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APPROXIMATION OF PREDICTABLE CHARACTERISTICS
OF PROCESSES WITH FILTRATIONS

Leszek Sominski

1. Introduction.

Let (JI,,F ,P) be a complete probability space and let S
be a Polish space. Let ¥ = {Mﬂ}tew be a filtration on
(ov,F ,P) i.e. a nondecreasing family of sub-@&-~algebras of F .
In the sequel we will consider ¥ adapted processes X such
that :

(1) Xx(t) 4is a random S element on (J},,F .LP) , teRY,

@ almost all trajectories J| 3w p——> (X(w) : Rt ———> S)
are right-continuous and admit left hand limits ,
i.e. belong to D(s),

(3) the filtration ¥ is right-continuous and complete.

We will denote by »(S) and D(S) the G-algebra of Borel
subsets of S and the space of probability measures on $(s) ,
respectively. It is well known that if 9(8) is equipped with the
topology of weak convergence and D LS) is endowed with the
Skorokhod topology 31 then both spaces are metrisable as Polish
spaces (see e.g. [2] , [141) .

Let T = {Tn} neN =+ Tp = {tnk} keNv{o} 0=ty <tn1< e

klim t k= *+to nelN be a sequence of partitions of IRt such that:
>

4) L . neN ,

) max (t_, - t ¢ O t e Rt
k$rn(t) nk n,k-1) . .
where rn(t) # max [k : tk St ]l ., teR', neN . For the array
{tnk we define the sequi?ce of summation rules {Yn} nelN
by the equality gn(t) =\ max [tnk I S <t]l , "teR', nelN .
Notice that {rn} nen < DCR) and {gn} nen © DCR) .
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Let x be an element of D (S) . Having the sequence of
summation rules {Sn} nen  We may introduce a sequence S_x.gn} neN
of elements from D (S) by the equality xognLt) - x(gn(t)) ., teRrt,
neWN . The Skorokhod convergence is such that :

(6) xeg, —> X in D(s) .

let S=R and let X be an @ adapted real semimartingale ,
X(0)= 0 , with the triplet of local predictable characteristics

(Bh, 82,)’) (see Section 3). Let us fix wedb . By Theorem 1
of Grigelionis [5] there exists a semimatingale with independent
increments X such that its law cﬁ,(x"") is uniquely determined
by the triplet (Bh(_n-), 62((:),))(_0)> (see Section 3) .

Let us denote by J\..x(.w) the distribution of X“ considered
as a random element with values in J(D(R))

@) 2 d L) .

Hence ._h_.x is a random measure with values in the set (denoted
by PII ) of distributions of processes with independent increments
and with trajectories in D(R) . The set PII  is a closed subset

of (o)) .

Now, let X be an @ adapted real process, X(0)= O . We will
consider a sequence {X-gn} nem of 3:°§n adapted processes,
which is in fact a sequence of discretization of X according

to {Sn} nelN : r (t)
0) FNOREINO)

d
teRY, nelN where A:X at X(tnk) - X(tn,k-l) k,neN .
By (1) and (6) we may trivially obtain
o) Xeg, —> X in DO(R)

almost surely.

Since for every nelN Xogn is a process with bounded
variation, XeQ =~ is a semimartingale. Therefore there exists
a random measure J\_’,('gn defined by Q7) . Moreover the special
form of X-eQ, and ?}ogn implies that :



449

y r Si)
(11) JL "¥n () = ‘lj% . ?‘(tnk'tn,kd) teR* ,neN

where "x" denotes the convolution taken pointwise for the
random measures a(tnk'tn,k-l) n,keN and ‘A(tnk'tn,k-i)
is a regular version of the conditional distribution of the increment
A:X given ‘5‘»(1:" ket ) nkeN .
]

Now, we are ready to introduce our main notion.

Definition 1. Let X be an ¥ adapted real process , X(0)= 0,
and let T = Tn neiN be a sequence of discretizations satisfying
(4) , (5) . We will say that X is T tangent to the family of

processes with independent increments or for simplicity X is

T tangent to PII iff there exists a random measure
JL)Q( : Jl ~=—> PII ¢ 9 @OW)) such that
Xeo X
p(R)) .
(12) J575n > Mg in. §OW)

In the sequel we will denote the class of processes T tangent
to PII by sgLT,o).

In our paper we characterise the class of processes T tangent
to PII and we formulate limit theorems for processes from SQ(T,D).
Main theorems are contained in Section 2 . We defer the proofs to
Section 5 .

