence of information:
t F as n --~ oo, that is, for each o _ t  T ,

~r = ~( U )) ~ ... ~ +1 ) ~ ~.(n ) ~ ... ~ ~(o) up to P -null sets (n >_ 1 )t 
k?0 

:.Ii - -.It -:.It’ - -.It -

(4.2.2c) Pathwise approximation :

~~n ) ~ X as n (uniformly in t ) P-a.s.; that is,

sup (w) - )(~) ~ = 0 ] = 1 .
n -- 

As in the discrete-time case, continuous-time skeleton-approximations of the pair
(F,X) enable us to view (i) the stochastic process X as pathwise limits of continuous-
time skeleton-processes and (ii) the underlying filtration as limits of skeleton-filtrations.
Because of condition (4.2.2b), we shall restrict ourselves in the sequel to the case
F = FX. (A remark at the end of this section concerns the case F ~ F .) We now estab-
lish the existence of continuous-time skeleton-approximations of (Fx, X) through two
explicit constructions.

4.3 A general construction of continuous-time skeleton-approximations
The following skeleton-approximation of (Fx ,X) imitates the discrete-case version

described in Section 3.2 and essentially ignores the continuity of the time parameter. The
construction yields continuous-time skeleton-approximations of the pair and

gives a first indication of the role of the fine structure of the filtration FX. The "Special
construction" presented in the next subsection will explore this role in greater detail.

For each n >_ 0, let Dn = k = o,1,...,2n be the n rh -dyadic partition of [o,T ], ,
and D = the set of all dyadic numbers in [O,T]. Without loss of generality, we

take D as our generic countable dense subset of [o,T ]. .

Construction of continuous-time skeletons of X )

For each n = 0,1,2,... do the following four steps (D _1= 0):

Step 0. For each t E Dn choose an increasing sequence (m (t,k ))k,~ of

non-negative integers.

Step 1. For each t E Dn apply the approximation scheme of Section 2 to

and to the random vector Xt . Consider the resulting sequences
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(~t~(t))k~o.
Step 2. For each t E D n set

F(n)t = 03C3(  Am(s,n)(s)), and

s~Dn

03BE(n)t = EP[Xt | F(n)t] P -a.s.

Step 3. Define the triplet (1 (" ), F(n ), ~(n )) where
’

F(n ) _ (~(n ): 0  t _ T )

with if t E ~,k ), t (~~n ),k +1 )) ,U  k  lV ~~n ~ , and

03BE(n) = (03BE(n)t: 0 S t S T )

with 03BE(n)t = 03BE(n)t(03BE(n),k) if t ~ [t (03BE(n ),k ), t(03BE(n ),k +1 )), 0 ~ k  N03BE(n) .

Terminology: The triplet (I(n), F(n), 03BE(n)) obtained in Step 3 will be called the
continuous-time version of the discrete-time skeleton ((~n ): t E 1 (n )), (~,1 n ); t E 1 (n ))).
Conversely, «11n): t E )), (~r n ): t E I(" ))) will be called the discrete-time version of
the continuous-time triplet (I ~n ), F(" ), ~(n )).

An illustration of the construction (T = 1)
n = 0. Here D o = { 0,1 }. . Now X o = const. P-a.s. and the corresponding a -

algebra is almost trivial, so we shall consider t = 1. First (Step 0), we choose an
increasing sequence of non-negative integers m (l,k), say
m (1,0) = 8, m (1,1) = 31,.... Next we apply the approximation scheme to X1 (Step
1) which yields the sequence of sub-03C3-algebras of a(X 1 ).
Step 2 gives

nO) = { ~~~ )
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F(0)1 = A8(1),

and the random vectors

~o) = 

o) = Ep [X 1 I .11°)] .

Finally, Step 3 yields the continuous-time process

03BE(0)0 if 0 _ t  1
J: (0) -
":Jt 

- 

(o) ift-1 _ 1

n - 1. D 1= to, I12,1 ~ . Choose say m ( 112, I ) = 5,

m (112,2) =12,.... Apply the approximation scheme to X 1~2 and let (,~k(112))k,o
denote the resulting sequence of sub-6-algebras of a(X 1~2).
Step 2 gives

F(1)0 = {Ø,03A9} ,

F(1)1 = 03C3(A5(1/2) ~ A31(1)) ,

and the random vectors

~112-E P ~x112 I ~112~ ~

~11~ =E P [X1 ( ~1~J . .

