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Diffusion Semigroups Corresponding to
Uniformly Elliptic Divergence Form Operators

DANIEL W. STROOCK

Chapter I: Aronson’s Estimate for Elliptic Operators
in Divergence Form

§1.0: INTRODUCTION
The purpose of this chapter is to study the semigroup  > 0} determined

by a second order partial differential operator of the form L = V ’ (aV) where a : :
R~ 2014~ R~ 0 R~ is a measurable, symmetric matrix-valued function which satisfies
the ellipticity condition

(E) 03BBI ~ a(.)  1 03BB I
(in the sense of non-negative definite matrices) for some A ~ (0,1]. Until further
notice, we will be assuming that a has bounded derivatives of all orders so that
there is no doubt about what we mean by > 0}: it is then the unique Feller
continuous Markov semigroup on with the property that

~) = / ~ (, j:) e [0, oo) x R~

for all 03C6 6 Moreover, under these assumptions, it is a familiar fact that
there is a function p C C~ ([1/~, n] x x RN; (0, oo)) with the property that

(I.O.I) [Pt03C6](x) = RN03C6(y)p(t,x,y)dy;
and therefore that

J~, ~,./) = .)](2/), (~ ~, (0, oo) x R~.

In addition, it is known that if ~ e then t e [0,oo) ’2014~ is a smooth

mapping into the Schwartz space which consists of smooth functions all of
whose derivatives are rapidly decreasing. In particular, one has that

~[P~)=[ZP~%r), 
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and therefore that

~, .-,!/) = [Lp(,., y)](.r), (t, :c,!/) ~ (0, oo) x R~ x R~

and

(1.0.2) E and 03C8 6 

where we have introduced the notation

(/,~)=(/,~(~)= / 
to denote the standard inner-product in (of course, when F and G take values
in (F, G) denotes F(.c)’G(.c) dz) and we have integrated ([ZJ~~j, ~) by parts.
As a consequence of (1.0.2), we see that for T > 0 and ~ C 

~ 

0~r

and therefore that

(1.0.3) M~)=(~~]), , ~>0.

So far (1.0.3) has only been checked for ~, ~ 6 However, it is an easy matter
to pass from this statement to a more general one. In fact, we have the following.
LEMMA 1.0.4. For each q E [1, oo) and allt > 0,

~[Pt03C6]~q ~ ~03C6~q, 03C6 ~ Cb(RN).

(When there is no question about the underlying measure space involved, we will

use ~.~q to denote the Moreover, each Pt admits a unique continuousextension Pt to . Moreover, {Pt : t > 0 ) is a strongly continuous semigroup of
self-adjoint contractions on . Finally, let ~~(R~) denote the Sobolev space
of functions in whose first order (generalized) derivatives are also in .

That is, is the completion with respect to the norm

.

Then, for each t > 0, ~ maps into 

(1.0.5) ~[~Pt03C6]~~1 03BB1/2 (1 t1/2~03C6~2)^ (~~03C6~2), t > 0 and 03C6 C >
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and

(1.0.6) d ‘L (P t ~’~ ~ Y’) = ( ~ DP tY~~ ~ aD ~’) ~ t > 0 and Y’ ~ ~Y E ( ~N ) 

PROOF: To prove the first assertion, let § E and choose a non-decreasing
sequence C which tends point-wise to 1 as n --~ oo. Then, by (1.0.3)
and the monotone convergence theorem, we see that

(1.0.7) 
RNPt03C6(x)dx = RN 03C6(x)dx.

Given (1.0.7) for all § E Ca (RN)+, it is an easy matter to get the same equality
for all non-negative measurable ~’s. Moreover, since ~Pt~~(x) is computed, for each
x E RN, by integration with respect to a probability measure, we see that

_ t > 0 and q E 

for all measurable ~ ’s. Hence, the first assertion is now proved.
In view of the preceding and (1.0.3), the existence and self-adjointness of Pt are

clear; and the continuity of {Pt : t > 0} is an easy consequence of the properties of
{Pt : t > 0} mentioned above. To see that Pt maps into and the

inequality in (1.0.5), let {E~ : /~ E be the spectral resolution of the identity
in for which .

(1.0.8) Pt = [0,~)e- t dE .

It is then immediate from (1.0.2) that

(1.0.9) _ / [0,oo) (~[Pt/203C6],

for all 03C6, 03C8 E Taking 03C6 = 03C8 in (1.0.9) and using the ellipticity of a, we
conclude that (1.0.5) holds first for elements of Ca and then for all elements of

Wai)(~N).
Finally, the proof of (1.0.6) is now just an easy matter of passing to limits in

(1.0.2). t
It should be noted that although we required a to be smooth in order to know

that {Pt i t > 0} exists and maps Co (RN) into S(RN), all the conclusions drawn
in Lemma 1.0.4 make sense even when a is not smooth. In fact, none of them relies

directly on any properties of a other than ellipticity. What we will show in the

succeeding sections is that there are several other properties of {Pt : t > 0} which
depend only on the ellipticity of a. In particular, we are going to show that there is
an M = M(A, N) E such that

(L0.10) - -1-- N 2 exp _  _  N ~ 2 
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for all (t, x, y) E (0, ~) x RN x RN.
The estimate in (1.0.10) is Aronson’s estimate (cf. ~A~). It constitutes a beautiful

summary of the results contained in the sequence of articles starting with those of E.
DEGEORGI [DG] and J. NASH [N] and culminating in the article [M] by J. MOSER.
Section 1.1 contains a derivation of the upper bound in (1.0.10), and the lower bound
is derived in Section 1.2. In the first section of Chapter II, we will use (1.0.10) to
recover the estimates of NASH, DEGIORGI, and MOSER. The proofs given in all of
these sections are adopted from the article [F.-S.]. In Section 1.4, we will discuss
some extensions of these results to operators which are lower order perturbations of
L. Finally, in Section 1.5 we will apply our estimates to the construction of diffusion
semigroups corresponding to elliptic operators in which the coefficients are merely
bounded and measurable.

~I.1: THE UPPER BOUND

Our derivation of the upper bound turns on the following basic analytic fact
about RN.

LEMMA I.I.I. (NASH’S INEQUALITY) There is a CN E (0, oo) such that

‘Y ~ .

PROOF: Clearly it suffices to prove the result for § E In order to emphasize
just how basic it is, we will give three derivations.

i) (FOURIER) For every r > 0:

(203C0) N~03C6 ~22
=B(0,r)|

(03BE)|

2 d03BE+B(0,r)|
(03BE)|

2 d03BE ~ 03A9N rN~03C6~ 21+ (203C0)N r2~~03C6~22,(203C0 )N ~03C6~22=
B(0,r)

|(03BE)|2 d 03BE +B(0,r)c |(03BE)|2 d 03BE ~ 03A9 NrN ~03C6~21 + (203C0)N r2 ~~ 03C6~22,

where B(x, r) ~ {y E : l y - xl  r} and 03A9N = IB(0,1)I, and we use Irl to denote
the Lebesgue measure of a measurable set r C The desired inequality results
from the preceding by choosing the r which minimizes the right hand side.

ii) (HEAT FLOW) For (t, x) E (0, oo) x ~N define the heat kernel

(I.1.2) = 

Then

03B3T * 03C6 = 03C6 + T0 039403B3t * 03C6dt, T > 0,

where "*" is used to denote convolution. Note that

I * 03C6,03C6) I _ ~03B3T * 03C6~~ ~03C6~1 ~ (403C0T)-N/2~03C6~21,
and that, by (1.0.5),

j(~A(7~))f = 1 (o~~ * ~)) 
Combining these with the preceding, we conclude that

11~112 _ (4~~) N~2II~II1 + ~’ > o.

Again the desired inequality follows upon optimizing the right hand side.
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iii) (SOBOLEV) At least when N > 3, one has the critical Sobolev inequality
(1.1.3) with 1/p = 1/2 - 
for some cN  ~. To get NASH’S inequality from this, define 0 ~ (0,1) by 1/2 =
0/p + (1 - ~), use Holder ~s inequality:

’

and use the estimate for which comes from Sobolev’s inequality. t
As a demonstration of the power and relevance of NASH’S inequality to upper

bound in (1.0.10), we begin by showing how NASH himself used it. Namely, let

~ C with = 1 be given, and set ~ = Then, by Lemma 1.0.4,
~ 1) and so

-2(V~,~V~)   -~-~~)~~
for all t ~ 0. After integrating this elementary differential inequality, one finds that

~ (~f) . In other words, the norm of Pt as a bounded linear map
from to is dominated by a constant ~ = ~(A,~V) e (0,oo) times
~-N/4 Since Pt is symmetric in an easy duality argument shows that the
norm is equal to Hence, since P2t = Pt o Pt, we conclude that

~P2t~1~~ ~ ~Pt~2~~~Pt~1~2 ~ K2 tN/2;

and it is an easy step from this to the estimate

(1.1.4) p(t,x,y) ~ 2N/2K2 tN/2, (t,x,y) ~ (0,~)  RN  RN.