It is clear by using the counter example from Dellacherie ,
Doleans-Dade [4] that it is possible to construct a process X

(even a semimartingale ) and two sequences of discretizations

T=qT nenw » T ={Ti} Loy for which X is T tangent
to PII  but X is not T~ tangent to PII . Hence- in this
case Sg(I,D) £ s (11,0) and the property " X is T tangent
to PII " should be checked for fixed T = {T } nen  °

Since the random measures gﬂf and JLX associated to
the semimartingale X and to the element of S (T,D) . respecti=-
vely, have some different properties (for more detail see Section

3 ) we reserve the notion ghf only for semimartingales.

Recently Jacod [9] examined a particular case of the theorems
considered in our paper. Jacod characterised in detail the class of
processes T tangent to PII such that for every wed) LhJXOJ)
is additionally the law of continuous in probability process with
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independent increments.

Below we give Jacod's results. In fact we change slightly the
form and notation in those theorems. Let Sg(T,C) denote the sub-
space of Sg(T,D) examined in [9) .

Theorem J1 ([9]). (i) Every continuous in probability process
with independent increments X , X(0)= O belongs to Sg(T,CJ .

Then 5 = &(x) .

(ii) Every quasileft-continuous semimartingale X , X(0)= 0
belongs to Sg(T,C) . In this case ‘_f\_.; = ‘_M .

In order to give a characterisation of processes from Sg(T,C)

it is necessary to define the following family of processes.

Definition J2 ([9]) . (1) We_say that the bounded and predictable

process B ., B(0)=0 with continuous trajectories belongs to
the class B(T,C) iff "n&t,)

(13) o \)kZH Ep_ ARB - B(t)\—;-> 0o, qeRt
t
(24) kﬁl ICNON G OR ECIC I

n . =
where Ek-l( ) = E (-)\}‘(tn'k_i) n,kelN .
(ii) We say that the process B belongs to Bloc(T'C) iff
there exists a localizing sequence {‘Uk& keN . 'Uk * +0 a.s.
of & stopping times for which B’k € B(T,C) , keWN .

We will also use the characteristics 62 Y such that

(15) G2 is a process with continuous and nondecreasing
trajectories, G2(0)= 0

(18) ) is a random measure on D(R&R), )/({t}le>= o, teRt
Y(R*>{o)= o0, s[xz/u V(0.9xdx) <+ , teRt.

Theorem 33 ([8]1). (1) By, (T,C) and S (1,C) _are two
vector spaces.

(i) The sum of a quasileft-continuous semimartingale and a process
from 8, (7,C) belongs to sg(T,c) .

(iii) The process X belongs to_ s_(T,C) iff there exists
the triplet (B, 62, Y) with BeB  (T,C) and &> ,Y
satisfying (15) and (16) respectively such that X =-B is a
quasileft-continuous semimartingale with triplet of predictable
characteristics (O, 62,))) . In this case the triplet (B, 62,)))
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is uniquely determined.
(iv) The space B1oc (r,C) contains : all the processes B '
B(0)= O with continuous trajectories and bounded variation, all
the continuous elements from D(IR) equal null in O ,

It can be observed (see [9] . Remark 1.16 ) that the
technique used for the characterisation of the class S (T,C) can
not to be extended to the class Sg(I,D) . Our method is more general
and we hope that it is slightly simpler to the one mentioned above.

We end this section with a simple example of a family of proces-
ses from Sg(T,D) not necessary belonging to Sg(T,C) .

Example. Every process with independent increments X , X(0)= 0

is T tangent to PII

In order to explain this fact let us note that for each nelN
X°§n is a semimartingale with independent increments for which :

A8 = dlxeg)
By (10) the conclusion follows and JL‘)g( = cf,(X) .

In the following sections we restrict our attention to the real
@ adapted processes X satisfying the assumption

(17) x(0)=0 .

2. Main results.

2.1 The semimartingales T tangent to  PII .

Let T = {Tn} nelN be a sequence of discretizations satisfying
(@) , (5) with the accompanying sequence of summation rules {Snk neN *
Let us fix teR*, neIN and let § be a & stopping time .
Since for k srn(t) . r-tnk<6 <tn,k+1]e§;'gn tn,k+1') = y(tnk)
< 3‘°gn (t) so by simple calculations we have

raGe)
[ gn(G) <t ] = kL'-’(]O [Sn(G) = tnk]
r t)
- L)o[t,,k <O <ty al € Fog (@) -

k
But if © is an y stopping time only we do not know whether
gn(_G‘) is an ?’-Sn stopping time or not. This implies the
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existence of examples of semimartingales which are not T tangent
to PII .