Note that ~o) and ~1 ) differ not only by the presence of ,~5( ll2) but also by the
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choice of a f urther element in the sequence (~k ( 1 ))k,~, namely ~131 ( 1 ) 
Finally, Step 3 yields the continuous-time process

~1) if 0_t  1/2 

’

03BE(1)t = 03BE(1)1/2 if 112 _ t  t

03BE(1)1 if t = 1

A practical application of the construction requires choosing a set of "free parame-
ters," namely, the sequences m (t . Intuitively, by choosing these sequences, we are
able to control the amount of information to be included at each step of the construction.

We achieve this way a first, rather limited, capability for dealing with the fine structure of
the underlying filtration. Theorem 4.3.1 below states that any choice of free parameters
leads to continuous-time skeletons of the pair (Fx ,X). Moreover, it shows that one can
choose sequences such that the construction yields continuous-time

skeleton-approximations in the sense of Definition 4.2.2.

Theorem 4.3.1. In the above construction one can choose sequences 

such that the resulting sequence (I {n ), F{n ), ~,~n ))n,~ defines a continuous-time skeleton-
approximation of (Fx X ).

Proof. 1) For any choice of sequences (in accordance with Step 0 of
the construction), each triplet (I ~n ), F~n ), ~~n )) in the resulting sequence

(I ~n ~, F~n ), ~~n ))n ~ satisfies the defining properties (4.2.1 a) - (4.2. lc) of a continuous-
time skeleton of (FX, ,X) by the very construction. Moreover, I =_ = D , and

property (4.2.2a) is obviously satisfied. Also, the proof of property (4.2.2b) holds for
arbitrary sequences (m (t,~))t E D of increasing, non-negative integers and uses Theorem
2.2.1(3) and the continuity of the sample paths of X = : 0 _ t _ T ). In fact, for
t E [o,T ], Theorem 2.2.1 (3) implies ~~n +1 ) ~ and moreover, by definition of ~~n )
and ~.)(S ~ (s,t ED), we can write

V ~~n ~ - a{ U 
n Z0

= 6( i ~n ~(S )))
s~Dn
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n

= a( U a( U a( U Am(s,n)(s))))

= a( U a( U a( 
l?0 s ~t

seD(

= a( U a( U 
l>_0 

,

= a( U a( U 
l>_0 sç

t?o

= s _t,s E D ) (up to P -null sets} . .

Now use continuity of X in order to conclude that for o _ t _ T ,

= s _t ) = V ~~n ) (up to P null sets}. .
n ?0

Since ~ is the completion of ~ t , we have G t = ~t (up to P -null sets), 0 _ t _ T .

2) We now show that one can choose sequences such that the resulting

sequence (I ~n ), Ftn ), ~,~n ))n ~p also satisfies property (4.2.2c), and hence defines a

continuous-time skeleton-a pp roximation of the pair ,X). To this end, let (bn 
denote a sequence of positive real numbers converging to 0. Then for each 

Theorem 3.2.1 guarantees that one can choose accordance with Step 0 of

the construction such that

(4.3.1) P sup ) }]  2’". .

However,

{03C9~03A9: lim sup sup ) > U j )
n 
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sup ~ >bn }

and since

sup ~ Xt (~) - ~t n ~ ~ > bn } ] ~ ~ 2 n  °°,

n~ t~Dn n?0

an application of the Borel-Cantelli Lemma yields

P [ lim sup sup ~ - ~tn ~ (~) ( > 0 } ] = o , ,
0~~ 0 ~ t ~ T

that is,

sup ~ - ~ = 0 } ] =1. . 0
S T

4.4 The Special Construction

We now provide a refinement of the general construction which uses the continuity
of the time parameter more effectively. We must, however, impose an additional con-
tinuity condition on FX, namely, we require FX to satisfy
(4.4.1) ~X=~x,where,~r_-~(~,~5)(~0 =~o~O~t~T)

s r

Note that right-continuity (i.e. holds by (4.1.1). The additional restriction to
so-called semi-continuous filtration is necessary to rule out the existence of events "that
can take us by surprise" (see Section 5.4). For an alternate definition of "continuous"
information structures, see Huang (1985).

Special Construction of continuous-time skeletons of when d =1

For each n = o,1,... do the following four steps (D _1= Q~).
Step 0. For each t ~ Dn BDn-1 choose an increasing sequence m(t,k)k~n of non-

negative integers with m (t,k ) > k for all k >_n . .

Step I. For each t ~ Dn BDn-1 apply the approximation scheme of Section to

and Xt . Consider the resulting sequences ~k (t 
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Step 2. For k = 0,1,...,2" set ~(~) = (i.e. D, = {~): 0  ~  2n }) and for

f=0,l,...,~(~)-l set .(0=f/2~CO-"B Then for each k =0,1,...,2" and for each

~=0,l,...,~(~),M)-lset

~~(.= ~~’~’ ~= ~

and

Step 3. Define the triplet (~ B F~ B ~)) where

~(M)=~~)+~(f):~=0,l,...,2";f=0,l,...,M(~(~),M)-l}, ,

p(’.)=(~("):o~ r~)=7 +(M(r,M)-i)/2~~’"))

with F(n)t = if t ~ [t(03BE(n),i), t(03BE(n),i+1)), 0 ’ I  N03BE(n), and .

