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A NOTE ON APPROXIMATION FOR STOCHASTIC DIFFERENTIAL EQUATIONS

By H. Kaneko and S. Nakao

1. Introduction

Let a(t,x) be an Md r-valued measurable function and b(t,x) be an

Rd-valued measurable function which are defined on [0,oo) x Rd, here Md r is
the set of all dXr matrices. Consider the following stochastic differential

equation

(1) dX(t) = a(t,X(t))dB(t) + b(t,X(t))dt,

where B(t) is a given r-dimensional (Ft)-Brownian motion on a usual filtered
probability space Throughout this paper we assume that the

equation (1) has a pathwise unique solution X(x,t) for each initial value

x E Rd with respect to B(t).
We shall consider two problems on the approximation for the solution of

the stochastic differential equation (1). The first one is an approximation

by the coefficients. This problem was treated by Kawabata-Yamada [2] and

Le Gall [4].
Consider a sequence of stochastic differential equations with measurable

coefficients

(2) dX(t) = a n (t,X(t))dB(t) + b n (t,X(t))dt, n = 1,2,’"

Suppose that for an arbitrary initial value x E Rd each equation possesses
a solution Xn(x,t) with respect to the Brownian motion B(t), then we can show
the folowing theorem:

Theorem A. Suppose that a n (t,x) and bn(t,x) (n = 1,2,’*’) are

continuous. Further suppose that for each T ~ 0, there exists LT > 0
such that

sup sup (Ilon(t,x)II + ~bn(t,x) ~)  LT(1 + 
n tT 

~ ~ " ~ ’

and that

lim sup sup (lIa (t,x) - 0(t,x)M II
n tT xeK 

~

+ jb (t,x) - b(t,x)’) = 0 ,
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for each T ~ 0 and compact subset K in Rd. If the pathwise uniqueness of

solutions for (1) holds, then we have

lim sup E[ max ~X (t,x) - X(t,x)~2] - 0
n-+oo xeK 

for every T > 0 and compact set K in Rd.

In §2 we will give the proof of Theorem A and state two variants of the

theorem (Theorem B and C), , including in the case in which the reflecting boundary
condition is involved. In §3 the polygonal approximation will be treated and

we will get a similar theorem for this approximation. This problem was

considered by Yamada [9] in the case of one-dimensional stochastic differential

equations whose coefficients satisfy a certain Holder continuity. Finally we

construct a unique strong solution possessin g a simple measurability for the

equation (1) by using the polygonal approximation.

2. Proof and variants of Theorem A 
’

The following lemma can be proved using the same technique in the proof
of Theorem 4.6 in [6]. .

Lemma 1. Under the assumption of Theorem A, there exists, for each

T ~ 0 and compact set K in Rd, a positive constant C = C T,K such that

sup E[ [ max ~X(x,u) - X(x,v) ~] ~ Clt - 
xeK su,vt_ - 

p  s  t ~ T,

and

sup sup E[ [ max s~2, ,
n xeK s~u, v~t 

n n

- - 

.

Proof of Theorem A. Assume that the conclusion of our theorem is not true.

Then there exist positive constants 6 , T, a subsequence {n’} and a sequence

{ n,} in Rd contained in some compact set such that

inf E [ max I X ,(x ,,t) - X(x ,,t) ~] ] > S . .
n’ 

n n n -

Without loss of generality, we may assume that {n’} = {n} and { n} converges

in Rd.
From Lemma 1, , we know that the family of the processes

tight (Theorem 4.2 and Theorem 4.3 in [1, ’ Chapter
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n n n

I] ) . Therefore, there exist some probability space (S~, ~:~,P) and a sequence
n n n 

00

of stochastic processes (t)} n=0 on the probability space

(S~, ~,P) which enjoy the properties :
n n n

(i) The probability law of coincides with the law of

n),B} for each n = 1 , 2 , ....

(ii) There exists a subsequence {n’} such that {X n ,,Y n ,,B n ,} converges

to uniformly on every finite time interval a.s.