Theorem 1, Let X be a semimartingale with the predictable
characteristics UA} defined by (7) . The semimartingale X
is T tangent to PII i.e. x€es (r,0) iff the following
condition (T) is satisfied : s

for every predictable ¥ stopping time 8 there
exists a sequence S.G'n} neN __ci_?-sn stopping

(1) times such that
dan P Len(®) # &, . Agl= o

where Ag g[V({G’},lR)) 0, © <+oo]
In this case LAJE = ;J\f .

Due to Theorem 1 it is possible to give a nontrivial example
of a semimartingale from S (,0) .

Corollary 1. Let X be a semimartingale of which every predic-
table jump % has one of the two following forms :
@18) @ = 2, s, I (6=15s) on the set, Ag for some

sequence of positive constants {sk‘s KEN

9 @ = q +c on the set Ag for some, F stopping time
& and for some positive constant c .

Then X € sgLT,D) .

2.2 The characterisation of processes from Sg(T,D) .

First we introduce a new class of processes appropriate to
(r.c).

Definition 2.(i) We say that a bounded and predictable process
B, B(0)= 0 belongs to the class B(T, D) iff

Bloc

r (t) r (t)
(20) sup l Z P AlB - 2 ANB l 0 elRY.
tgq k=1 “k-15k B> 0.
(ii) We say that the process B belongs to c
there exists a localizing sequence &"k} kGlN ’ ‘I? a.s.

of & stopping times and Bk € 8(r,n) ,

Let us assume that BE€B(T,D) . Since an '}'.sn adapted process
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=

k =1
it follows by the Dav1s-8urkholder-Gundy inequality (fee EVJ)
that (20) implies (14) . Therefore

{ r (t)

[E 113k8 - 43 B ]} A for fixed neN a local martingale

B(.,c) = B(,D) N { B with continuous trajectories } .

We can easily extend the above equality to the classes (I c)
and 8, (T,0) . It is clear thatlgeneral B, 0cTi0) # BIOCQ‘ ,D)
for two different sequences of dlscretizatlons T , 7!

Now, let us observe that it is possible to express (20) in
terms of convergence in D(R). By (71) B , B(0)= 0 belongs
to 8(7,0) iff

(21) 5°\§}n - B in D(R) ,

where above and in the next sections for every special semimartingale
~r N,
X , X denotes its predictable compensator . X(0)= o .

Let (BS,G?Z,'VE) be a triplet of characteristics such that :

(22) Bg is a predictable process, sup\zseg(;)lfgl . BS(Q): o,
t

@3) 6‘3 is a process with continuous and nondecreasing
trajectories 6‘3(0)= 0
(24) )] is a random measure on H(R%K) for which
Vg(lolxR ) =0, g (R¥fo})= 0, ¥ (0.e]x[xl>e]) <roo
Y, G R) <1
jf(h ) - Aeg(s))z Y (dsxdx) + SZQ (2 - ))QQ’S}xIR)XABg(s))Z< +o0

AB ) = yh(x)))({t}xde . for every teRt, €>o0.

Theorem 2, (;) B
vector spaces.
(i) The sum of a T tangent to PII  semimartingale and a
process from Bloc(T,D) belongs to S (T D).
(iii) The process X belongs to S (r,0) iff there exists
a_system of characteristics (B 6'2 b4 )h satisfying (22) - (24)

h
such that Bg Q,BIOC(T,D) and X - Bg is a semimartingale

10c(T:0) and sg('r,o) are two
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from S (T D) with the triplet of predictable characteristics
(B 52 0% ) given by :

© (t)'é\JfG'g(t) , tEeRt ,
))h(A) é;fmﬁ‘;l I(x # ABg (s),(s,x- ABg(s))e A) Vg (dstx>

Es.@ - ))QQS}"IR))I(O # AB)(s) . (5. ABg(s)) €A)
Ae HR&R) ,

B (t) % Zgh(x) Y (is}xdx) t eRY .

\
In this case the triplet (B 62 » ) is uniquely determined.

(iv) The space Bloc ﬁ‘D) contains :+ all predictable processes
B , B(0)= 0 with bounded variation, satisfying the condition
(t) , and all F(0) measurable processes equal null in O .

Corollary 2. Let X be a process with conditionally
independent increments. Then X Ssg(T,D) .