~")=(~"):0~~"~)
~(~~)~~~’+~. ~’- .

Note that in order for Step 2 of the Special Construction to be well-defined, 
we set

X =X. whenever t >T. . Thus, the triplet (~,F~,~) and the process (F,X) are

both assumed to be defined on K),r")] (n > 1), where -. T as ~ -. For ease of

presentation, the special construction is formulated only 
for the case d = 1. For some

examples and results for d > 1, see Section 5. .

Comparing the Special Construction and the general 
construction (Section 4.3)

shows that when "producing" the skeleton at time ~ D,, the latter provides all the

necessary information at once; i.e.,

~)="past"+~,,)(~ ,

is some element of the approximation sequence of 

- algebra The Special Construction, on the other hand, distributes 
that same infor-

mation in a more piecemeal fashion. The construction shows explicitly 
how this can be
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done. At any dyadic point t E D n we provide the past information and the coarse infor-
mation Jilt(t) about Xt which we update bit-wise (in an either/or-fashion), at our chosen
rate 2 ~ ~r ~’ ~, so as to be certain that all the information about Xt needed for the con-
struction of the nth skeleton, namely ~!m ~t,n )(t ), is fully available by time

t + (m (t ,n )-1 )2~~‘ ~t ~n ~, and hence by the next dyadic time t + 2-n . Thus we obtain

skeletons of (Fx ,X) with a binary tree-structure; that is, each non-terminal node of the
tree corresponding to the n th skeleton (n _>o) branches in two (or does not branch at all if
no relevant information is received).

The following result states that there exist sequences (m (t,~))t E D yielding
skeleton-approximations of (F, X ) by using the Special Construction. In other words,
there exist sequences of "binary" skeletons which approximate X pathwise and for which
the corresponding binary skeleton-filtrations converge in the sense of (4.2.2b). The Spe-
cial Construction reveals the fine structure of the filtration FX in terms of binary tree-
structures. Such an explicit description of the underlying filtration is possible for vector-
valued processes (d > 1) as well (see Section 5).

Theorem 4.4.1. . Suppose FX satisfies condition (4.4.1). Then in Step 0 of the Spe-
cial Construction, one can choose sequences m (t ;)1 E D such that the resulting skeleton
sequence (1 ~n ~, F~n ~, ~,~n ~)n ~ defines a continuous-time skeleton-approximation of

(Fx ,X ), and such that, for each n >_o, (I ~n ~, F~n ?, ~tn » satisfies the following condition

(C c~ } ) For each t’ - t (~~n ~, k -1 ), t = t {~,~n ~, k ) E 1 ~n ~ (0  k _ N~~n ~) ,

and for each A E with P [A ] > 0 ,

dim(span( S ~r ~ ~(to) - ~t n ~ (~): ~ E A 1 A 

= cardinality (A’ A’ c A B A0(t,A))-1

0 if A0(t,A)~Ø
"1 1 if A0(t,A) = Ø
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where ~~~~~:A"cA,P[A"]=o} .

Proof. 1) For any allowable sequences (m (t, ~))t E D, each triplet
(1 ~n ), F~n ), ~~n )), n >_ o, satisfies by construction properties 4.2.1 a - 4.2.1 c of a

continuous-time skeleton.

2) Next we show that for any choice of sequences m (t, D (in accordance with
Step 0 of the construction), the resulting sequence (I {n ), F~n ), ~,{n ))n,~ has property
(4.2.2b). (Property (4.2.2a) is obvious, and the existence of sequences (m (t, such

that the resulting sequence of skeletons also satisfies property (4.2.2c) follows than
exactly as in the proof of Theorem 4.3.1.) Fix t E D and consider the construction of

.

First we prove that for each n >_o, +1 ) ~ In fact, let k denote the first index
n with t E D n. . Then, for n ? k, we have

F(n+1)t = ( v ’n +Z ) (s )) v (by construction)

~( V Am(s,n)(S))A1(t) (m(s,n+1)>m(s,n), Dn+1~Dn)
s t

s~Dn

= (by construction) .

For n  k, set t (n ) = max ( s E Dn: s _t } . Then there are two cases:

Case (i). t(n)~t(n+1), i.e. t(n+1)=t(n)+2~n+1):
= ( 

s 

V 
+I 

for some 0  f m (t(n+1),n+1)

" 
s 

V Am(s,n)(s) (m(s,n+1) > 
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_ yn >- t .