Here we may assume that (ii) holds without subtracting subsequence of

{ n’Yn’Bn}n=1’ . By virtue of uniformly inte grability, we obtain

~  liminf E[ [ max ~X(x ,t) - X (x ,t)~2] ]

(3) = liminf Ê[ max (X (t) - Y (t)I2) ]n

= l [ max I 0 (t) - (t) I 
2 

] ,
0

n ,

where E stands for the expectation with respect to the probability measure P.

On the other hand, because of the coincidence (i) of probability laws,
we have for n = 1 , 2 , ...

X n (t) - = t0Q(S,X n (S) + t0b(S,X 
and

Y (t) - x = 03C3 (s,Y (s) )dB (s) + b (s,Y (s) )ds.
n n n

n

By letting n + ~ (Skorohod [7] ) , it turn out that not only but also

are solutions of (1) with respect to the Brownian motion 

Because the pathwise uniqueness of solutions for (1) holds and clearlyn n 
n 

n

XO (0) - we arrive at > which contradicts ( 3) . q.e. d.

We state a variant of Theorem A in the case that the coefficients Q

and b are not always continuous and d = r.

Theorem B. Suppose that the coefficients a n (t,x) and bn(t,x) are

uniformly bounded in t,x and n = 1,2,... and there exists ~ > 0 suoh that

( n(t~x)~~~) ? a~~~2~ ~ E Rd

holds for t > 0, x E Rd, n = 1,2,3,.... Further suppose lim a (t,x) = a(t,x)

and lim bn (t, x) - b(t,x) in L2d+1, loc ([0,~) X Rd). If the pathwise uniqueness
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of solutions for (1) holds, then we have

lim sup E[ [ max ~X (x,t) - X(x,t)I2] - 0,
’ 

’

for each T ~ 0 and compact set K in Rd.

The proof can be perfomed in the similar way as in the proof of Theorem A,

but we need the limiting procedure introduced in the proof of Theorem 1 of

Krylov [3; Chapter 2].

Another variant concerns the case of the reflecting boundary condition.

Let D be a convex domain in Rd. We then consider the following

stochastic differential equation with reflecting boundary condition for D

(for the detailed definition see Tanaka [8]):

(4) dX(t) = + b(t,X(t) )dt + d~(t),

where a and b are continuous functions on x Rd. We can define the

notion of the pathwise uniqueness of solutions for (4) similarly. Let

{Dn}~n-1

be a sequence of convex domains of R . d Let and 

be sequences of continuous coefficients and consider a family of stochastic

differential equations with reflecting boundary conditions for D .

(5) dX(t) = On(t,X(t))dB(t) + bn(t,X(t»dt + d03A6(t),

n = 1,2,3,--.

We denote by (X n (x,t), n (x,t) ) the solution for the n-th equation of (5) with

initial value x. Then we have the following theorem:

Theorem C. Suppose that for each T ~ 0 there exists LT > 0 such that

sup i + >  LT(1 + ~x~),
0tT n 

n n -

and that

lim sup sup (~03C3n (t, x) - Q (t, x) II 11
n~~ 0~t~T x~K

+ Ibn (t, x) - b (t, x) I ) _ 0
holds for each T > 0 and compact set K in Rd. Further suppose that Dn
converges to D in the following sense:

(i) xED n and limx = x ~ x E D." " "
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(ii) For any compact set K C D, K C Dn holds for sufficiently large n.

If the equation (4) has a pathwise unique solution (X(x,t),~(x,t)) for every

starting point xED, then we have

lim sup E[ [ max n(x,t) - X(x,t)I2] - 0
n-~ xEK 

for each T > 0 and compact set K in D.

Proof. Applying a method in Tanaka [8], we can obtain that for each

T > 0 and compact set K in Rd, there exists a positive constant C = C T,K
such that 

’

sup sup E[ [ max I n(x,u) - X (x,v)~4]  s~2,
n xEK 

n

0  s  t  T.