2.3 Functional limit theorems for processes tangent to PII .

It is interesting that limit theorems for the processes tangent
to PII can be formulated in the same way as for semimartingales
(functional limit theorems for semimartingales can be found in

[e] . [_10:] ) In order to study those theorems we will use an
approach of Aldous L1]

Let X be an (f' adapted real process. Aldous has shown
that there exists a unique (3: adapted process Z with trajecto-
ries in the space D(@(D(R))) such that for every te[R+
and A € 3(OW) we have :

z(t,A) = P (xea | Fw)

ie. 2z(t) : SUx POW) —> [0,2] is a regular version
of the conditional distribution of X given Fw .
For every wed the trajectory

R*at p—> (X(t,u),Z(t,f.r)) € Rx Pow)

is an element of the space D(ﬁ{xf?(P(RiD so we can define the
extended distribution of the process X as the distribution of
the random element
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N 3w p—> (x@.r),z(,cs)) € D(le@(DUR))) .

Let {X"} neNoiw be a sequence of 3‘1" adapted processes. We say
that the sequence x" neN converges extendedly to X%

and write X" — X iff the extended distributions

of {x"} neiN are weakly convergent to the extended distribu-~
tion of X®

Some necessary and sufficient conditions for extended convergence
of semimartingales have been given in [11] and [17] . It is proved
by Kubilius [12] that the theorems from [11] and [17] can be
extended to the case where the limit process is a semimartingale but
not necessarily with independent increments.

In the present paper we propose another way of generalization.

We apply the method from [11] and [17] to the processes tangent
to PII .

Theorem 3. Let %Xn} ne N be a sequence of %" adapted
processes , ™ = {Ta K&IN tangent to PII , and let X%
be a continuous in probability process with independent increments.
Under the condition

(sup B.) sup | Bh'n(t) - Bh'“(t) | —3> 0 , qeRt,
g tgq 9 g P
the following two conditions are equivalent :
n
@ Ny = L&),
(11) x" ? Faad .

Similarly we could formulate a version of Theorem 3 from [11]

where the condition (Sup Bg) is also necessary in some special
sense.

3. Preliminary remarks.

3.1 Convergence in the Skorokhod topology.

The space D (S) with the Skorokhod topology 31 has been
discussed in detail by several authors : Lindvall [}4] , Billingsley
[2] and Aldous [1] . In the present paper we will use frequently

the results from [1]) .
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Let x be an element of D (S) . Let us denote by Sx

the element x stopped at s , selRt , i.e.
sxﬁ)ﬁ x(t) t s
x(s) t>s .

Remark 1. Let {xns neNu{n) be a sequence of elements from
D (S) such that X, ==> X« . Then by Proposition 26.8
from [1] for each se R! there exists a sequence {sn} ne N
s, —=> s for which s"xn —3> X . Moreover if {un'g nelN
is a sequence satisfying un >/ S, + N eN and u, — S
then also u"‘xn —3> ®xeo -

Suppose that s, 31 are two Polish spaces. In Section 2.3
and in other sections of our paper we often use the convergence in
the Skorokhod topology in D (_SxSl). By Proposition 29.2
from tl] we obtain following simple characterisation of the conver-
gence in D (SxSl) .

Let {xn} nG{Ju o] {yn} 36 Nuiso} be two sequences of
elements from D (S) "and D (S°) respectively. Then
(x¥p) —> (xeove) in D (sxs?) iff x —> x in 0 (s)
Y, —> Yo in D (s') and for every t €R' there exists
a sequence {tn} neMN ¢ th —> t such that  x (t)) —> X 1)
x,(tpm) = %a(t=) + v, (5)) => valt) 4 v, (tp7) —> veo(t-) -

Remark 2. The above result is simpler in the case s=R ,

st =R . Then (xn,yn)-—-——? (%0 s Yoo ) in D(R®) iff .

Xy ===> Xoo s+ Y ——> Yoo in DCIR) and for every te{telR:
Axw(t) £0 and Ay,.,(t);! (6] 3 there exists a sequence

{tn's ncIN ¢ t, —t , such that Axn(tn)—e Axo,(t) and

Ay, (t) —> Ayo(t) . Consequently  (x,.v,)—> (%01 ¥eo) in o (@2

iff  x, —> Xo » ¥, === Ye _and Xp = Yp =2 X" Y

in DCR).

Now, assume that x € DUR) , x(0)= 0 and x has quadratic
variation [x) , i.e. for each t G-IR'} there exists a finite
limit

rg_t‘)

IO 1in =2 (xlenty jg) = xConta )

k=1
for some fixed sequence of discretizations T = {Tn") neiN  °
Therefore [x)e DCR) and [X(0)= 0 . It is clear by using e.g.
3.2, in [8] that [xoén)———a [x] in O(R) -

Moreover by Remark 2 and. 6)

Q:x]'gn' ["'gn])—‘? ([x'_] [x] ) in D QRZ ) .
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Using Remark 2 once more

(25) :Uépql B2, e) - [ropalte) | —> o, qeRt.