Case (it), t(n) = t(n +I): since > ~’~ +~~ (0  I m (t(n ),n )),
F(n +1)t 

=  
s t v n > Am(s,n+1)(s))  Ak(t(n)) (for some 0  k  m(t(n),n+1))

" ( 
s t V n V A((t (" )) 

’ 

(for some 0  I m (t (n ),n ) ) .

Thus, for each n > 0, we have F(n +1)t 
> .

Next for t e D and k such that t e D ~ we have, on the one hand,
V * «( w 
n~0 n Z0

= « w aq~ »  Jj~ > c J§~ +~ »t t ~ t

~ "~£ ,n Fl)/2~~’ ~" ~ ~~~ ~ ’/%m t ,n pi >/2~°’ ~"~ ~ " 

~ "~&#x26;k "~ i ’ ~ ’~ >~~ ~~~ (by definition of ’/%m t ~n >1 >/2~" ~" ~ 
s~Dn

* "( W "(Xs ))
s *
seD

" t S  t , S G D )
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= a(XS : s _ t ) (up to P-null sets) (by continuity of X )

so V _T by (4.1.1).
n ?0

On the other hand,

V ~(n ) = 6( U 
n?0 n~

~ a( U ~n i ~2z’" ’~n ~) (where t’ = 
n~

= a( ~ ~( ~ ~ ~s,n )(s )))
st 

’

s~Dn

= a( U a{XS ))
s t

s e D

= s  t,s E D )

=  t ) (up to P -null sets)

so V ~n } ~ ~X for any o _ t  T by (4.1.1). Using (4.4.1), we get
n ?0

trX = V ~(n ) ~ ... ~ ~(n ) ~ ... ~ ~o) (up to P -null sets) ,
n z0

and (4.2.2b) holds.

3) Finally, we show that (C ~"}~ holds for each skeleton ), F~n ), ~(n )). (We write
t(n ;) instead of t (~~n ),~), for simplicity.) Since d =1, - ~r(n ,k ) is real-valued
and hence the dimension of its span is at most one. It is equal to one on a partition set
A E with P [A ] > 0, if ~t ~ri ,k+1 ) - takes two different values on A and zero
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takes only one value on A. ° By construction, any set A E 

with P [A ] > 0 is split into exactly two subsets (A ~ and A 2 E ~t ( n,k+1 ), say) when going
from t(n,k) to the next point in time t (n ,k +1 ). Thus if P[A and

P [A ( A 2] ~ 0 then ~,r ~n ,k+1 ) - ~t (n ,k ) takes two distinct values on A. On the other hand,
if P [A ( A 1 ] = 0 or P [A A 2] = 0 (note that both probabilities cannot be zero since
P [A ] > 0), then only one value of ~~ ~~ 2014 ~r ~n ,k ) on A is defined and of interest. Since
n and t(n,k)E I (" ) were arbitrary, condition (C ~n~’) holds for each continuous-time
skeleton (1 (’~ ), F(n ), ~,~" )) . ~

Note that regardless of the underlying filtration F, the two methods of constructing
continuous-time skeleton-approximations of X always provide a sequence of skeletons
which approximate X pathwise. However, in the case F ~ FX, convergence of informa-
tion (i.e. F as n -oo) no longer generally holds since skeleton-approximations are
typically not capable of dealing with information other than that provided by X .

Pathwise approximations of continuous-time stochastic processes are not very com-
mon in the probability literature, even in the special case of a one-dimensional Brownian
motion. An exception is Knight (1981) (see also Ito and McKean (1965)), who uses
stopping-time techniques and intrinsic properties of Brownian motion to arrive at a path-
wise approximation via simple random-walk-like processes. However, his use of stop-
ping times destroys any monotonicity of the corresponding information-approximation of
Brownian filtration.

Finally we observe that the results of the skeleton-approach in general, and the Spe-
cial Construction in particular (i.e. Theorem (4.4.1), are invariant under an equivalent
change of probability measure. Thus the actual value P [A ] of the probability of event
A ~ F is irrelevant so long as P [A ] * 0 or 1 (see, for example condition (C03BE(n)’).
5. Examples and variations of the Special Construction

5.1 Standard Brownian motion in one dimension

Let W = (Wt : : 0  t S 1) denote standard Brownian motion defined on some stochas-
tic base (Q, ~, P , where FW denotes the minimal filtration satisfying the "usual
conditions". Clearly, (Fw, W ) has continuous sample paths and satisfies assumption
(4.4.1). Thus Theorem 4.4.1 applies and the Special Construction yields continuous-time
skeleton-approximations of W with corresponding binary skeleton-filtrations. Since the
sample paths of a Brownian motion on any subinterval are never constant, we get:
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Corollary 5.1.t There exists a continuous-time skeleton-approximation

(~) p(") ~~ ~ of such that for each n > 0, (/~B F"B ~~) satisfies: for
and for each with

P[~]>0, ,

dim (span ({~~ (o) - ~.t-i) (M) ~ e A }))

= cardinality (A’ ~ P(n)t(n,k):A’~A)-1 = 1 .