Therefore tight. Assuming the

contrary to the conclusion of Theorem C, we can derive a contradiction in the
same manner as in the proof of Theorem A. q.e.d.

Remark. P. L. Lions and A. S. Sznitman [5] introduced the notion of

the admissible domain D in Rd and they considered the stochastic
differential equation with reflecting boundary condition for D. In this case

we can get the same result as Theorem C.

3. Polygonal approximation and unique strong solution

Again, we will consider the stochastic differential equation (1) in ~1.
For an arbitrary partition 0 : 0 = t~  tl  t2  ... ~ tn ~ ... ~ °’ ’
define the polygonal approximation process for (1) by

X0394(x,t) - x = t003C3(03C60394(s),X0394(x,03C60394(s))}dB(s)

+ t0b(03C60394(s),x0394(x,03C60394(s)))ds,
where ( s ) - ti , if t.  s  ti+1’ Sup (tn+1 tn ~ ’ We then have
the following theorem: n

Theorem D. Suppose that 6(t,x) and b(t,x) are continuous. Further

suppose that for each T > 0 there exists L > 0 such that

sup II + (b(x,t) ( )  LT(1 + I xl).- ~
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If the pathwise uniqueness of solutions for (1) holds, then we have

lim sup E[ I max X(x,t)~2] - 0
~D~+0 xEK OtT 

D

for each T > 0 and compact set K in Rd.

The proof can be performed using the same method as the precedin g proof.

If the pathwise uniqueness of solutions for (1) holds, then (1) has a

unique strong solution (Ikeda-Watanabe [1]). . But the measurability of the

stron g solution in [1] is very complicated. On the contrary Theorem D enables

us to construct a unique strong solution with a simple measurability.

In what follows, let C ( [0,~) --~ Rd) and {w E C( ( [0,~) -~--~ Rr);
w(0) - 0}. By the uniform convergence on every finite interval, we can regard

Wd and Wr as Polish spaces. Let $ (Wd) (resp. ) be the topological

Borel field on W (resp. Wr0) and t (W ) (resp. t(Wr0)) be the

sub-a-field of (resp. ,~(W~)) ) generated by w(s) , 0  s  t.

Consider the standard Wiener measure PW on (Wr0, (Wr0)) and put

N = {N E X (Wr0); pW(Nx) = 0 for every x E ’ where

N = {w E Wo; (x,w) EN}. We denote by ,~ t the a-field generated by

~ x 

Corollary. Under the assumption of Theorem D, there exists a

(Rd) (Wr0) / (Wd) -measurable function F (x,w) : : Rd X Wr ~ Wd which

satisfies the following properties :

(i) > F(x,w) > is t(Wd)-measurable for each t > 0. .

(ii) If B (t) is an r-dimensional (Ft)-Brownian motion defined on a
usual filtered probability space ( > and 03BE is an

~ -measurable Rd-valued random variable on P) , then F (~,B ( . ) ) > is
0

the unique solution of (1) with initial value £.

(iii) If X(t) is a solution of (1) with respect to a Brownian motion

Bet), , then X(.) - F(X(0),B(.)) ) a.s. .

Proof. The polygonal approximation X~(x,t,w) with respect to the

standard Brownian motion in Theorem D defines a measurable

function F D (x,w) : Rd x WO ~ Wd by setting X0394(x,2022,w). Theorem D

implies that there exists a sequence of partitions such that
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lim~0394n~ = 0
n~~

and for every x E Ra (x,w)} converges in Wd a.s., ’ because
n

Borel-Cantelli’s lemma works uniformly on each compact x-set in Rd.
Put

l~ _ {(x,w) E Rd x Wr; FA (x,w) converges in Wd}
n

and define

Fx,w> =  
lim F0394n (x,w) if (x,w) E A

( 0 , ... , 0 ) if (x,w) ~ A . .

Then it is easy to see that F(x,w) satisfies the desired conditions. q.e.d.
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