The following lemma is an easy corollary of (25) .

Lemma 1. Let X be a local martingale. Then

i"\fq( [x JogaCo) - [xesale) | >0 qe\R*.-

3.2 The Lenglart type inequality.

The following lemma follows readily from the concept of domina~
tion introduced by Lenglart [13] .

Lemma 2. Let X be a process with bounded variation . Then

for all 8,7’ > (o] and for every 3’ stopping time ‘Tf

p [var ?(’l’:))%] L a ¢! E var x (V) /\(2 + sueJA X(t)l)
ts
+ 2P var x(W) >4 .

Proof. Let x* and b be two increasing processes such

that x = xt - x and var X = Xx* + X™ . Therefore

p [ var ,)\('(.'C)>£}$P [7(.’0»5,:] + P [T‘(’U)>%'_] .

Using the inequality of Rebolledo [16] to the first component on
the right~hand side in the above inequality we obtain :

P [Q‘(’o’)>% 1€2¢ e X+("G)A(2 + iieJAx+(t)l)
+ PLX®>4] .

The same estimation is also true in the case of the process X"
Therefore the proof is complete. W

Corollary 3. Let {X"'ﬁ ne N be a sequence of ¥ " adapted
processes with bounded variation such that sup | X"Ct)'
{t s"ﬁ }HGN

is uniformly integrable for some sequence &‘Uni nes\, of ‘Fn
stopping times. If Var Xn(‘t;n) — 0 then
P =nen

~
var X" —_—> 0 .
or T(0,) — .
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3,3 The predictable characteristics of semimartingales and
processes tangent to PII .,

Let X be a semimartingale. Let h be a continuous
function h : R ~—>» [-1,1] such that h(x)= x for

Ix] L1/2 and h(x)= 0 for x| > . By X" we denote
the process given by the formula

(26) xh(t) ‘ifx(t) - Z,(Ax(s) - h(Ax(s)ﬂ , taRt

The procgss Xh is a semimartingale with bounded jumps ,
supl¢;x (t)[ <1 , hence it is also a special semimatingale and
can be uniquely decomposed into the sum :

(27) xh(t) = Bh(t) + Mh(t) , t&Rt .
wgere Bh is a predlctable process with bounded variation ,
(O) o ., sup[AB wl <1 and M' is a local martingale ,
m(0)=0 , sSp[AM Mmi<2 .
Let Xc be the unique continuous martingale part of the semi-
martingale X ., We define

(20) @Y <x*>(t) . teRrt .
where <:X°:> = [_XCJ is the quadratic variation process of x° .

Let Yy =) (dt*dx:) be the dual predictable projection of
the jump-measure N(dtxdx) of the process X

(29) (0, t]xA)'\iz 1(ax(s) €A, ax(s)# 0 ) teRt, Ach@®).

The triple @ 62 v) is called a system of local predictable
characteristics of the semimartingale X . It can be observed that
this system satisfies the following properties : ’

(}O) Bh is a predictable process with bounded variation ,
Bh(o)= o, SUPIABh(t)l <1 0,
t
(31) 6? is a process with continuous and nondecreasing tra-
jectories , Q$(0)= o ,
(32) Y is a random measure on V(R lR) such that

Y (foix<R)=0 , Y (R&o})=0 ,
jXAly((O t]xdx) < + o0 Y teRt .

It is clear that in general, it is not true that gh belongs
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to Bloc(T,D) . However comparing (30) =~ (32) with the properties
of predictable characteristics of processes tangent to PII  we can
conclude that the system (Bh, 62, ))) fulfills the conditions

(22) - (24) , too .

3.4 The processes with independent increments.

Let X be a process with independent increments. As it is
proved in Jacod [8] and in Grigelionis [5] there exists a non-
random system of characteristics (Bg, 6':, P ) satisfying (22) =~
(24) . Moreover if we denote 0, ={te \&1: ))g({t}le) =0%

then for every s,te Rt, s gt

h
E exp i X (t)~ X(s) =s crégi +d§(eiﬂ'x - 1))/9(1;3 xdx)] e'iﬁ'ABg(")j

- ool 0 ) - 35630 - 626
+ _Z.J(eie-x -1 - Wh(x))l(rsoo) ))g(drndx)_} .
h

Conversely if (B . 6'3. vg) is a nonrandom system of characteristics
with properties 222) - (24) then there exists a process with inde-
pendent increments X  for which the condition (33) holds, There-
fore the law of X . J’,(X) is uniquely determined by the triple
(Bg, 6:' ))g) « In the sequel we will use the notation

h o2 df
B, 6°, b = X/ .
L0, 62,9 ) ¥ 2(x)
In [8] Jacod has gived also necessary and sufficient conditiens
for the weak convergence of sequence of processes with independent

increments, Let {—xn}nelNu{co be a sequence of processes with inde-
pendent increments with the sequence of their characteristics

