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THE STATISTICAL EQUILIBRIUM OF AN ISOTROPIC STOCHASTIC FLOW

WITH NEGATIVE LYAPOUNOV EXPONENTS IS TRIVIAL

R.W.R.Darling and Yves Le Jan

Summary. It is well known that every stochastic flow on Rd, whose one-point motion has
an invariant measure m, gives rise to a measure-valued process {vt, with m,

which converges almost surely to a random measure called the statistical equilibrium,
We prove here that if the flow is spatially homogeneous and isotropic, and if either the

covariance is smooth and the top Lyapounov exponent is strictly negative, or if the flow is
"of coalescing type" (these phenomena can only occur when d  3), then v~ = 0 a.s.

1. Isotropic stochastic flows on Rd with C4 covariances.

A rather complete description of isotropic stochastic flows on Rd, d > 2, with a
smooth covariance structure, may be found in the papers of Baxendale and Harris

[11, and of Le Jan [4]. We shall reproduce here only a brief definition, and a few
formulas that we need.

A stochastic flow on Rd is a family of random mappings (actually
diffeomorphisms in the cases studied in (1] and [4]) from Rd to itself, denoted
{Xst,0~s~t~}, such that XtuoXst = Xsu if s s ts u, Xss is the identity map, and
Xst, ... are independent if sstss’st’s .... In certain contexts it is helpful to
consider "backwards time" flows, Le. We treat the case where:

(a) For each x in the one-point motion {Xpt(x), is a standard Brownian
motion in ~d with Xoo(x) = x.

(b) The covariance structure for the motions of k points, k >- 2, is spatially
homogeneous, and isotropic in the vector sense (see Baxendale and Harris (11),
Such a structure is obtained as follows:
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Take any pair of positive, finite measures FL and FN on (O.oo), with finite fourth

moments, suitably normalized. Let

(1.1) A = B = 

From FL and FN we calculate the "longitudinal and transverse correlation

functions" BL and BN, which are scalar functions on (O.oo) tending to zero at

infinity, satisfying

(1.2) BN(r) = 1 - O(r~),
BL(r) - BN(r) = + O(r~), as r i 0,

where p and 03B3 are defined in terms of (1.1) by

A = 2p + B = 2p - y.

From BL and BN we obtain a C~ dxd matrix-valued function b on Rd, called the
covariance matrix, by the formula

bM(z) = (BL(lzl) - + BN(|z|)03B4pq, z ~ 0.

The law of an isotropic stochastic flow is uniquely specified by this covariance

matrix, because the latter determines, for each k > 2, the generator of the k-point

motion, namely

A(k)f = ½ 03A31~i,j~k 03A31~p,q~d bpq(Zi-Zj) ~2f/~zpi~zqj, f E 

Given an isotropic stochastic flow of this type, the "distance process" dt 
= tXo.t(x) -

Xo t(y)I, for given x and y in Rd, is a one-dimensional diffusion on (O.oo) with

generator

(13) Rg(r) = (1 - BL(r))g"(r) + (d-l)r~(l - BN(r)g’(r).

The almost sure limiting behaviour of the distance process may be described in

terms of the scale function and the top Lyapounov exponent Xi (see Le

Jan [4,p.618D; namely

for d = 2: Xi  0 =~

(1.4) tXo.t(x) - 0 a.s for all x,y ~ Rd.

for d = 3: Xi  0 =~  oo, and
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POXo.t(x) - Xo.t(y)) -~ .) = i - POXo.t(x) - Xo.t(y)t ~ o)

~ ~(|x-y|) = |x-y|0s’(u)du ~0s’(u)du

(1.5) 

where

d.6) n=-2.~.~] _~(±m. I..l 
3A+(d-l)B p+y If 

.

Recall that

(1.7) Xi = ~~- [(d-4)A + d(d-l)N.
(= (B-A)/4 if d = 2, and = (6B-A)/10 if d = 3). Thus 03BB1 can be strictly negative
only when d ~ 3, and (1.6) shows that in that case

08) U~ ~~/3,-1) ifd=2,’"" ~~ U-4/3,-l)ifd=3,
which verifies that -* 0 as !x-y) -~ 0.