Actually, (1.1.4) should be viewed as the right hand side of (1.0.10) on the diagonal
in R~ x Indeed, the symmetry of Pt tells us that

(1.1.5) p( t, :c, ?/) = p( t, x/, .c), (~ :c, 2/) e (0, oo) x R~ x 

and so, by the Chapman-Kolmogorov equation,

p(t,x,y) = RNp(t/2,x,03BE)p(t/2,03BE,y)d03BE
~ ~p(t/2, x, .)~2~p(t/2,y..)~2 = p(t, x, x)1/2p(t,y, y)1/2.

In order to get the off-diagonal upper bound in (1.0.10), we will use a trick which
was introduced in this context by E.B. DAVIES [D]. Namely, let 03C8 ~ and

define

(1.1.6)
p~,~) = exp(-~))p~,.c,~)exp(~(2/)), (~,~,2/) E (0,oo) x R"

[P03C8t03C6](x) = RN 03C6(y)p03C8(t,x,y)dy, (t,x) ~ (0,~)  RN and 03C6 ~ Cb(RN),

[L03C803C6](x) = exp(-03C8(x))[L(exp(03C8)03C6)](x), x ~ RN and 03C6 ~ C2(RN).
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It is easy to check that {P03C8t : t > 0) is a non-negativity preserving semigroup onand that, for § e t - [P°§] is a smooth mapping into S(RN)
with

I. 1 .7> £ 03C6] z> = lL° 03C6] z> , t , z> e 0 , ~) x 

What we would like to do is apply NASH’S idea to get an estimate this time onp’° (t, z, y). However, there is now a problem which we did not face before. Namely,it is no longer true that is a contraction on the Lebesque spaces. Thus we willhave to be a little more clever.

LEMMA I. 1 .8. For each q E [I, cxJ) and all § E 

(I.1.9) d dt~03C6t~2q ~ -03BB q~03C6i~2q-12q ~~03C6qt ~22 + q0393(03C8)2~03C6t ~2q,

where §t = §] and

(I.1.10) F(ib) % sup (i7ib(z) . a(z)i7ib(z)) ~’~.
rERN

In particular,

(I. I . I I) )) P# )) ~_ ~  ~Xp (tF(c) ~) .
PROOF: From (I. 1 .7) we see that

d dt ~03C6t ~2q = ~03C6t~1-2q2q(03C62q-1t, L03C8 03C6t) .

Integrating by parts, we obtain

> L°4t) = - (V (e-03C803C62q-1t), a~ (e03C8 03C6t))
= -(2q - 1) , a~03C6t) - 2q - 1> ~03C6t, ai7c) + avv)
 -q(03C62q-2t~03C6t,a~03C6t) + q(03C62qt~03C8, a~03C8) ~ -03BB q ~ ~03C6qt ~22 + q0393(03C8)2~03C6t ~2q2q.

Together with the preceding, this now yields (I, 1, 10), i
Continuing with the notation §t = set

uq (t) = ~03C6t~2q, t ~ 0 and q G ii, CXJ>,
and

wq(t) = sup t > 0 and q e [2 cxJ)0st 
~ ’
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By the preceding,

(1.1.12) ~0.

Morover, by (1.1.9) and NASH’S inequality, for g ~ [2,oo),

~M~-~~-itt~~+~W~~)
. 

~ 03BB CNq~03C6qt~2 uq(t)2q-1~03C6qt~4/N1+q0393(03C8)2uq(t)
= -03BBCNquq(t)1+4q/N uq/2(t)4/N+q0393(03C8)2uq(t).

Hence,

A ~~"~~ f~i+4?/~
(1.1.13) ~)~-~201420142014~20142014+~(~)~(~ ~>0and~[2~).

LEMMA 1.1.14. Let a,/?,6 be positive numbers and g 6 [2,oo). Let K; : [O.oo) 2014~

(0,oo) be a non-decreasjng contjnuous functjon. If u ~ C1([0,~);(0,~)) satisfies

~-,’~~~~".’-.
then there exists a ~ = ~ (0,oo) such that

/~2B1/~
t(1-1/q)03B2u(t) ~ (Kq2 03B4) exp(03B403B12t/q)w(t), t ~ 0

for every 6 C (0,1].
PROOF: Clearly

/ 2 ~ .. 
~ 

Bi+/3?

(e-~~))  (e-- ~M)
Thus,

,/-~(~)e~~,~ ~~-~-~
> ~ ~ ~-~~.~ ~ , ~.~-~~~-~)(l - (1 - ~)~)~~)~7(i-~) - 
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Noting that ~ (~~/-?)~2014 ~> ~/4~~ for q 6 [2,oo), one can easily deduce the required
estimate from this. j)

Returning to the notation introduced just prior to Lemma 1.1.14 and taking
Of = /? = 4/N, and 6 = ~- in that lemma, we now see from (1.1.13) that there
is = ~(A, TV) e (0, oo) such that

w2q(t) ~ (Kq2 03B4)N/4q e03B40393(03C8)2t/qwq(t), q ~ [2, ~) and t ~ 0.

Combining this with (1.1.12), we find that there is a ~ = ~(A.~V) C (0,oo) such
that

w2n(t) ~ K’ 03B4N/4e(1+03B4)0393(03C8)2t~03C6~2.
and from this it is clear that

lim  ~(~)-~e~+~~)~!~~.
.

In other words, we now know that

~P03C8t~2~~ ~ e(1+03B4)0393(03C8)2t, t > ot (6t)N/4 ’ " " "’

But the formal adjoint of is just which clearly satisfies the same estimate.
Hence, by duality, we have the same bound on Finally, since = Pt/2 o

have now proved that

..  
~~’ 

t ot !!i~~s (~/2~ ’ ’>~

THEOREM 1.1.15. There is = ~(A.~V) C (O.oo) such that for every 6 e (0,1]
and every ~ C with  oo,

(1.1.16) + (1 + 

PROOF: From the preceding we see that (1.1.16) holds for all 03C8 C It is
therefore clear, by elementary approximation, that (1.1.16) holds for all 03C8 C 
Finally, if z, y ~ are given, choose r > 1 so that V  r, 1  x  N choose
77 ~ so that 0  77  1 and ~ = I on [-r, r], and define H : RN 2014. RN
by

H(x)i == / 1 ~ i ~ TV and .c 
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Then for any 03C8 ~ C1(RN), 03C8 ° H ~ F(03C8 o H) ~ 0393(03C8), and 03C8 o H equals 9

at x and y. []
The upper bound in (1.0.10) is essentially trivial once one has (1.1.16). Indeed,

take 6 = consider 9 ’s of the form 03C8(x) = 03B8. x, where 0 6 One then finds

that 

p(t,x,y0 ~ K tN/2exp(03B8.(x - y) + 2|03B8|2t/03BB).
In particular, by taking 0 = ~~ one obtains

(1.1.17)  (~.~) ~ (0,oo) x R~ x IRN. .

However, it is clear that we should be able 
to get much more out of (1.1.16). To this

end, define

(1.1.18) D.(..,!/) = V~) ~ 9 6 and r(V)  1}.

It is then an easy matter to see that

~) - (i + ~r~)’: ~ e ~i~~- °
Therefore, the sharp conclusion which can be dran 

from (1.1.16) is that

(1.1.19) p(t,x, y) ~ K (03B4t)N/2 exp (Da(x,y)2 4(1+03B4)t)
.

Because of (1.1.19), it becomes interesting to identify the 
metric with

some more familiar metric. In particular, one suspects that D (.,.) is related to the
Riemannian distance da(x,y) between .c and y computed relative to the Riemannian

metric a-’. To confirm this suspicion, we describe 
as follows. Let

(1.1.20) H = ~ ~ h(O) = 0 and h ~ ~([0,oo);R~)},

where /. denotes the (generalized) derivative of the function h. It is then clear that

H becomes a separable Hilbert space when we take

(1.1.21) ~h~H ~ ~h~L2([0,~);RN).