{@2'". G:'"-V333newu{w3 .
Theoren 34 ([B8]). L&) —> L&®) in D(oCr) iff

the following conditions are satisfied :

(34) Bg'" —_ Bg'°° in  D(R) ,
(35) L cpe® in D(R)

(36) \F,S FOVgEd —> Jrpex) i o) L rec,q

where Cg'"(t) gf G:'n(t) + z \{(h(x)- AB;'"CS))Z Vg({sskdx) +
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2[1 - pishR)) (28 () . teRY ne Nojg

and Cv(O) is a family of positive and bounded, continuous functions
vanishing in some open neighbourhood of O .

4. Fundamental properties of processes tangent to PII .,

4.1 Necessary and sufficient conditions for the processes
from Sg(T,D) .

It is possible to characterise a process X € Sg(T,D) in terms
.of convergence in probability of the predictable characteristics of
their discretizations {X°Sn3 n

Proposition 1.A process X is T tangent to PII iff
the following conditions are fulfilled :

(7) Gt —»
" o

9

T —
(38) [(ms,,)h -Q“Yn)h] > h()'\‘G gC) * Eg(h@o -AB*ts)) gqucdx)
+Z Ll - ))g({s}x [PQ](A By (s)) 2

 ~—_—
(39) _ff(x) Nog’ (dx) -—-> 5 f(x) )) @x) , f € cv(o) ’

R
where the triple (? 62 Y > posseses the properties (22) - (24)
In this case

40) xh - Bg is a local martingale ,

@) 6o =(x"-80%>

(42) \‘%f (x)N@x) - é f(x) ))g @@x is a local martingale
or every fe CvQO) .

Proof. Let us assume that the process X is T tangent
to PII . By a routine technique of subsequences and by Theorem J4
used for fixed & dd we can readily see that the triplet
QB () G2 (_u). J/"(w)) is well defined.

Flrst we check the properties (22) and (@O) for the process
Bh . To prove the predictability of Bg we use Theorem 88 C
from [4) . It is clear by (37) that Bg is adapted to ¥ .
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Therefore we have to verify that Bg (6) is ’3\’:(6-) measurable
for every predictable ¥ stopping time @ and ABS(G‘) =0
for every totally inaccessible 3’ stopping time.

Let {Gik} be the array of ¥ stopping time defined by
the equalities :
i ik i,k= h
(43) GO=° . 61 = inf [t7 6-1. 1' IAB (—t>I7E]
i,k €N , where {8 } i€eIN is a sequence of positive constants
such that ?,i y o , PUAB Ct)|= Ey s te!R“‘) =0 and

inf ¢ J + OO .
Let {‘U;k} be defined analogously for fixed nelN as the

following array of predictable y’fn stopping times :
¢i0 g Tk o inf k-1 fx\/h
(44) n * ’ n -0 [t > n 'lA(.n) ('t)l be si_.)

i,keWN . Let us fix i,kelN " For simplicity we will write

"C' , @ instead of ‘T,:k . 6.

By,el\enlgntary computations : 1,nI (“ﬂ < +eo) -—_> G
and A(Xos C]’,’ )I (’U <+ oo) -——9 AB CG) on thePset ]:6‘<+oo1

Let us put “for every n & N

s 4% i T, < p(e)
" A T > o)
where gf(t):lfmin[tnk N S t] , teRt ’“CG) is 6'?
stopping time ! ). According to (10) (Xo *(G))——é-) X CG’)
on the set |G <+ ob] . Therefore A()(°Sn) r('l‘;’)l( *(6)# "Cn<+°b>
-—? o] on the set EG <+o<s] and as a consequence :
(s) 31 (5;1 <+o0) -;é o on the set E3<"°°]'

QBXA&,\&/}"(S}‘)I @'ﬂ <+o°) -‘-‘:-9 ABgCG) on the set [G <o),
(47) {l SK?@) on the set Egn <+°o} ., nelN.