It is illuminating to present the first few elements in 
the sequence of skeletons used to

obtain a skeleton-approximation of Brownian motion. For ease of presentation, 
we take

m (t , n ) = n for all t and n although that choice may 
not be adequate.

M=l. . 7~ = to, 1/2, 1}. .

Step 1 of the Special Construction yields :

for ~=1/2: .~(l/2)=0,~t )

I I 

~(l/2)=o({~~>~i). 0~t/2~~t!’

{~W~0}, (W~~D

where xl =E[W 1/2 t~i/2>0] . ,

~2=~~1/2 t~t/2~] , ,

etc.

for r=l: : ~(1)={0~)

~(l)=o({~t>0t, {~i0})
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(y2  W1 ~~}~ 

where y 1= E [W 1 ~ 0] , ,

,

etc.

S tep 2 defines the first skeleton (I(1), F(1), 03BE(1 )) by setting
F(1)0 = {Ø,03A9} ,

F(1)1/2 = F(0)0  A1(1/2)=03C3({W1/2>0}, {W1/2 ~ 0}) ,

F(1)1 = F(1)1/2 V A1(1) - a({W 112 > 0}, > {W 1/2 ~ 0}, {W1 > {W1 ~ 0})
and

,

E [W i |W1/2 > 0] if 03C9 ~ {W1/2 > 0} ,
~112 t~~ _ ~ E [W i ) W ij~  0] if w e ( W ij~  0 ) ,’~[W1 (W112~~) if (W112~0} 

E[W1 | W1/2>0,W1>0] if 03C9 ~ {W1/2>0,W1>0} ,

IW112>~~W1~0] ~ {W112>~~W1~~} >

=

E[W1 | W1/2~0,W1>0] if 03C9 ~ {W1/2 ~ 0, W1 > 0} ,

E[W1 |W1/2 ~ 0, W1 ~ 0] if 03C9 ~ {W1/2 ~ 0, W1 ~ 0} .

2. I~2)={0,1116,114,114+1116,112,112+1116,314,314+lll6,l,1+lllb .
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Step 1 of the Special Construction yields:

for t =114 : ~o(l/4)=0,Q} , ,

~1(ll4)=a~{Wll4~~}~ {Wll4~~}) ’

~(114)=a({W114~u1)’ {0~i/4Ht} , ’

{u2  W114 ~ ~}’ {W 114 ~ u2~)

where I w 114 ~ ~~ ’

u2=E(W ll4 I W114~0) .

etc.

for t = 314 : ~!p(314) _ { ~, ~ } 

~1(314)=a({W3ia~~{~ {~/40)) , ’

AZ(3l4)=6({W314 ~ vl~~ {0  W314~v1~ ’ ,

{v2  W314 ~ ~{~ {W314 ~ ~’2~ ~

where )~i/4>0] ’ ’

IW114~~~ .

etc.
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Step 2 defines the second skeleton (/~, F~, ~) by setting
~={0,~} ,

~6=0~! , >

~6~~i0/4)=o({~~>o}, {~~0}) , ’

~+i/i6=~v~2(M)=a({M~>M,}, {0~,~Mj} ’

{«2~t/40}, > {~,~M~)

~ = ~+t/t6~i(~2)=o({H~>Mj,~>~} ’

~l/4>Mj,0~,~,}, {~,,4>M,,~~~0} , ’

~1/4>~,~~L ..., ~,/4~,~2~!)
etc.

= ~z(l/4) v ~(1/2) v ~(3/4) v ~(l)

(generated by 2~=256 partition sets of Q)
and

~ = 0 , ’

~~6 = 0 ,
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E[W1 |W1/4 > 0] if 03C9~ {W1/4 > 0}
03BE(2)1/4(03C9) = 

E[W1 |W1/4 ~ 0] if 03C9~ {W1/4 ~ 0 } ,

E [W 1 ~W114~u1] if (~E 

E [W 1 }

~~l/l6~) = ~
E [W 1 I u2 ~ W114 ~ ~] if {uz  W114 ~ fi{

E [W 1 I W114 ~ u2] if (~ E {W u2} ’ ~

etc.

~i 2 - ( ~ 2] takes 8 different values,

~l +)1116 ^ E [W 1 ~es 256 different values.

