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Brownian Excursions From Extremes

Pei Hsu*

Courant Institute of Mathematical Sciences, New York.

P. March **

McGill University, Montréal.

Let B = P; t > 0) be standard Brownian motion starting at zero and define
its extreme processes as

Mt = max B~ and mt = min Bs.

The point of this note is to observe a mapping property of Brownian motion and use it to
dérive some results about excursions of B from its extremes which are related to the work
of Groeneboom [4], Bass[1] and Pitman(9] and of Imhof[7]. It must be pointed out that
these results are conséquences of general excursion theory as expounded by Getoor [2],[3]
and Jacobs[8], for example. However this mapping property is new and its application to
excursions is direct. ,

Let rt = Mt - mt be the range process and for each E > 0 define the increasing
processes

a(t, E) = t~ 4r-2sds
and

T(t, E) = inf {s : a ( s, E) > t}.
Let

(1) Xt = 2Bt-Mt-mt Mt-mt

and define Xt = 

Proposition 1. The process X~ _ (Xt, P; t > 0) is a reflecting Brownian motion
on (-1,1]. . Its local times at ±1 are

03C6~,+t = (t,~)~4r-1sdMs

and

03C6~,-t = (t,~)~4r-1sd(-ms) respectively

Proof. We may write equation (1) as Xt = F(Bt, mt) where

_ (~x ~ y - z)i (y -w).
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Since F is smooth on (y ~ ~}, we may apply Itô’s formula there to obtain

(2) dXs = 2dBs Ms-ms + 2(Ms-Bs)d(-ms) (ms-ms)2 - 2(Bs-ms)dMs (Ms-ms)2.

Because each (t,~) is an Ft-stopping time we may write (2) in the integrated form

(s) = + ~r - ~~
where

W~t = (t,~)~ 2r-1sdBs

(4) 03C6~,-t = (t,~)~4r-1sd(-ms)
03C6~,+t = (t,~)~4r-1sdMs

To finish the proof we check that W~ is a standard Brownian motion and that (3) is its

Skorohod équation (Tanaka[11]). Clearly W~ is an and

[W~]t = (t,~)~ 4r-2sds = a((t,~), ~) = t.

By Lévy’s criterion, ~~ is a Brownain motion, independent of Xe. Now ~~ are con-
tinuous, incereasing processes which increase only when B attains a new
extremum, that is only when X~ == ~l. ~

As the next propostion shows, we may write the extrême processes in terms of the
local times Set ~ = ~~ + ~’".
Proposition 2. For t > 6,

(i) Mt = M~ + r(~) a(t,~)0 exp{03C6~s/4}d03C6~,+s

(ii) mt = m~ + r(~) a(t,~)0 exp {03C6~s/4} d03C6~,-s

where = inf{s : > ~} and

(t,~) = ~ + r(~)2 t0 exp {03C6~s/2}ds.

Proof. By (4) we have

4r~~=4tog~~,
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hence

(5) E)) = r(~) exp 

Since a(T(t, f), E) = t it follows that dT(t, f) = Thus by (5),

(t, ~) = (0, ~) + t0r((t,~))2ds
=~ + r(~)2 t0exp {03C6~s/2} ds.

It follows that T and hence a are defined solely in terms of mE and 03C6~,±.
Next, by (4)

(6) 03C6~,+t = (t,~)~ 4r-1sdMs = t04r((s,~))-1dMr(s,~) ,

and so

(7a) M(t,~) = M~ + 1 4r~ t0 exp {03C6~s/4} d03C6~,+s,

Similarly, we have

(7b) mr(t,~) = m~ + r~ t0 exp {03C6~s/4}d03C6~,-s,
and the proposition follows from a time change in (7a) and (7b).o

These propositions allow us to compare excursions of B from its extremes with excur-

sions of reflecting Brownian motion in [-1, ll. To be precise, let

(8) f(t, E) = inf {s : ~s > t}

be the inverse of boundary local time and let qE be the point process of excursions of XE.

That is, let
Dq~ _ ~s : Ï (s, E > f s_, E

and for each s E let

(9) qE(u) - ,~E( f (s-, ~) ~- u ,~ ~~), u > 0

where 1§ = f (s, E) - f (s-, E) is the duration of the excursion. Similarly, consider the point
process p of excursions of B from its extremes. Let

(10) p(t) = inf~s : r(s) > t},

let the domain of p be D = {t : p(t) > ~(t-)~ and for each t E D let

(11) = B(1~(t-) + u ~ ~(t)), u > 0

where a(t) _ ~(t) -~c(t-). Proposition 4 provides a formula for p in terms of qE. To ensure
the formula is well defined we need the
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Lemma 3. Let D~ = {t : ~(t) > and > E}, Then

1 f(t, E = E
(ii) Dq’ == {s(u, E) : u where s(t,t) = 

Proof. The lemma follows easily from the equality r(f(t, E), E) = which we now

show. Let a(t) and l3(t) denote the left and right side of this equality, respectively. On
the one hand, by (7a) and (7b), we have

r(a(t)) = E))} = 

On the other hand, by definition r(p(t)) = g(t). Thus r(a(t)) = r(,0(t)). Since g(t) is

strictly increasing, for any 6 > 0

a(t + 6) »(r(a(t + b))-) = + ~)-)
= u(r(~(t))) _ 

Letting ~ ~, 0 we get a(t) > Since the reverse inequality is similar, the lemma is
proved.o

Proposition 4. Let ( pt ; t E D} be the point process of excursions of B from its extremes.
For each t E Df

pt(’~) _ 2 t ) + ! 2 + m~(t)~
Proof First note that the statement makes sensé, by Lemma 3. Let s E Dqt where
s = s(t, E) and t The durations of q9 and a(t) of pt are related, according to
Lemma 3, by

(12) = f (S(t, E), E) - f (S(t, E)-, E)
, E _ e)

=4 (t) (t-) r-2udu
= (t)- (t-)=403BB(t).~ ~ 

.. .