To calculate the density of an invariant measure for the distance process
(dt. tO). we solve the adjoint equation R’u = 0. One solution h is the invariant
measure with respect to which the transition semigroup is self-adjoint, namely:

(1.9) In her) = (d-l)ln r - (d-1) ~rBL(s)-BN(S) s(1 - BL(s)) ds.

The asymptotics of h are:

(1.10) 
c0r  as r ~ 0, where 0.

To find a solution g to = 0" which is independent of h, we write g(r) =

h(r).k(r) and solve for k; we find that

(1.11) g(r) h(r) = c(1 h(t)(1-BL(t)))2(exp
(d-1)(1-BN(s)) s(1-BL(s)) ds)dt + c’.

When d’3, we verify below that a suitable choice of constants in (1.11) gives a
solution g with the following asymptotics :
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(1.12) g(r) ~ { c1r-1 as r ~ 0, for some c1 > 0;-c2 r as r ~ ~, for some c2 > 0;

!n particular, since -4/3  n  -1 when d=3, it follows from (1.10) that for all a ~

R.

(1.13) ag(r)+h(r)-h(r)asri0.

The verification of (1.12) goes as follows: for simplicity, suppose c > 0 in (1.11).
Then according to (1.2), (1.6), (1.10) and (1.11), for some 

~ ~ ~Jt-2H-4~p(~~)dt ~ c4 as r ~ 0,

= c3{t-4-2 + +2dt + c4 = c3 - -1r-1-  + c4 , as r ~ 0.

and

~ - c~

= 05, t-2dt + c6 = c6 - c7 r-1, as r ~ oo.

Setting 04 = c~ = 0 (to remove the multiples of h), we see that g(r) has the desired
asymptotic behaviour.

Statistical equilibrium-

Since the one-point motion is Brownian, it has the Lebesgue measure on )R~,
denoted dx, as its invariant measure. As in Le Jan [4], [5], we study here the

processes {~s,t~ st), for t ~ (-00,00), taking values in the space of (unnormalized)
mass distributions on R~, defined by

(1.14) (peCK~).

(Here denotes the space of continuous functions on ff~ with compact
support.) For a discussion of the "backwards-time" stochastic process 
- oo  s $ t ~ 0), , see Le Jan [5].



179

Le Jan [4] shows that, for each fixed t, s ~ t) is a real-valued

backwards martingale in s, and in f act the dif f erence of two positive backwards
martingales, and therefore converges almost surely as s l -oo, Since the

convergence occurs for all cp in CK(Rd), this proves that for each fixed t, s~ t}
converges almost surely in the vague topology to a random measure v-~,~ as s ~
- oo. Since the flow is time-homogeneous, v-~,t has the same law for every t. We
abbreviate to 

Le Jan [4] has shown that, f or an isotropic stochastic f low in ~d with 0,
the martingales above are square integrable, and a nontrivial statistical

equilibrium v_~ exists which is a.s. diffuse when A * 0 (see (1.1) above), and
which is simply Lebesgue measure when A = 0 (the volume-preserving case).

The purpose of this paper is to show that when 0, = 0 a.s., at least for

the isotropic case. Our methods are analytic rather than geometric, and depend
heavily on the f act that the distance process is a one-dimensional dif f usion in the
isotropic case. It would be interesting to have an alternative proof which would
apply to the non-isotropic case, when a1  0. No result is known f or the case a1 =

0, even f or isotropic flows.

2. Isotropic stochastic f lows on Rd of coalescent type.

On the basis of a suggestion of Harris, Darling has given a construction of

isotropic stochastic flows in for d = 2 [2] and d = 3 [3], for which the covariance
f unction b(z) is not diff erentiable at z = 0, and instead of (1.2) we have

(2.1) BN(r) = 1- + 0(r2), .

BL(r) - BN(r) = - ~r6-1 + 0(r2), as r ~ 0, .

f or some constant 8 with d-1  8  3.

These f lows are called coalescing because the distance process f dt, t > 0} may
actually reach zero in f inite time, whereupon it is absorbed at zero.

As in the smooth case, the distance process has an invariant measure h(r)dr,
with respect to which the transition semi group is self-adjoint, given by formula
(1.9), i.e.