For h ~ H, define (~, ~) ~ [0, co) x ~ ~(, ~; ~) 
so that

(1.1.22) 03A6(t,x;h) = d dt03A6(t,x;h) = 03A6(0,x;h) = x.

One can then quite easily show that for any 0 
0

(1.1.23) = ~~ ~ H and $(, ~; h) = !/}.
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LEMMA I.1.24. For all x, y E RN, da(x,y) = Da(x,y). .

PROOF: Suppose that h E H and that $(1, x; h) = y. If 03C8 E C1(RN) satisfies 
1, then

03C8(y) - 03C8(x) = 03C8(03A6(1, xs h)) - 03C8(03A6(0, x; h)) = 10 ~03C8(03A6(t, x; h)) . 03A6(t, x; h) dt

= o 03A6(t, x; h) . h(t) dt  

and therefore Da (x, y)  da (x, y).
To prove the opposite inequality, it is convenient to first extend the class of 03C8 ’s

entering the definition of Da(x, y). Namely, for 8 E SN-1, set he(t) = t8, t > 0. Next,
define ’11 to be the class of1/; E C(RN) with the property that x; 
for all (t, x, 8) E (0,1] x RN x SN-1. It is easy to check that if 03C8 E then
~ E W if and only if r(~)  1. In addition, by a standard approximation procedure,
one can show that if 03C8 ~ 03A8 then there exist C C1 (RN) such that wn ~ 03C8
uniformly on compacts and limn-o r(~,~)  1. With these remarks, it becomes clear
that

y) = E ~}.

In particular, since, by I.1.23, for each x E RN, E ~, we now see that
da(xf y)  y)~ ~

In view of the preceding lemma and (I.1.19), we have now proved that

(I.1.25) p(t, x, y) _ K (03B4t)N/2 
exp (-

da(x,y)2 4(1+03B4)t ), (t, x, y) ~ (0, ~)  RN  RN,

for every 8 E (0,1].

§1.2: THE LOWER BOUND

In this section we will prove the lower bound in (1.0.10). Once again, the proof
turns on an idea in [N]. The main step is to show that there is an A = 
(0, oo) such that

(1.2.1) RNe-03C0|y|2 log(p(1, x, y)) dy ~ -A, x ~ B(0, 2).

In order to show that such an A exists, we will require the following elementary fact,
which will certainly be familiar to anyone who has studied the Hermite operator.

LEMMA 1.2.2. For any § E Cl(RN)

RNe-03C0|y|2 (03C6(y)- 03C6 >)2 dy ~ 203C0 RNe-03C0|y|2|~03C6(y)|2 dy,
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where  ~ >= ~(y) dy.

PROOF: After a change of variable, it becomes clear that the asserted inequality is
equivalent to the statement that

(1.2.3) RN 03C6(y)2 03B3(dy) ~ RN|~03C6(y)|203B3(dy)
for all § E Cb satisfying 03C6(y)03B3(dy) = 0, where y(dy) = dy and 
is the heat kernel given in (I.1.2). Further, by an approximation argument, it is

obviously enough to prove this when § E 
Let § E with fRN = 0 be given, and set

~t(~) _ [rt~~(~) _ / ~(y)’Y1-e-2t (y - e -tx) dy.
~N 2

Clearly 03C6t ~ 0 (03C6t ~ 03C6) boundedly and point-wise as t ~ oo (t ~ 0). More-
over, .

~ ~t03C6t(x) = (0394 - x . ~)03C6t(x);

and so, after integration by parts, we see that

dt N ~t(y) 2 ’Y( d y) _-2 N 
In particular, this shows that is a non-increasing function of t > 0 for any
~ E Cb(RN). Next, note that = e-t ~I‘t(v~)~ . Hence, we now see that

RN 03C6(y)2 03B3(dy) ~ 2 ~0e-2t ( RN[0393t(~03C6|2)](y)03B3(dy)) dt ~ RN|~03C6(y) |2 03B3(dy),

which is precisely (1.2.3). I
We now turn to the proof of (1.2.1).

LEMMA 1.2.4. There is an A = N) E (0, oo) such that (I.2.1) holds for all
x E B(0, 2).

PROOF: Let x E B(0, 2) and () E [1/2,1) be given, and set u(t, y) = 6p(t, x, y)+(1-8)
and

G(t) = RN e-03C0|y|2 log(u(t,y))dy.
In order to prove the required estemate, it suffices to estimate G(1) from below by a
quantity which is independent of x and 8. (It may be helpful to keep in mind that,
by Jensen’s inequality, G( 1)  0.)
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Now, using integration by parts and Lemma 1.2.2, we see that:

G’(t) = -RN~(e-03C0|y|2 u(t,y)). a(y)~u(t,y)dy

= 203C0 RNe-03C0|y|2y.a(y)~(log(u(t,y)))dy
+ RNe-03C0|y|2~(log(u(t,y))).a(y)~(log(u(t,y)))dy

~ -203C02 RNe-03C0|y|2y.a(y)y dy

+ 1 2 RNe-03C0|y|2~(log(u(t,y))).a(y)~(log(u(t,y))) dy

~ -03C0 03BB+03BB03C0 RNe-03C0e-03C0|y|2(log(u(t,y)-G(t))2 dy.
Also, for any r > 0 and K > 0,

~ ~ B(O, r) ~) > ~)’.
Choose r > 0 so that for t ~ (0,1]. By our upper bound
on this can not only be done, but can even be done with an r which is
independent of :c ~ B(0, 2). Next, again using the upper bound, choose M e [l,oo)
so that M for all ~ [1/2,1] x R~ x One then has that for
t ~ [1/2,1] (and any :c ~ B(0,2) and ? ~ [1/2,1)):

3 4 ~ B(0,r)u(t,y)dy~03A9NrNe-K + M|{y ~ B(0,r): u(t,y) ~ e-K}|.

Hence we can choose K ~ (0, oo) so that

|{y ~ B(0, r) : u(t, y) ~ e-K}| ~ 
1 8M

for all t ~ [1/2,1] (and any 03B8 ~ [1/2,1) and z ~ J9(0,2).) Together with the preceding,
this implies that

(1.2.5) G~) ~ -~ + e [1/2,1]
for some B ~ (O.oo) and 6 ~ (0,1].

Now suppose that G(l) ~ -Q where Q = -B~ - 2j9/e. Then, since, by (1.2.5),
G(l) - G~) ~ -~~/2 for t ~ [1/2,1], we would that G(t)  e [1/2,1]; and
therefore, again by (1.2.5), that 

G’(t) ~ 32 4G(t)2, t ~ [1/2,1].
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But this means that  -~; or, equivalently, that (?(!) ~ -~. Hence, either
C(l) > -Q or G(l) > -~; and so we can take ~ = Q t

Although, at first sight, (1.2.1) appears to be only a small step toward our goal,
it turns out to be the crucial one. Indeed, by the Chapman-Kolmogorov equation,
the symmetry and Jensen’s inequality, we see that it leads immediatley
to

log(p(2,x,y))=log(RN p(1,x,03BE)p(1,y,03BE)d03BE)
~ log(RNe-03C0|~|2p(1,x,03BE)p(1,y,03BE)d03BE)

~ RNe-03C0|03BE|2 log(p(1,x,03BE))d03BE+ RN e-03C0|03BE|2 log(p(1,y,03BE) d03BE ~ -2A
for all .c,?/ ~ j9(0,2). In other words, we now know that

(1.2.6) P(2,~)~6-~, ~~~(0,2).
The next step is to take advantage of the scaling and translation invariance of

the hypotheses under which (1.2.6) has been proved.
LEMMA 1.2.7. . Using the notation x,y) to emphasize the coefficeint matrix, one
has that for a~ r > 0 and ~ ~ :

r.c -~) = (~ z, ~,
where ~(.) = a(r +~).
PROOF: Let 03C6 ~ be given and set

u(t, x) = RN 03C6((y - 03BE)/r)p(t, x, y) dy and w(t, x) = + 03BE).

Then one can easily check that

~ ~t w(t, z) = (~. (ar,03BE)0394w(t, .))) (x) and w(t, .) = 03C6.