Although the notation gets out of hand rapidly, Figure 5.1.1 indicates how path wise
approximation is achieved as n --~ oo: at each step in the construction, the skeleton-

filtration "closes in" on the correct o E Q by measuring with greater precision the posi-
tion of the path {Wt (03C9): 0 _ t  1} in addition to measuring it at more and more points
in time.

From a practical point of view, observe the following. In order to determine the

partition-sets of the skeleton-filtration, we use the approximation scheme of Section 2,
which requires one-dimensional integration (for calculating objects of the form

E [Wt ~ x  Wt~ _ y ]). An explicit calculation of the values of each skeleton, however,

requires multi-dimensional integration, despite the Markovian nature of W and the

Markov-property of the approximation scheme (see Remark 2.2.1). A typical object for



587

multi-dimensional integration looks like E [W  ~ _ y 1,..., xn  yn ] and

cannot be easily simplified. We also note that in many cases it is not necessary to have

complete knowledge about the rapidly expanding tree-structure corresponding to the
skeleton (1 {" ~, F~" ~, ~~n ~); for example, when interest focuses on a subset A of Q, the
skeletons can easily be restricted to this set by "cutting off ’ those branches of

(I tn ~, F~" ~, ~~n ?) not involving A . The latter comment is important when using skeletons
to compute approximations to stochastic integrals (see Willinger and Taqqu ( 1987)).

Figure 5.1.1 Skeleton-approximation of W via the Special Construction
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5.2 Standard Brownian motion in d > 1 dimensions

This example illustrates modifications of the Special Construction for higher dimen-
sional Brownian motion. For ease of exposition, we consider d = 2. Let W = (W 1, 
denote 2-dimensional standard Brownian motion; that is, W 1 and W 2 are two indepen-
dent (real-valued) standard Brownian motions defined on (S~, ~, P ), and take F = FW .

First we show that the Special Construction can be modified so that the resulting
skeleton-filtrations are binary. This is achieved by being more stingy with available
information then in the case d = 1 but by releasing this information at a faster rate.

Assume that we are building - via the original Special Construction - the n rh
skeleton-filtration between times and t = (k + 1)T 12n where and

represent the presently available information. (The sequence 
results from applying the approximation scheme of Section 2 to the set-up

and X (t ) = where Wrl and Wr2 are two independent normal
random variables each with mean 0 and variance t.) The approximating sequence

(Xk (t ))k >_ o can be roughly pictured as in Figure 5.2.1. . In particular, we observe that each

partition set in ~k (t ) is split into four subcells of when going from step k to step
k+1 in our approximation procedure of Wr2). Therefore, setting

= ‘~rn ) (~= fi~ 1 ~..., n -1) ~ ,

as we did in the Special Construction for d =1, would produce skeleton-filtrations with

the following property 
-

dim (span (~r+s (~ (~) - ~i+s (m) (~) : ~ E A } )) = 2

Further, since each cell is split in four,

cardinality (A E A’) = 4 .

where A E with P [A ] > 0; f=1,..., n -1. . Thus, (1 (~ ), F(n ), ~,(" )) does not

satisfy condition (C~~n~ ) when using the (unmodified) Special Construction.
To produce skeletons satisfying ( C ~~n ~~, we introduce an additional point in time

between t + s (~, and t + s (f+ 1), e.g. t + s (lj + 2-3m(r,n ) (~= p,1,..., n -1). Then,

instead of providing, for example, all the information contained in once at time

t, we first "reduce" this information by introducing some dependence between Wrl and
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Wt2 (see below) and construct Subsequently, the coupling-effect between Wtl and
Wt2 is released and ~+2_3m (t, n ) is defined to contain ~tl (t ). This same procedure is

repeated at each point t + s (l) (~= 1,..., ~ -1).

We have considerable freedom in choosing the degree of coupling between Wrl and
Wt2. One choice discussed below is to "open" one dimension at a time in order to obtain
binary skeleton-filtrations. Let t’ denote the last time in 1 ~" ~ preceding t E D n and con-
sider A E with P [A ] > 0. Before determining the subcells of A that will belong to

and respectively, observe that the relevant information at time t is pro-
vided by and that is, by the set A and the partition sets

i , Wt2_o} ~ A21-{Wtl~~~ W~2>o} ~ ,
A 22 =  0, Wt2 S o of Now subdivide A in two stages (see Figure 5.2.2).

(1) Subcells of A that belong to 

A 1 = (m e A : Wtl(ro) > 0, R} , ,

A 2 = .