(2.2) In = + r - ds.

To see that the final integral is finite, note that by Darling [2,(16.21)] and [3,
Appendix], BL(r) and BN(r) are 0(r-(d+t~~2) as r ~ oo, and therefore the integrand
in (2.2) is 0(s-fd+3~~2) as s ~ oo, and so the integral is finite.

We need to know the asymptotics of h(r) for the coalescing case. As r j 0, (2.2)
gives
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Inh(r) - {-(8-1) + (d-1) - 

In the "pure potential" case studied in Darling [2], [3], ~ = (8-l)p (both for d=2 and
d=3), and so

lnh(r) - {l-8+(d-l)/8}Inr.

Referring to (2.2) again, we see that

(2.3) h(r) ~ { cr03B8 as r ~ 0,rd-1 as r ~ ~,

where

(2.4) e = 1 - 8 + (d-l)/8.

(Notice that the formula for e is consistent with the formula (1.6) for n, taking
8 = 3 in (2.4) and B=0 in (1.6).) 

.

The behaviour of the distance process is as follows: for x,y ~ R~

(2.5) d = 2: tXo.t(x) - Xo,t(y)! -~ 0 a.s..

d= 3: -) = i - POXo.t(x) - 0)

> n(lx-yl) = 
s’(u)du

(2.6) 

where s(.) is the scale function, which satisfies ~0 s’(u)du  oo: see Darling [2,
Proposition 16.1] and [3, Appendix]. Observe that 1 - 2/8 ~ 0, by choice of 8.

As in the smooth case, there is another solution g to R*u = 0, independent of h
as in (2.2), such that g(r)/h(r) satisfies (1.11). We shall demonstrate that when

d = 3 the asymptotics of g(r) are as follows:

(2.7) g(r) ~ c1r2-03B4 as r ~ 0, for some c1 > 0

-c2r as r ~ ~, for some c2 > 0.

To verify this, suppose c > 0 in (1.11); according to (1.11), (2.1) and (2.3),



181

- ~ ~ o,

Now 2p/(p+y) = 2/8, since 03B3 = (8-l)p. Hence the last expression is

= c3~-~~/~ . c4 = ~r~-2~ . c4 , as r ~ 0,

since by (2.4), -2C-28+2 = -4/8. Observe that (2.3) and (2.4) imply

h(r)r~~ - ~1-2/~1-~2/6 = as r ~ 0, .

which verifies the first part of (2.7) on taking 04=0. The proof of the second part
is similar to that of (1.12).

3. The statistical equilibrium is trivial when At  0.

THEOREM A

For an isotropic stochastic flow 772 IRd with C4 covariance 7/ the highest
Lyapounov exponent is  0 (which can only occur when then the
statistical equilibrium 03BD-~ is zero surely.

Proof. As for any random measure on Rd, there are Just three alternatives for
~:

Case I: For almost all a), is a Dirac measure, concentrated at some in
R°.
Case II: There exists £ > 0, and non-negative (p~ ~ CK(Rd) such that =

0 whenever |x-y|  e, such that IE[03C61,v-~>03C62,v-~>] > 0.
Case III: ~-.~ = 0 a.s.

It is easy to eliminate Case I, because if this were true, then Y(oo) would have
to be uniformly distributed on Rd (by spatial homogeneity of the flow), and this is
impossible when Y is a random variable. It remains to prove that Case II cannot
occur when X~  0.

Suppose that the situation described in Case II is the correct one. Then by
Fatou’s Lemma and the almost sure convergence of to 03C6i,03BD-~> as t -
~~ 

’
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0  

~ lim inft~~ IE[03C61,v-t.0>03C62,v-t.0>],
=’ lim 

(3.1) = lim inft~~ P(2)tu(x,y)dxdy,

where u(x,y) = and the transition semigroup for the

two-point motion.
As mentioned in Section 1, the interpoint distance process (lXo,t(x) - Xo,f(y)L

1~0} is a one-dimensional diffusion with an invariant measure h(r)dr on [0,oo).
Therefore the two-point motion has (by a change of

variables) an invariant measure H(x,y)dxdy on R~, where H(x,y) =

The self-adjointness of P~ with respect to this invariant measure
gives

= 

(3.2) 

As described in Section 1, (1.6) and the asymptotics of h(r) given in (1.10) show
that

(3.3) 1/H(x,y) ~{c|x-y|d-1-  as {x-y} ~ 0 1 as |x-y| ~ ~.