Hence, by uniqueness,

rN RN 03C6(y)p(r2t,rx+03BE,ry+03BE)dy=w(t,x)=RN03C6(y)par,~(t,x,y) dy.
Since this is true for every 03C6 G the result follows immediately. []

Because, for any choice ofr and ~, satisfies the same hypotheses as a, (1.2.6)
continues to hold when p(2, z, y) is replaced by p~’~(2, z, ~/). Combined with Lemma
1.2.7, this allows us to conclude that

(L2.8) p(2t,x,y) ~ e-2A tN/2, (t,x,y) ~ (0,~)  RN  RN with |y-x|  4t1/2.
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Clearly (1.2.8) is the lower bound "near the diagonal." To get away from the
diagonal, we use a chaining procedure. Namely, suppose that n   n + 1 for

Notice that if ~,~ E Bm, 0 _ m  n + 1, then  and therefore that

p(2/(n + 1), ~,~_1, ~,~) > Hence, by the Chapman-Kolmogorov equation,

p(2, x, y)

~ B1...Bnp(2 n+1,x,03BE1)p(2 n+1,03BE1,03BE2)...p(2 n+1,03BEn,y) d03BE1...d03BEn

~ (nN/2e-2A)n+1(03A9Nn-N/2)n.

Thus, if we choose {3 > 0 so that  nNe-2A, then we have that

p(2, x, y) > ,

After combining this with (1.2.8) and then using Lemma I.1.7 to re-scale, we
arrive at the conclusion that there is an M = M(a, N) E for which the left
hand side of (1.0.10) holds.

REMARK.

Unlike the estimate (I.1.25), the estimate just derived is not sharp. Indeed, it is
known that

(1.2.9) lim -4t log(p(t, x, y)) = da(x, y)2.

The hard part of (1.2.9) is the domination of the "lim," and this follows easily from
(I.1.25). Once one knows the crude lower bound contained in (1.0.10), the "lim"

part of (1.2.9) is an easy application of elementary ideas from the theory of large
deviations.

Chapter II: Some Applications and Extensions

§11.1: APPLICATIONS TO HARMONIC ANALYSIS

In this section we will see that the existence of both upper and lower bounds in

(1.0.10) leads to far more powerful applications than the existence of just one or the
other.

In discussing these applications, it will be convenient to use the language provided
by probability theory. Thus, let Q = C(~0, oo); RN), endow S~ with the topology of
uniform convergence on compact intervals, let M denote the Borel field over 0,

E nand t E denote by the position at time t, and set
Mt = E ~0, t~}) (the u-algebra over S~ generated by the maps x(s): : ~ --~
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~ [0,])- For each ie ~ let P. denote the unique probability measure on

(Q, M) which satisfies

Px(x(0)=x)=1

Px(x(s + t) ~ 0393) = [Pt~0393](x(s))(a.s., Px), 0393 ~ BRN.
The existence of such Px’s presents no challenge, since the upper bound 

in (1.0_10) is
more than enough to guarantee that Kolmogorov’s criterion is satisfied. In addition,
it is clear that the family (Px .- is strongly Feller continuous and Markov.

In particular, it is certainly strongly Markovian.
As a preliminary application of (1.0.10), we will prove the following.

LEMMA 11.1.2. There is an M = M(A,7V) 6 [l.oo) such that

Px sup 7
for aJJ (t -r) ~ (0, oo) x and r > 0.

PROOF: We use a crude version of the reflection principle. Namely, let (r(~) =

inf{t ~ 0 : ).E(,~) - -c) ~ ’’}- Then, by the strong Markov property,

= [P(~ - :r,~),B(.c,r)’),:r  ~] . .

Note that for £ ~ and s > 0, the lower bound in (1.0.10) shows that

P(~,’B(~T) ~ e, where ~ depends only on A and N. Thus, from the above,

we conclude that 

At the same time, it is clear from the upper bound in (1.0.10) that

for some pair A, B ~ (O.oo) which depend only on A 
and N. Hence, the required

estimate has been proved, I

As is well-known the estimate in Lemma II.1.2 
is extremely useful when one

wants to localize. For example, consider any diffusion associated with an operatorL’ such that [L’§] = [L§] whenever § e 
and denote by P’(t, z, .) the

corresponding transition probability function. It is then a relatively 
easy matter

to show that p’(t z dy) - p’(t, z y) dy on (o, cxJ) x RN 
x B(£, r) and that for any

03B4 6 (0,1) the function p’(t, x,y) will satisfy 
an upper bound of the sort in (1.0.10) so

The next result shows that we can also localize 
the lower bound.
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THEOREM Il. 1 .3. Given r > 0 and £ define

= Px (zt> e r, r I> > t) ,
where (r(g, w) = 0 : z(t, w) £ B(g, r)). Then P03BE,r(t, z, dy) = z, y) dy,where p03BE,r(t, z, .) e Cb(B(g, r)) for each (t, z) e (0, cxJ) x B(g, r). Moreover, for each6 e (0, 1) there exists an M = M(6, A, N) e [I,cxJ) such that for every (r,£) e(0, ~) x RN,
(II. 1.4)

t , z , v> > 1 MtN/2 exP (-M lv - x|2/t), t , z , v> E ° , r2] x B I, 6r> x B I, 6r>
PROOF: The proof of this (and related results) is based on the formula

~" °) " ~’ °) ~ E~~ ir(il’ ~(ir (I))’ °l’ ~l ’
which is a standard application of the strong Markov property. In particular, theexistence and continuity of z, .) is immediate when one uses the expression

(II° 1 °5) ~’ °) " ~’ °) ~ E~~ P(~ ~ r (I> , Z«r (I» , °> , r (I>  tl
as a definition.

By translation and re-scaling, it suffices to prove (II. 1.4) in the case when g = 0and r = I; thus we will restrict our attention to this case. Further, for notationalconvenience, we will use fi(t, z, .) instead of z, .). From (II.1.5) and (1.0.10), itis dear that

p(t,x,y) ~ 1 MtN/2e-M|y-x|2/t - M sN/2e(1-03B4)2/Ms
so long as z, y e B(0, 6). Thus there is a p = p(6, A, N) e (0, 1 - 6) such that

fi(t z y) > 
~ 

’ ’ ~ 

2MtN/2

for all z, y e B(0, 6) and t > 0 satisfying t1/2 v )y - z )  p.To complete the argument, we use a chaining procedure again. (Notice thatfi(t , z , y) satisfies the Chapman-Kolmogorov equation.) Namely, if t e (o, p2] andz, v G B(0, 6) With |y-x| > p, set zm = z+ #v-z>, where n e z+ is chosen so thatn > 6/p. Next, Set rm = B(zm I/n) n B(0, 6), and note that )£m - 3/n  pif im G Fm . Also, Observe that there iS a 1 > 0, depending only on n, N, and 6, suchthat |0393m| ~ ’t. Hence, by the preceding and the Chapman-Kolmogorov equation,

(t,x, y) ~ 03B3n((n+1)N/2 2MtN/2e-M(n+1)03B22/t)n+1 ~tN/2e-p2/t ~tN/2e-|y-x|2/et
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for some f = E(n, N, M) E (0,1~M~. Finally, suppose that t E ~p2,1~ and that x, y E
B(0, 6), and this time choose n E Z+ so that n > 1/p2. Then, by the Chapman-
Kolmogorov equation and what we have just proved,

(t,x,y0 ~ |B(0,03B4)|n ((n+1)N/2 tN/2e-4(n+1)/p2)n+1;
which is enough to complete the proof. I

The estemate (II.1.4) becomes an extremely powerful tool when it is applied to
the harmonic analysis for the operator L. Indeed, we will see below that it leads quite
quickly to the famous continuity theorem of J. NASH as well as the Harnack principles
proved by DE GIORGI and J. MOSER. The particular route which we will take in
passing from (II.1.4) to these results is based on ideas introduced by N. KRYLOV.
But, whatever route one adopts, the key to everything is contained in the following
sort of super-mean-value property.
THEOREM 11.1.6. Let a, ~3 E (0,1) be given. Then there is an E = E(a, ~3, a, N) E
(0,1) such that for all (~, ~) E R x RN, r > 0, and u E C1,2 (~a, ~ + r2~ x 
satisfying at u(t, x) + x) SO: v

x) ~ + r2~ ~J) dy~ (S~ x) E ~~~ ~ + x .

PROOF: Set t = o~ + r2 - s. Then t E [(1 - a)r2, r2) and 
.