(2) Subcells of A that belong to ~r + 2_3m (t, n ):
All = : 

,

A l2 = I > U, Wt2(~) _ 0 } ,

A21 = ~/(CO)0,~(0))>0} , ,

A 22 = : 
.
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Figure 5.2.1 Approximation scheme for the random vector (Wt 1, Wt 2)T
(a) Partition of R2 after three steps.
(b) Partition of 03A9 after three steps.
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Figure 5.2.2 Binary skeleton-filtration.

Repeating this procedure at every point in the original index set I (n ~ implies that condi-
tion (C ~n~ ) holds at any point in the extended index set consisting of I(n ) plus the addi-
tional points of the form t + s (l) + 2~3m (r,n ). We abuse notation and denote the extended
index set by I(~ ) as well.

Clearly this method applies to any dimension 1 _ d and yields the following.
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Corollary 5.2.1 Let W = (Wt : 0 _ t  1) denote d -dimensional standard Brownian
motion Then there exists a continuous-time skeleton-approximation
(I ~n ), ~(~ ))n ; o of W ) such that for each n ? 0, (1 (n ), F~n ~, ~(n ?) satisfies: for

each t(n, k-l), t (n ,k ) E 1 (n ) (0  k _ N (n )) , , and for each

dim (span ({~~i) (o) - (a)): " 0) ~ ~ }))

= cardinality (A’ E ~’l~n,k) : A’ c A ) -1=1 . °

Next we show that the Special Construction can be modified to yield continuous-
time skeleton-approximations of (FW, W) where each skeleton has a ter~nary tree-

structure (in the case d = 2). A ternary tree represents a filtration with the property that
each event splits in three from one time point to the next.

To prove our claim, we modify the approximation scheme of Section 2 so that it
looks like Figure 5.2.3 when applied to (11, a(X (t )), P ) and X (t ) = Wt2)T, and use
this modified version in Step 1 of the Special Construction. For example, in order to
obtain the first approximation step one can partition R2 in the three regions defined by
120° wedges. The first approximation of X (t ) would then yield a random vector that
takes three different values each one equal to the conditional expectation of X (t ) over
one of the three regions. Without going into details, it should be clear how to obtain an

algorithm for such an approximation scheme with the same probabilistic and geometric
properties as desired in Section 2 (see Theorems 2.2.1 and 2.2.2). Each partition set
A E is now split into three subcells of and execution of Step 2 of the Spe-
cial Construction now yields skeleton-filtrations with the properties:

dim (span «~~)(eo) -~~i)(o)): 00 E A })) = 2
and

cardinality (A’ E c A ) = 3

forallA E I(n>(0k _N(n~).

Clearly, this method of modification works for any given dimension d and estab-
lishes the following result which explicitly relates the dimensionality d to the fine struc-

ture of the filtration FW . This relationship is only implicit in Corollary 5.2.1. For an
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economic interpretation of this remarkable result, see Willinger and Taqqu (1987).

Figure 5.2.3 Modified approximation scheme for (Wt 1, Wt2)T.

(a) Partition of R2 after three steps.
(b) Partition of 11 after three steps.
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Corollary 5.2.2 Let W = (Wr : 0 _ t  1) denote d -dimensional standard Brownian
motion Then there exists a continuous-time skeleton-approximation
(I tn ), F(n ~, ~(n ))n , o of W) such that for each n ? 0, (1(n ), ~(n )) satisfies: for
each t(n,k) E 1 (n ) (0  k _ lV (n )) , and for 

) with

P(A] > o , , 
.

dim (span ({~~ (o) - k_1) ((~) : tu E A } ))

°

5.3 Continuous martingales with values in Rd (1 _ d  oo)

Let M = (Mt : o  t _ T ) be an Rd-valued martingale defined in a stochastic base
(Q, f, P , F). Assume that M has continuous sample paths and take F = FM where FM
denotes the (completed) minimal filtration satisfying the continuity-assumption (4.4.1).
Note that each continuous-time skeleton (I(n ), F(n ), of M ) produced by either
the general constructions or the Special Construction (or its variations) defines a

"skeleton-martingale", i.e. is a (F{n ~, P )-martingale. This result is proved exactly as
in the discrete-time case (see Example 3.2.1) and demonstrates the structure-preserving
character of these constructions. Moreover, using the variations of the Special Construc-
tion presented in the previous subsection, we can easily extend the results of Corollaries
5.2.1 an 5.2.2 to continuous martingales satisfying assumption (4.4.1 ).