Now we will show that Q is a predictable F stopping time.
Let be a positive constant and {k }“e“f be a subsequence
1}

{k }C{n . kg T+ for which K = to, 6<+qa]
< Y- Since by (47) n

[8 -+ .G I° - gf@) S, < o]
ULSk CG)"*OQ]
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- e X
we have [§ =+, 6<+w]e}@kn(§kncs)-) .
By the following simple lemma

Lemma 3. Let © be a 3: stopping time. Then for every

neN ¥ *§n (g (e)- )CE(G- and moreover
Eoyn (gn(6)~> T3 ) -om
we obtain that Sy = u [_S =+ , O] 63:@—) .

Hence we can define new " ~ 1 37 n stopping time G‘G.:

‘5}5" 3 on the set (Sd..\c

+Q on the set S(f' .

For every neN we also define :

G, if tkn'j’l M gkn ) tkn':j » 36N
kn + 0Q if Sk = + 0 .
n

If we put k J é max ( An> then Gk pe <G‘5‘ neN
and Gk .7 * G‘K

Therefore G'U* is a predictable '3’ stopping time. Taking

a sequence S“*l ielN + Y v 0 we define a stationary
decreasing sequence %) of predictable F stopping
times ,l, G . Thus @' is a predictable JF stopping
time , too.

As a consequence ABS (®)=0 for every totally

inaccessible & stopping time G .

Finally we have to verify that B (‘_6') is '5-(6—) measu-
rable for every predictable F stopping time Q' . This is clear
if AB CG') = O . In this case for stopped processes

(48) (XOS i S’nc“s) —> Bg'e .
On the other hand let © be of the form o = Gik .
Then by (45) and (46) we have
(X h, S' — Bh’6 o
e -

And the property (47) together with Remark 2 implies that the
conclusion @8) follows, too. Thus (48) holds for every F stop-

ping time © . since the left-hand side of 48) is }'03’ (_S*QS))
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measurable so it follows by Lemma 3 that Bh‘G and in particu=~

lar B (6‘) are @(@-\) measurable. Therefore the process

Bg is predictable.

In the next step we will show that X - B
tingale. Let G be a fixed ¥ stopping time. First let us
note that the property

h h

is a local mar-

*
@9) Var ( Q(ogn)h' gnc@- Q(G:Sn h)(q ) —-;} o ., quR*
together with Corollary 3 implies the convergence
~—T _% e
@0) :uqu (Xoyn)h. Sn@o_-) -~ (Xe;gnvh(t) l --;-} 0 ’ qe[R*.

For proving (49) the following simple lemma will be used .

Lemma 4.

Var (Xhoyn -(X°gn)h)(q) '-;-5 o , geRt .

Proof of lemma. By theogefinition
SHGE x(8) - 2@(’“3’9@) - naxee G ) E (> @5 )

X'§n(t) - 3,@)
where Gg =0, Gn = inf [t > 6‘:L -1 \/_;QU )@)]72] and
and 0Lg <12 , P QAx(t)[ . t eu{
We denote o
) = = ldeg ) (HE) - "(eEpIEEIEG > X))

te Rt, where % =0, Gt = inf [t ? . lAX(t)l>2_] .

Since  max [1 : q >/€1 ‘i , a €R' it follows by the
convergence lim P [ @i),l G 6"(4-&] 0

n-oo
that

lin CRWFI (), t <q]= o0 ge Rt

Hence Var (E -3 )(q) -—-—> 0, qe¢R' and thus the estimation
of var ( - (x» -3 ))(q) » Rt finishes the proof.

Let us observe that
VaLXY'-(X' ~3)XQ)=
lAk(x - X)+ 2&(";,,3(32‘(61 )- (e (N Mk (e = §o6))
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- %QJLZKAX(Gi) - h(ax(@)) (axop (§NED- naxeg, (gf@i))))]l
r (e 2 O <)

< 2 Z‘(Ax(sl)_ h(ax(E9)- (ax=ga (g *@) n(axg, Q’*@l))))l
(o = CNED

¢ e 6 g g e G o6

Then (10) implies that the last sum converges almost surely to O
for every qeRt.

By Lemma 4 the estimation of (49) reduces to convergence

var (_Q(hosn)gan‘(s) - xh,G;%n )(g) —;;> o , gq e Rt .