Ep~ ~u(s -f- t 11 ~r(~), x(t 11 ~r(~))J ~ u(s~ x).
At the same time, because u > 0,

EPx (u(S + t n ~r(~)~ x(t ~ ~,.(~))~ ? / 
~ 1 MtN/2 B(03BE,03B2r)u(03C3 + r2,y)e-M|y-z|2/t d

~ 1 MrNe-4M03B22r2/(1-03B1)r2 B(03BE,03B2r) u(03C3 + r2, y) dy,

where we have used here the M = a, N) coming from Lemma II.1.3. After

combining this with the above, one now sees how to choose E. /
Given (~, ~) E R x RN and r > 0, set Q ((a~, ~’), r) = j~, ~ + r2~ X r). For

u E C (~ ((o~, ~), r) ) define the oscillation of u on (~ ((~, ~), r) by
= u(s,x): : (s, x), (s’, x’) E Q ((o, ~), r) }. .

LEMMA II.1.7. For each 6 E (o,1) there is a p = p(6, a, N) E (o,1) such that for all
(a~~) E R x RN r > 0, and u E C1~2(Q((~, ~)~ r)) satisfying = 6?

Osc(u (a, ~), r).
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PROOF: For r’ G (0, r) , set

M(r’) = max(u(s, z) : (s, z) e Q ((u, g), r’) )
an d m(r’) = min(u(s, z) : (s, z) e Q ((u, g), r’) ).

Let r = (y e 6r) : u(03C3+r2, y) > and suppose that |0393| ~ 1 2|B(03BE, 6r) [ .Then, for all (s, z) e Q ((u, g), 6r) :

u(s,x)-m(r)~ |B(03BE,03B4r)| B(03BE,03B4r)(u(03C3+R2,y-m(r)) dy ~ 4((M(r) - m(r)),

where we have taken c to be the (03B42, 6, A, N) from Lemma II.1.6. Hence, m(6r) -m(r) > § (M(r) - m(r)) ; and so

M(6r) - m(6r)  (1 - c/4) (M(r) - m(r)) .
When we assume that |0393| ~ 1 2|B(03BE, 6r) ), we can draw the same conclusion by consid-ering M(r) - u and 6r) ) r in place of u - m(r) and r, respectively. Thus, ineither case, we can take p = I - §. i
THEOREM 11.1.8. (J. NASH) Let I G (0, 1) be given. Then there exist an a =a(6, A, N) e (0, 1] and a C = C(6, X, N) e (0, cxJ) such that for all (u, g) e R x r > o, and u e ci>2 (Q ««, x>, r)) satisfying kut, z> + iLuit, z> = o,

)U(S’, Z’)-U(S, Z)) I

- ~ ~y j~, _ ~ j ~ 
" 

jj U jj cQ((U>I»r))
for (s, z), (s’, z’) e Q((u, g), 6r)) . In particular, ifu e C1,2(R x is a boundedsolution to + [Lu] (t, z) = 0, then u is constant.
PROOF: Let p be the p(1 - 6, X, N) from Lemma II.1.7. Assume that s  s’ and set£ = (s’ - s)1/2 v ]z’ - z ] . If l r ~ l - 6, there is nothing to be done. If l r  i - 6 choosek e Z+ so that (1 - ~ l r  (1 - 03B4)k. Then 

)U(S’, ltt’) - U(S, Z) )  Osc(u; (S, Z) , (1 - 03B4)kr)  (s, z), (1 - 6)r)
~ ~~~ ~~ ~ ~~ ~ 

Finally, define a so that p = ((1 - 6) A p)". Then,

03C1k+1 ~ (03B4k+1)03B1 ~ 
() 03B1 . []

AS a consequence of this result applied to p(t, z, y) itself, we have the following.
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COROLLARY 11.1.9. There exist C = C(A,7V) 6 (0,oo) and 0’ 
= e (0,1)

such that for every 6 > 0

(11.1.10) ~,!/) - P(. ~. ~)) ~ ~ 
for aJJ (~,~,!/0,(~~!/) ~ [~,00) x x with )~ - ~ V t~ - ~ ~ ~.

THEOREM 11.1.11. (MOSER) Let a, 03B2, and y 6 (0 1) with a  03B2 be given. Then
there exists anM = 6 such that for all (03C3,03BE) ~ r > 0,

and u 6 C~~(0((r,~,r))~ satisfying + = 0 ,

u(~, ~) ~ (~ ~ ~ [r + x 

In particular, ifu 6 satisfies = 0 and u is bounded above or below, then

u is constant.

PROOF: We may and will assume that u 
= 0,~ = 0, and that r = 1. Set ~ =

,(1 - ~, (1+~/2, A, N) and p = p(l/2, A, N) as in Theorem 
11.1.6 and Lemma 11.1.7,

respectively; and put  = (1 - 03C1)/2 and (1 - = 2p(l + p) > 1.
Note that .

u(0,0)~c / t6[o:,l].

Thus, there is nothing to prove if ~(0,0) = 0; and so, 
without loss in generality, we

assume that u(0, 0) = 1 and attempt to prove that there is 
an M 6 such that

~) ~ M for (.,~) ~ x B(0,7). Next, set = {/ ~ B(0,(l +T)/2) .

u(s, y) > and observe that

, 

Now suppose that Q((~),2r) C [.,!] X B(0, (1+~/2) and that ~)> M
where 03A9NrN > Then )E(.,M))  and so there must be a , ~ 

for But, by Lemma 11.1.7, this means that there 
is an (...)~

0((s,.c),2r) such that

~,~) ~ > ~Osc(~;(.,~),r) ~ ~~,!/) - ~)t ~ ~-
Thus if we define reM) for M > 0 by 

= and 

~~ then u(s, ~) ~ M implies that there is an (~, ~) 
6 Q((., z) 2r(M))

for which u(~,a/)~ KM.
Finally, choose M 6 [l,oo) so that both

03B2 + (2r(knM))2 ~ 1+03B2 2 and 03B3 + 2r(kn M)  1 + 03B3 2.
n=0 

~"
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If > 1Vl for some (s, x) E [a, p] x B(0, y), then one can use the preceding
paragraph to produce a sequence {(sn, C [a, (1 ~,~)/2~ x B(0, (1 + y)~2) such
that u(sn, x~) > But clearly this is impossible, since u must be bounded on
[a, (1 ~ p)~2~ x (1 +’Y)/2).

To prove the final statement of the theorem, assume that ~ >_ 0 and conclude
that u must be bounded and therefore, by Theorem 11.1.8, must be constant. /

~II.2: EXTENSION TO PERTURBATIONS OF DIVERGENCE FORM OPERATORS

Again let a : RN --~ R~ 0 R~ be a symmetric matrix-valued function having
bounded derivatives of all orders and satisfying (E). Next, let b : : RN ---~ R~, b : :
RN --~ R~’, and c : : RN --> R be smooth functions with bounded derivatives of all
orders, and suppose that

(11.2.1) + +  A

for some A E (0, oo). Finally, define the operator £ on C2(RN) by

(II.2.2) ~,~~~(x) _ ~D ~ (aD~)~(x) + ~b ~ (aD~)~(x) - ID ~ (~ab)~(x) + 

Just as before, one knows that there exists a unique semigroup {Qt : t > 0} of
non-negativity preserving bounded operators on Cb(RN) such that

[Qt03C6](x) - 03C6(x) t0[Qs£03C6](x)ds, (t,x) E (0, ~)  RN and 03C6 ~ C~0 (RN);

and once again there is a q E Cboo([l/n,n] x RN x R~; (0, oo)) such that

_ x~ ~J) dy~ (t~ x) E (o~ ~) X RN E 

In particular, if  denotes the operator obtained by reversing the roles of band b in
the (II.2.2), then

~ ~tq(t, x, y) = [q(t, x, .)](y), (t, x, y) ~ (0, ~) RN RN.

Also, for each § E the map t e (0, oo) ~ [Qt03C6] E S(RN) is smooth and

~ ~t[Qt03C6] = [£Qt03C6], t ~ (0,~).