Corollary 5.3.1 There exists a continuous-time skeleton-approximation
(1(n >> F~n >> >_ o of the (FM, P )-martingale M such that or each n >_ 0, the following
two properties hold:

(i) (1{" ), ~) is a ), P )-martingale,
(ii) for each t (n , k -1 ), t (n , k ) E 1 (n ) (0  k - N (n )) and for each A E 

with

P [A ] > o,
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= cardinality (/T= P~~):A’cABA~(M,~),A))-l I

o 
~ ~ 1 ifA~(K,~),~)=0 ,

Corollary 5.3.2 There exists a continuous-time skeleton-approximation
(I(n), F(n), (n))n~0 of the P)-martingale M such that for each n > 0, the following
two properties hold:

(i) (/"B F~, ~B ~o is a (F~B P )-martingale,
(ii) for each ~(M,~-l), t(n ,k) e Z~ (0 ~ ~~")), and for each A ~ 

with 

~]>0,

dim(span ({~~(o) - o e A NA 

cardinality (~’e ’P~~):A’c~B~°(~K,~),A))-ld’

~~:A~c~,P[~"]=0} . .

Compared to the results for Brownian motion (i.e. Corollaries 5.2.1 and 5.2.2), pro-
perty (ii) of Corollary 5.3.1 and Corollary 5.3.2 expresses the fact (first discovered by
Fisk (1965)) that the sample paths of continuous martingales on many subinterval of
[0,7"] are either of unbounded variation or constants. Of course, (P-almost) all sample
paths of Brownian motion are known to be of unbounded variation over each subinterval
of [0,r] (Billingsley (1979)) and, therefore, property (ii) of Corollaries 5.3.1 and 5.3.2 is
satisfied with equality for Brownian motion.
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For an application of these martingale approximation results, see Willinger and
Taqqu (1987). They show that the completeness property can be maintained along
skeleton-approximations and use this to provide a pathwise construction of stochastic
integrals relative to continuous martingales.

5.4 Brownian motion with a random variance (d = 1)
This example appears in a related context in Harrison and Pliska (1981) and illus-

trates the importance of the continuity-of-information assumption (4.4.1). We show that
events "that take us by surprise" cannot be incorporated in convergent, binary skeleton-
filtrations and, therefore, destroy the convergence-of-information property (4.2.2b).
However, if such events can be made "observable" by adding suitable component

processes, then convergence of information is possible and skeleton-approximations will
exist.

Specifically, let W = : 0 _ t _ 1) denote I -dimensional, standard Brownian

motion and consider an independent stochastic process a = {6t : 0 _ t _ 1 ) such that

2 if 0  ~  1/2 for all co E Q ,

1 if ll2 _ t _ 1 and if 03C9 ~ A ,

3 if 112 _ t _ 1 and if co e A ,

where P [A ] =112. Next define

Xt + (1 A (~) Wt (~) + lA 3Wt (~))~ 4 ~ t -1 .

The stochastic process X = (Xt : 0 _ t _ 1) evolves as a driftless Brownian motion with
variance parameter 02 = 4 over the time interval [0, 1/2). Then depending on the out-
come of an independent Bernoulli-trial at t = 1/2, the variance parameter increases to
02 = 9 if A e occurs, or decreases to 62 == 1 if A occurs. Set F = Fx and note that F is
identical to a (completed) Brownian filtration augmented by the outcome of an indepen-
dent Burnoulli-trial for times ll2 _ t _ 1.

Clearly, F satisfies the "usual conditions" (4.1.1) and P -almost all sample paths of X
are continuous. Continuity of F (i.e. assumption (4.4.1)), however, does not hold at time
t = 1/2; in fact, A fi (112 _ t  1) and, therefore, ~112- # In

this sense, A represents an event "that takes us by surprise" and prevents the construction
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of convergent binary skeleton-Sltration (see part 2) of the proof of Theorem 4.4.1).
Intuitively, in order to determine the variance parameter of X at time t =112, we have to
observe a sample path of X over an infinitesimal interval ( 112, ll2 + E) (~ > 0); that is,
we need the information contained in ~t~2+ _ :F1/2. But this "limiting" information can-
not be handled by binary, approximating skeleton-filtrations.

Convergence of information can be achieved, however, by adding a suitable

component-process Z2 = (Zt2 : 0 _ t  1). Specifically, let

((0) = Xt (co), , co ~ Q, 0  ~  1 , ,

1 if  1/2 ,

= 0 if ll2  t _ 1 and at (~) =1 , ,

2 if 112 _ t _ 1 and ar (~) = 3 . .

and set Z = (Z l, Z2), F =  = FX. . Although neither Z is continuous nor does F satisfy
(4.4.1), a variation of the Special Construction (d = 2), produces convergence of infor-
mation and continuous-time skeleton-approximations of Z ). This is because jumps
of Z2 occur at fixed points in time (namely, at t = 1/2) and do not create problems for the
Special Construction and its various modifications. More importantly, the discontinuity
of FZ at time t = 1/2 is fully explained by the "observable" component-process Z~.
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