Since Xi  0 by assumption, it follows from (1.8) that 1.1  -1, and so > d.

Therefore there exists Mi > 0 such that

(3.4) supx~y 1/H(x,y) ~ M1.

According to the description of Case II, there exist k > e > 0 such that pi(x)(p2(y) =

0 unless £ $ k. Define

(3.5) M2 = ~*

By (3.4) and (3.5), the integrand in (3.2) satisfies:

(3.6) { ~ if 

(Here m denotes Lebesgue measure on Observe that the bound is uniform in t,

We now consider the cases d=2 and d = 3 separately.
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The Case d = 2.

By (1.4), (3.3), (3.4) and Lebesgue’s Boundod Convergence Theorem (LBCT),

(3,7) P(2)(1/H)(x,Y~ _ 0 as t -~ ~o,

for each x,y in Now (3,2), (3,6), (3.7), and another application of the LBCT show
that

limt~~P(2)tu(x,y)dx dy = 0,

which contradicts (3.1). Hence Case II cannot occur, which completes the proof
when d = 2.

The Case d = 3.

It follows from (3.1), (3.2), and (3.4) that

(3.8) IE[03C61,03BD-~>03C62,03BD-~>] ~ M103C61(x)03C62(y)H(x,y)dx dy,

where the constant M1 is independent of cp1 and (p2. By the Riesz Representation
Theorem and the Radon-Nikodym Theorem, there exists a non-negative
measurable function G on RdxRd such that

(3.9) 

Moreover the measure G(x,y) dx dy is invariant for the two-point motion, in the
sense that (for u(x,y) = 

(3.10) f = f f u(x,y)G(x,y)dxdy, all t > 0;

to verify (3.10), observe that by time-homogeneity of the flow, for any t > 0, the
right side may be written as:

= 

= by (1.14) et sequ.,

= E[ 03C61°X0,t(X-r,0(x))dx03C62°X0,t(x-r,0(y))dy]

= ° cp2 ° 
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= E[ 

by the independence of Xo,t and v_~, By Fubini, this equals

= 

= f f 

which verifies (3.10).

On the other hand, (3.1) shows that for all as in Case II,

f f _ lim inft~~ P(2)tu(x,y)dx dy

(3.11) s f J 

by (3.2) and (3.4), where

n(lx-yl) = Xo.t(y)1 ~ oo).

Since this inequality holds for all cp~ as in Case II, it follows that

(3.12) G(x,y) s M1 H(x,y).

From the translation-invariance and vector isotropy of the law of the flow, we
obtain the fact that G(x,y) = for some function v:(O,oo) -~ jR, such
that R~v = 0, where R is the generator of the distance process, as in (1.3). Let

be the solution of R*u = 0 which was described in (1.12). It is

impossible that v is a multiple of g, because g(lx-yl)dxdy is not a positive measure,
by (1.12). Hence v = a1g + a2h for some ai and some a2 > 0, such that aig(r) +

a2h(r) >- 0 for all r. By (1.13), v(r)/h(r) - a2 as r ~ 0. This contradicts (3.12), which
says that v(r)/h(r) = = 0(r-~‘-1) by (1.5); recall that -n-1 > 0 by (1.8).

Hence Case II cannot occur, and this completes the proof. 0

THEOREM B

For an isotropic stochastic flow in IR2 or IR3 of "coalescent type" (as u 

the statistical equilibrium 03BD-~ is zero almost surely.

Proof. The proof is essentially the same as for Theorem A, except that:
(i)  is replaced by  in (3.3); according to (2.4),
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d-1-~ J (0,8/3) when d= 2,
1 (7/3,10/3) when d=3.

Thus (3.4) still holds.
(ii) The asymptotics of in (3.12) are given by (2.6) instead of (1.5); the
same conclusions hold however. 0
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