In particular,

~ ~tq(t, x, y) = [£q(t, .,y)](x), (t, x, y) ~ (o, ~) X RN X RN.
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What, in general, no longer holds is either = 1 or == 

Although their loss makes life somewhat more difficult, one can often circumvent
these difficulties by taking advantage of the observation that, for all ~,~ 6 C~(R~),

(11.2.3) (0~ V) = (~, 0~), ~e (0, oo), >

where {Q~ : ~ > 0} denotes the semigroup corresponding to the operator ~C. The proof
of this equation is essentially the same as that of (1.0.3). As a consequence of (11.2.3),
we see that

(t, x, 2/) = g(, y, .r), (t, x, 2/) ~ (0, ~) x RN x RN;
and this fact can be used to replace symmetry. In addition, from (11.2.3) one sees
that ~Qt03C6~1 ~ !!OJt!oo)H!i; and therefore that

~Qt03C6~q ~ ~Qt1~1/q’~ ~Qt|03C6|q~1/q1 ~ ~t1~ 1/q~~Qt1~ 1/q’~~03C6~q ,

which often serves as a substitute for Lemma 1.0.4.
Of course, if we rely on standard probabilistic machinery (e.g. the Feynman.Kac

formula) to estimate quantities like or we get bounds which depend
badly on 6 and &#x26;; that is, on their derivatives. What we again want are bounds which
depend only on A, A, and ~V. In fact, what we are going to show is that there is an
M = C [l,oo) such that

(11.2.4) ~~exp(-M(~+~-~t~)) g(~~~)~ ~~~~~~’~~

The estimate (11.2.4) is again due to D. ARONSON [A]. We will model our proof
on the method used to prove (1.0.10). Because much of the argument is the same as
that given in Chapter I, we will merely outline the proof, giving details only at those
points where new difficulties arrise.

STEP 1).
= where ~ ~ C~(R~)~. Just as in the proof of Lemma 1.1.8, one

finds that for any q ~ 

#~> ,

"" 

.=H(~-~(~-~
In particular,

~03C6t~2 ~ ekt~03C6~2, t ~ [0,~),
where .

k = ~c+1 2[(b+).a(b+)]~Cb(RN).
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Thus, an application of Nash’s inequality yields

d dt~03C6t~2q ~ -03BB CNq~03C6t~1+4q/N2q ~03C6t~4q/Nq+q~03C6t~2q, t ~ (0,~) and q ~ [2,~).

If we now use Lemma 1.1.14 in exactly the same way as we did in Section 1.1, wearrive at the existence of a K = e (0, oo) such that

~6 and ~~(0,1].

Since the same estimate holds for = ff~~, we can conclude that

(11.2.5) ~,~~~(~A) 
for some other K having the same dependence properties.
STEP 2).

that~ ~ set ’~~’~ = ~~~~.~~~~. One can easily computethat ~(, z, y) corresponds to the operator ~ which is obtained from £ by replacingrepectively, with ~ = b + and I’ m 1 - and replacing c withc~ = c + (b - + Hence, by (1.2.5) applied to ~ (, ~), we obtain

(~~) - +(~A+ (1 + ~)r(~)) , >
and A are the same as they were in Step 1), ~ e (0,oo) is independentof a, b, 6, and c, and is defined as in (1.1.10). Proceeding from here in exactly

the same way as T passed from (1.1.16) to (I.1.25), we see that there is e (0,oo) such that
(11.2.6)
~~ "’ ~ ~ ~P (-4fn~J ’ ~’ ~ ~ ~ (0, R~ x R~ e (0,1],

Riemannian distance determined by the Riemann metric a-~Certainly (II.2.6) is more than sufficient to prove the upper bound in (11.2.4).
STEP 3).

Before attempting to repeat the argument given in Lemma 1.2.4 to prove (I 2 1)we need here to handle a problem which did not arrise there. Namely, we need to geia lower bound on To this end, let .. e B(0, 2) given, and set u(t, y) = y) + (1 - ~) Next, set 
~ ~ ~ ~/~ 1) be

/?e(0,l],
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where = + t~)~ and cjy is chosen so that = 1. One can

then show that for each /3 E (0,1) there exist = 03B2(03BB,,N) 6 (O.oo) and 03BD03B2 =

6 (0,oo) such that

H’03B2(t) ~ 
03B2(1 - 03B2) 2 RNe-~(y)u(t,y)03B2-2~u(t,y).a~u(t,y) dy - 03B2H03B2(t)

and

~) > _~_~) /’ 
- vp / 

Combining these with the upper bound in (11.2.4), we see that

(~ + (~ + ~~) (~ + ~’ ~]-

Hence, if we take /3 = 1 - 1/N and note that ~i(O) ~ then we conclude that

there is an a = 6 (0,1) such that

Finally, since  (~i())~, it follows that for some other a 6 (0,1), with the
same dependence,

(1127) / ?(~,!/)~!/~, (~)6[0,l]xB(0,2).

STEP 4.

We can now prove the analogue of Lemma 1.2.4. Namely, define u(t, y) as in

Step 3) and set G(t) = One then finds that there is a

B = B(A,A,N) 6 (0,oo) such that

G~) > -B + ~ B(0,r) -. ~(,!/) ~ ~, t ~ (O.oo),

for every choice of r > 0 and K > 0. At this point one needs (11.2.7) 
in order to show

that there is a choice of rand ~, depending only on A, A, and ~V, such 
that

){~6B(0,r):~,!/)>e-~t~
for some 6 = 6(A, A, N) ~ (O.oo) and all M 6 [1/2] x B(0,2) and 0 6 [1/21]. 

But

once one has (11.2.7), the proof is exactly like the one given to prove 
the analoguous
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result in Lemma 1.2.4; and from here the rest of the proof contains no changes. In

other words, we now know that there is an A = A(a,11, N) E (0, ~) such that

(II.2.8) RNe-03C0|y|2 log(q(1, x, y)) dy ~ -A, x ~ B(0, 2).

STEP 5.

Because of the symmetry of our hypotheses, (II.2.8) holds for q(t, x, y) as well.
Hence, just as in Section 1.2 (cf. (1.2.6)) we find that

(II.2.9) q(2, x, y) > e-2A, x, y E B(p, 2).

We next want to introduce translation and scaling. Although translation poses no
problems, scaling now has a flaw. Indeed, by the reasoning used to prove Lemma 1.2.7,
one finds that rN q(r2t, rx + ç, ry + ç) = q~~~ (t, x, y) where corresponds to
the coefficients a(r . ~ +~), rb(r ~ +~), and r2c(r . ~ +~). Thus, if we want to stay within
the class of coefficients which satisfy our hypotheses, then we have got to restrict our
scaling factor r to (0,1]. In particular, we can get from (11.2.10) only that

- 2A
(11.2.11) q(2t, x, y) > ~ 2 , t E (0,1~ and ~y  4t1/2.

Finally, once one has (11.2.11), one completes the derivation of the lower bound in
(II.2.4) by the chaining procedure used at the end of Section 2.2. More precisely,
for t E choose n E Z+ so that n  t  (n + 1) and note that, by the
Chapman-Kolmogorov equation,

q(t, x~ y) ~ ... + 1)~ ... + 1)~~n~ y) d~i ... 

from which one sees that there exist ~c = E (0, oo) and E = E

(0, oo) for which

q(t, x, y) > , t > 0 and ,y - x‘  t1/2.-~) ~ ~v/2"~ ~ > 0 and .c~  .

Starting with the preceding and repeating the chaining argument used at the end of
Section 2.2, one quickly arrives at the required lower bound.

Specializing to the case in which b and c vanish identically, and therefore

RNq(t,x,y) ~ 1,
one can now re-run the arguments given in Section 11.1 to prove the following variation
on the theorems of Nash and Moser.
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THEOREM II.2.12. Let ,C = ~ ~ a~ + b ~ where a satisfies (E) and A.
Then for each 6 E (0,1) there exist C = C(~, a, A, N) E (0, oo) and a = a(b, a, A, N) E
(0,1j such that for all (a, 03BE) ~ R X RN and r E (0,1/s)

|u(s
’

, x’ ) - u(s,x)|~C(|s’-s|1/2 ~ |x’-x| r)03B1~u~C(Q((03C3,03BE),r))

for (s, x), (s’, x’) E Q((03C3,03BE),03B4r) whenever u E C1,2(Q((03C3,03BE),r)) satisfies at u(t, x) +
= 0. In particular,

(II.2.13) ’ , y) - q(t, x, y) I _ ~’ N ) 
«

for all (t’, x’, y), (t, x, y) E [03B42, 1/03B42] X RN X with (x’ - 6. Finally, for each
0  a  ,0  1 and 03B3 ~ (o,1), there exists an M = E 

such that for every (o~, ~’) E ff~ x r E (0, lj, and u E C1~2 (~ ((~, ~), r~)+ satisfying
x) + ~) = ~~

u(s, x)  (s, x) E ~~ +,~r2, ~ -~-,QrZj x 

There are two more directions in which it is easy to extend the results discussed
thus far. In the first place, one can consider operators ,CW = where £ is of the

form we have been discussing thus far and cv E Cb is a function with values in
an interval (~c,1/~j with ~c E (0,1j. When considering such an operator, it is natural
to work in the LP-spaces Lp(cv) corresponding to the weight w:

~03C6~LP(03C9) ~ (RN |03C6(y)|p03C9(y) dy)1/p .

with this in mind, if one simply repeats the arguments already given, one concludes
that the semigroup t > 0~ corresponding to ,CW admits the representation

[Q03C9i03C6](x) = RN03C6(y)q03C9(t,x,y)03C9(y) dy,
where x, y) satisfies (II.2.4) and (II.2.13) with M, C, and a now depending on
~ as well as a, A, and N. Of course, when band b vanish identically, x, y) is

symmetric in x and y; and, when c vanishes as well, one gets the results in Chapter
I and Section II.1 (with constants depending also on p.)