Thus by the formulas

x~ ;‘ 2 Bu - ~’~Îu - , .~v = 
mu 

’

and the definition of q~ and p we get

q~s(t,~)(u) =1 t (2pt (t2u 4) -M (~)-m (~)),

from which the proposition follows. o
An immediate corollary is the identification of the conditional law of excursions of B

from its extremes. Indeed, and introduce the transition density of
Brownian motion in with absorption at the endpoints (Port-Stone[10]):

(14) pc,d0(t, x, y) = 2 d-c  sin (n03C0x-c d-c) sin n03C0y-c d-c exp{-n203C02 (d-c)2 t 2}
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as well as thé functions

gc,d(t,y;a) = ~ ~napc,d0(t,a,y), a=c,d
(15)

03B8c,d(t,a,b) = 1/4 ~2 ~na~nbpc,d0(t,a,b), a,b = c,d.

There exist unique probability laws Pa,b;lc,d on C([0,oo),[c,d]) with absolute distribution:

(i6) ~’(~)e~)=~~~;~ ~’ ~~ ~~ ~~’ o~~ 

and transition density

(17) Pa,b;lc,d (e(v) ~ dy|e(u) = x) = pc,d0(v - u,x,dy)gc,d(l-v,y;b) gc,d(l-u,x;b) 0 ~u n~l.

Indeed, if Xc,d is reflecting Brownian motion in [c,dj then is just thé law of thé

excursion process of Xc,d conditioned to begin at a, end at 6 and hâve duration /. This is a
simple extension of thé well-known case of one reflecting barrier (e.g. Ikeda-Watanabe[6])
and also can be proved by imitating thé calculations of Hsu[5). FinaUy let us note a scaling
property of thé laws Pa,b;lc,d which follows from thé invariance of thé family {pc,d0, -~ 
c  d  00} under affine changes of variable:

(18) If Z = {Z(~);0  ~  /} has thé law P~ then + « bas thé

’

Theorem 5. Let  ~ D. Let and let f > 0. Then conditional on thé

event 03BE = [m (t) = c,M (t) = d,pt(0) = a,pt(03BB(t)) = b,03BB(t) = l], the law of the excursion

process p~(-) is P~’~.
Proof. Fix some e with t ~ D~ and let s == s(t,~). By (9) and (12), we hâve

~ = = = = ~ - 

But then conditional on $, thé process q~s(.) bas law Pe,f;m-1,1 with 6 = sgn(d),/ = sgn(6)
and m = |d - c|2l/4. So by Proposition 4 and thé invariance property (18) we find that
conditional on 03BE, pi(’) has thé law Pa,b;lc,d. ~

It is known that if X is reflecting Brownian motion in an interval then conditional
on thé 03C3-field generated by thé boundary local time of X, thé various excursions of X
from thé boundary are mutually independent. This is évident from thé construction of

, thé excursions law characterizing thé excursion point process in thé one reflecting barrier
case (Ikeda-Watanabe[6]). Or again, one can either imitate thé argument of Hsu[5] or
simply quote thé results in Jacobs[8]. Let us show that this conditional independence
property is shared by excursions of Brownian motion B from its extrêmes, conditional on

~{M.,m.;5~0}.
Lemma 6. Let B~ = 03C3{03C6~,+s,03C6~,-s;s > 0} and B = > 0}. Then B~ C B and

B.

Proof. Since Proposition 2 exhibits M and m as explicit functions of 03C6~,±, we hâve thé
inclusions
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Q~~s - E} C ~} C E}

and the lemma follows from this.~

Theorem ~. Conditional on B = > 0}, the excursions D~ are
mutually independent.

Proof For n > 1 consider functionals F : C(j0,oo), -~ R of the form

n

F~W1~W2~...,Wn) _ 
j=1 i

for bounded continuous functions f j . Let t 1, .... , tn 6 D. Using Proposition 1, for ail

sufficiently small e,

EF(pt1,...,ptn)| B~ =Efj(ptj(sj,1),...,ptj(sj,m(j)))|B~
L J ~~1 1 L i J

by the conditionai independence property of qE. Thus by the martingale convergence
theorems and Lemma 6; taking the limit as ~ ~ 0 yields

E [F(pt1,...,ptn)| B] = E [fj(ptj(sj,1),...,ptj(sj,m(j))| B]. ~

We close by remarking that Theorem 5 and 7 show that Brownian motion consists of
conditionally independent Brownian excursions properly interpolated between endpoints
of flat stretches of the extrême process and m.
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