The second direction in which it is a relatively easy matter to extend our results is
to the case when the coefficients depend on time as well as space. Although there are
several places in which the argument has to be adjusted in order to accomodate time-

dependence, the basic ideas apply with no changes. (See (F.-S.j for more details.)
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§II.3: DIFFUSION SEMIGROUPS CORRESPONDING TO MEASURABLE COEFFICIENTS

One of the advantages to our having estimates which do not depend on smooth-
ness properties of the coefficients is that it opens up the possibility of constructing
nice semigroups corresponding to (possibly) discontinuous coefficients. We devote
this section to carrying out such a construction and discussing a few of the properties
of the resulting semigroups.

Given numbers À E (0, 1], let A(A) denote the class of all measurable, symmet-
ric matrix-valued functions a : R~ ---> RN which satisfy (E). We begin by
discussing semigroups determined, in a certain generalized sense, by the operator

THEOREM 11.3.1. . For each a E there is a unique Feller continuous Markov
semigroup {Pt : t > 0} with the properties that

i) The map t E [0, ~) ~ [Pt03C6] E is weakly continuous map for each
~ E 

ii For a~I ~, ~ E Co 

(I.3.2) (Pt03C6, 03C8) = (03C6, 03C8) + t0(~Pt03C6,a~03C8) ds, t ~ (0, ~).

In fact, > 0} determines a unique strongly continuous semigroup {Pt : t >
0} of selfadjoint contractions on ~Pt : t > 0} is strongly continuous on

and (I.0.5) holds. Moreover, there is a p E C«O, oo) x RN x satisfying
both (1.0.10) and (II.1.10) such that

[Pt03C6](x) = RN03C6(y)p(t,x,y)dy, 03C6 ~ C~0(RN).

In particular, {Pt : t > strongly Feller continuous. Finally, if C .A(a) and
an -~-; a almost everywhere, then p" (t, x, y) ---~ p(t, x, y) uniformly on compacts (in
(0, oo) x RN x RN) and, for each t E and ~ E Co (RN), -~ in

WJ1)(RN). .
PROOF: Choose ~a"}~° C ~ 0 RN) so that a’~ ---~ a almost ev-
erywhere. Because of (I.1.10) and (1.0.10), we may and will assume that there is
a p E C«O,oo) x RN x R~), which again satisfies (II.1.10) and (1.0.10), such that
pn(t, x, y) ---~ p(t, x, y) boundedly and uniformly on compacts. In particular, we have
that p(t, x, y) = p(t, y, x) and the Chapman-Kolmogorov equation

p(s + t, x, y) = lim + t, x, y)

= lim RNpn(s,x,03BE)pn(t,03BE,y)d03BE = RNp(s,x,03BE)p(t,03BE,y)d03BE.
Next, define = JRN 03C6(y)p(t, x, y) dy for § E Clearly {Pt : t > 0}

is a strongly Feller continuous, Markov semigroup. Moreover, by the preceding, we
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see that each Pt is a symmetric contraction on L2(RN) and that [Pt ~] - 
in L2(RN) for each § E Co (RN). In particular (cf. Lemma 1.0.4), {Pt : t > 0}
determines a unique strongly continuous semigroup {Pt : t > 0} of selfadjoint con-
tractions on L2(RN); and, by (1.0.5) applied to the ’s, each Pt maps Co 
into and satisfies (1.0.5). (Recall that if is a bounded sequence in

and if ~~ --~ ~ in then ~ E W21~(R~), ~,~ --~ ~ weakly in
and therefore ~I~II21~  lim From these considerations, we

see that > 0 } is weakly continuous on WJ1)(RN); ~ and therefore, by general
semigroup theory, it must also be strongly continuous there.

To see that (II.3.2) holds, note that it holds for each of the semigroups :

t > 0}, and use the facts that --~ [Pt~] (strongly) in L2(RN) and weakly in
together with (1.0.5) in order to justify the passage to the limit.

To prove the uniqueness assertion, suppose that > 0} is a second Feller
continuous Markov semigroup which satisfies i) and ii). Then, for T > 0 and ~, ~ E

E [0, T] ~---~ is once continuously differentiable and

~(P~,PT-~)=0, ~ ~(O.T). .

Hence, ([PT~],’~) _ (~, _ and so Pt = E (0, oo). °
Finally, suppose that {an}1 C A(A) and that an --~ a almost everywhere. Ar-

guing as in the preceding proof of existence, one sees that x, is relatively
compact with respect to local uniform convergence and that every convergent subse-

quence gives rise to a Feller continuous, Markov semigroup which satisfies i) and ti).
Hence, by uniqueness, we conclude that pn(t, x, y) --~ p(t, x, y) uniformly on com-
pacts. Certainly this means that, for each § E ----~ [Pt~] in 
uniformly on compacts. To see that --~ in L2(RN;RN), set =

an [DPt ~]~ and u(t) = Because tends weakly to

in L2(RN; RN), we know that un(t)  u(t) for each t E [0, oo). On the
other hand, using the spectral theorem to represent un(t) (cf. (1.0.9)), one sees that

is equicontinuous on [0, oo). Thus, if lim  u(T) for some T > 0,
then we would have .  dt. But

2T+10 un(t) dt = ~03C6~22 - ~[PnT+103C6]~22 ~ ~[PT+103C6]~22 = 2 / /’T+l dt;

and so it must be that un (T) ~ u(T) for each T > 0. From this it is clear that

--~ ~ ~ [DPt ~], ~ 2; which, together with the corresponding weak convergence,
implies that ---~ in I

We next turn to the non-symmetric case. Given A E (0, oo), use B(A) to denote
the class of measurable b RN --~ RN such that ~b(~)~  A. We want to study the

semigroup corresponding to "£ = V . aV + b ~ aV," where a E .A(~) and b E 

LEMMA 11.3.3. Suppose that a E ,A(a) and b E S(A), and let {Pt : t > 0} denote the

semigroup in Theorem corresponding to a. Then for each ~ E there
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is at most one weakly continuous map t e [0, cxJ) - §~ e which satisfies
(II.3.4)

(§t, 9) = ([Pt§], 9) + / (i7§t , a[Pt-sw]b) ds, t e [0, cxJ) and lb e 
In fact, ift -- §t is such a map, then

(~~.~.~) ~ ~ ~ [°> °°»
where p = p(X, A) e (0, cxJ). Finally, ift e [0, cxJ) - §t e is a weaklycontinuous map and

(II.3 .6 ) (§t > W) * (4 > W) + t0 (V4s , VW) ) dS, t G 10, °°) and W ~ C~0 (RN)
for some § e W(1)2(RN), then t -- §t is the unique solution to (II.3.4).
PROOF: If we prove (II.3.5), then the uniqueness statement will follow trivially.

Before proving (II.3.5), first recall the space W(-1)2(RN) of (slightly) generalized
functions which is the dual space of W(1)2(RN) when one uses the prod-
uct to define the duality relation. Thus, the norm [[ . ~(-1)2 on is definedby

" (§, 03C8) : § G C? with ~03C6~(1)2  1)
for 03C8 e and the space W(-1)2(RN) is obtained by completing C~0(RN) with
respect to this norm. In particular, we have that

(~5~, ’) ~ ’ 6 with ~~ ~ ~ ) l
and so, by (1.0.5) and symmetry,

(~~°~°~) "[~’t’]"2 ~ §""’~ ~~, ~ 6 (°, °°) and 0 6 

Returning to the proof of (II.3.5), note that (II.3.4) together with (1.0.5) and(II.3.7) yield

~ ’ ~ x~/2 ~~’~~~~~~’i"’I ~~ ~ ~#ll~~ SUP "fi~8"i~~""’I ~~
for t e [0, cxJ) and 9 e and therefore we can choose T = T(X, A) e (0 cxJ) sothat ~03C6t~(1)2  2 03BB1/2~03C6~(1)2 for all t e [0, T]. Working by induction, one concludes that

 (2 03BB1/2)n ~03C6~(1)2 for nT  t  (n + I)T; and so the required p(X, A) e (0, cxJ)is seen to exist.

Finally, suppose that t e [0, cxJ) - is a weakly continuous solutionto (II.3.6) . Then, one can easily check that (s, t) e [0, ~)2 - (§, , [Ptw]) is a oncecontinuously differentiable function for each w e c§° (RN) and that

£ (45 , lPt - s vl ) * (vs , £l jPt- s v] b) , S e jo , lj .
Hence, (II.3.4) follows by integration..
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THEOREM 11.3.8. For each a 6 (A) and b ~ B(A) there is a unique Feller continuous,

Markov semigroup {0 : t > 0} such that

i) The map t ~ [O.oo) ~ [~ ~ is weakly continuous for each

~ 6 

(11.3.9) ([0~], V’) = (~ + ~’ ~-

In fact, > 0} determines a unique strongly continuous semigroup 
 > 0}

on t > 0} is strongly continuous on and there is =

such that

(11.3.10) and 

for 03C6 in and respectively. Moreover, there exists a measurable

g : (0,oo) X x -~ (0,oo) satisfying (II.2.4) and (11.2.13) such that

[Qt03C6](x) = RN03C6(y)q(t,x,y)dy, t ~ (0,~) and 03C6 ~ Cb(RN).

In particular, {0 : t > 0} is strongly Feller continuous. Finally, if C A(03BB),
C S(A) and if an ~ a and t" 20142014 b almost everywhere, then, for all bounded

measurable /: 20142014 R, [0?~) 20142014 ~~(~) uniformly on compact subsets of

PROOF: We first observe that uniqueness is an immediate consequence 
of Lemma

11.3.3. We next prove existence. For this purpose, 
choose

so that an -~ and bn -~ almost everywhere. By (11.~ 
may and will assume that there is 

a measurable r : (0,oo) X R X R 20142014 ~,oo_)
which again satisfies (11.2.4) and (11.2.13), such that for every bounded measurable
03C6 : RN RN 

[Qnt03C6](x) 20142014 = 03C6(y)q(t,x, y) dy

uniformly with respect to (t,.) in compacts. In particular, one sees that {Qt : t > 0)
is a strongly Feller continuous semigroup and that, 

for ~ E 

in uniformly with respect to t in compacts. Also, note that, by (11~4),
some , = C (0,oo) and that, by Lemma IL3.3

for each 03C6 ~ W(1)2(RN), sup..o is uniformly bounded, where t __}
s the strongly continuous semigroup which {? : > 0) determines on .

In particular, we have that ~] - [0~] weakly 
in uniformly with
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respect to t in compact subsets of [0, oo) for each § E C4 (RN). Hence, since, for each
~ E ’2014~ ~Qt ~~ satisfies (II.3.8) with an and bn, we can conclude that t 2014~

W2~~(RN) is a weakly continuous solution to (II.3.9); and another application
of Lemma II.3.3 shows that ~Qt : t > 0} is weakly, and therefore strongly, continuous
on W21~ (RN) and satisfies (II.3.10) for some ~u with the required dependence.

Finally, the asserted convergence result is an easy consequence of the compactness
provided by (II.2.4) and (II.2.13) plus uniqueness. t

It is possible to make an improvement in the convergence part of Theorem II.3.7.
Namely, the conclusion continues to hold even when one assumes that the bn ’s tend
to b only in the sense of weak convergence (i.e. in the sense of distributions.) In order
to prove this improved statement, we will require the following preliminary result.
LEMMA II.3.11. For each 6 e (0,1), A C (0,1), and A e (0, oo) there is a non-

decreasing function a : (0, oo) ~ (0, oo) with the properties that lim03C1~0 a(p) = 0
and that for aII a e and b C 

(II.3.12)
1/b /

sup / / ~q(S + ~, x, y + ~) - q(s, x, y)~ dyds  a(~ V ~~~), ~M~
PROOF: By (I.2.4) and (II.2.13), it suffices for us to show that for each T > 0

T0 |q(s+03C3,x,y+03BE)-q(s,x,y)|dy ~ 0 as |03BE| ~ 0

at a rate which is independent of a E and b e Moreover, we may and will
restrict our attention to a’s and b’s which have bounded continuous derivatives of all
orders. But, for such coefficents, one knows that the measures Qx corresponding to
a and b are absolutely continuous on to the measures Pz associated with a and
that the Radon-Nikodym derivative R(T, x) is given by the expression

R(T,x)=exp[T0 b(x(t)).d03B2(t,x)-1 2 T0|b(x(t))|2 dt 1 
.

where

l~(t~ x)~ .Mt, ~x)
is an N-dimensional Brownian Motion. In particular, ~iR(T, x)~~~z(p~)  
Hence, 

"

|T0 RN(q(t,x,y+03BE)-q(t,x,y))03C6(y)dydt|
= Ep 2l) T0(03C6(x(t) - 03BE) - 03C6(x(t))) dt]|

~ exp[T/03BB]EPx [(T0 (03C6(x(t) - 03BE) - 03C6(x(t)))dt)2]1/2
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Finally,

EPx [(T0 (03C6(x(t)-03BE)- 03C6(x(t))) dt) 2]
= 2T0 EPx [(03C6(x(s) - 03BE) - 03C6(x(s))) EPx(s)[Ts (03C6(x(t)-03BE)- 03C6(x(t))) dt]] ds

~4T~03C6~2Cb(RN) T0 |p(t,~, y +03BE)- p(t,~,y)|dy;

and, by (1.0.10) and Corollary II.1 .9, it is clear that

suP / T lP(t, o , v + I) - P(t, o, v) |dy - 0 as I£ 1 - 0
at a rate which is independent of a e A(A) . i

THEOREM II.3.13. Let c and c B(A) be sequences. Let a e

A(A) and b e B(A), and assume that an 
--F a almost everywhere and that bn - b

in the sense that

(II.3.14) RNbn(y)03C6(y) dy ~ RN b(y)03C6(y) y, 03C6 ~ C~0(RN).

Then, for all bounded measurable § 
- R, [Q?§] (z) - [Qt§] (z) uniformly

for (t , z) in compact subsets of (0 , oo) x 

PROOF: We first note that for any a e A(A), b e B(A), and 0 e t e

[o oo) i-- e is the unique weakly continuous map t e [0 , oo) l-- 0t e

such that

(II ° 3 ° 15) (§ = (§, + t0 ([v Pt-s03C6] , a03C8s b) ds, t > 0 and § e Cg° 

where (§t : t > 0) denotes the semigroup which is adjoint (in 
to (Qt ’ t > °) .

The proof of uniqueness is very much like 
the proof of the uniqueness statement in

Lemma II.3.3, and the fact that t F-- (#t0) satisfies (II.3.15) is easy when a and

b have bounded continuous derivatives of 
all orders and follows in the general case

after taking limits. The details are left as 
an exercise.

Now let 03C8 e cg° (RN) be given, and set 1b? = 
If we can show that

03C8nt -- in for each t > 0, then we will be done. Because 
Of (II.2.4)

and (II.2.13) , we know that there is a weakly 
continuous t e [0, ao) l-- lbt E 

to which a subsequence of (0? )#° converges weakly 
in Uniformly for t ’S in

compacts. Thus, we need only show that such 
a t - 03C8t satisfies (II.3.15); and,
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in doing so, we will simplify the notation by supposing that the original sequence
converges weakly in to ~t, uniformly for t’s in compacts. But, for each n > l,
~t satisfies (II.3.15) when and a are replaced by and an, respectively.
Moreover, we know that - in boundedly for s E ~O,t~.
In particular, --~ in boundedly for s E ~O,t~. At the
same time, ~~~s ~~2 is bounded indepentent and, by Lemma II.2.13,

J: - ---~ 0 for every 6 E (O,t). After combining these remarks, one
can easily deduce that t E--> ~t does indeed satisfy (II.3.15). I

CONCLUDING REMARK.

It should be obvious that the results obtained in this section can be used to

construct a diffusion process on S2 (cf. the beginning of Section 11.1) corresponding
to any one of the semigroups discussed herein. In addition, the convergence results
for the semigroups give rise to weak convergence of the corresponding measures on
Q. It remains an open and challenging problem to provide a better probabilistic
interpretation of these essentially analytic facts.
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