But the equality

(G537 - % Y(e) = AgH®) - ¥(6) 1 (> §F®))

assures that convergence due to the right continuity of Xh

Comparing (50) and (48) we obtain :

LSl) (X g )h ___) Bh’G

g
h h h h
Let us denote M = X - B_ ., Since the process M has bounded

9
jumps suplAM;‘Q:)[ < 2 we can choose a localizing sequence &6 k}
t

of 8\"’ stopping times such that G'k'l\ + 00 a.s. and

sule @] €k , keN . Let us fix t,s&R* , t>s and
t<€k

t,s € Cont Mg = {telﬂ* : AM (_t) = } . For fixed k&N there
exists a sequence {Tn} 'a:og stopping times
such that
/'\_/
(62) M Tn(e)¥ @G*gs“ '”n(t) (Eag ) Vo)
- Ok
- ¢

(53) there exists a sequence {sn} of positive numbers for

which gn(sn)>/s , neWN . gn(sn) s and
h, U h, &
hrn(e=> Tk

(54) sule:":VnQ:)l L k+1 , n&N.
t ’

It can be easily verified by Tschebyschev inequality and (52).(53)
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that () ®x@) - M @k(s)\'& (s ))-T;> O . On the other

hand by standard arguments and the property n(s ) {,3’(5
E(M“ Gk(t) b Gk@)lﬁ, (sn)>-—-> E(Mh k() - “ +Ok(s) | F-
Therefore EQ’Ih 6~k(€)~)] Hs)) M k( s) for every t,s € Cont Mg

t> s . HenC° is a uniformly integrable martingale

and the proof of (40) 1is complete.
It is interesting that instead of (37) we can consider a more
stringent condition

h 7. <h h gh ) 2
@S) (Q(oyn) .Q(-Sn) > ? (X R Bg ) in D( ) .
The above property is a consequence of Remark 2 and the argument
given below. Let @& be of the form G - otk defined by

(43') . Then there exists a sequence {X }neN of predictable
Fy‘ogn stopping times such that

(s6) r:'llioo gn@)f’ S, G+ | =

To prove Q56) let us take a sequence {S'f nelN
satisfying (45) =~ (47) . Therefore by (46) we have

(a0 1) (S 16XE) - 8|3, (§ W (S, <re0) > A
on the set [G<<+oo| . Using (47) one can see that
£ (kg ) 1(57®) = 5 I (5, M(§, < +a0)
67) - eElakeg)” sXO)| Tk DeX®) - S ) [F, (8,
Since by Lemma 3 ' @; <+°°)'

@) = (0o, (pRON Fy, (Fe)-) => @O | F5-)- asfe)
ggpif;e set [G.<+°°] » so (57 ) and the convergence Sn --‘:)6"
= (asi®1 (@ 5, L < e)F, D> adl© 1<) -

Hence

elagh (_G')ll@'éeo)= llm EIE(AB"QE)I(S*@) = &, 6 oo)lﬁ @_ ))l
< lim ElAB @) :[(ff:((_é')= S, + %))

< e lABg (8)|1 (6 o)
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and we have lim E 148 ©) I(g*@i);ég 6Z+°o)l . Finally
to end the proBf of QSG) it remains to observe that 1482 CG)])Si
on the set [@é-roo]

Now let us note that Remark 2 and @6) guarantee more
stringent convergence in (37) . It is clear that in fact we have
the following convergence

TR A ORI SRR A

We can prove (}9) and (42) using the following Lemma 5
instead of Lemma 4 .

Lemma 5. For every f S Cv(_d

var (_ \{fcx)(mg,)@x}-%fCX)N@X))’§n>(Q) <> 0 - acR’

The poof of (38) and (41) is essentially the same as in
previous cases. In both Lemma 1 and Corollary 3 are basic
and the condition (59) is very useful.

To prove the converse implication let us assume that the condi-
tions (37) - (39) are satisfied. Using Theorem J4 for fixed
wedl once more we obtain X & Sg(T,D) and this completes
the proof. ||

Using Proposition 1 we can conclude that every process X
T tangent to PII has triplet of predictable characteristics
(_ 63 R4 ) or equivalently a random measure '_/L with
values in PII such that

N (600, 62, V() . wed.

Let ‘b} be some 3: stopping time . By the stopped random measure
(._ﬂ_, ) we will mean the random measure with values in PII
deflned by the formulas

@\ngg%') of:( h, V(o) 6284 ) y‘m«a e -

By the arguments from the proof of Proposition 1 we obtain :

Corollary 5. The process X belongs to S Q‘ D) _iff
there exists a localizing sequence {"Uk'& kelV . l’k ™ +op a.s.
for which X Uk e Sg (r,0) , k€ N . _In this case

@_‘SYU ‘_{Lx k . kel .|
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4.2 Approximation in probability for predictable compensators of
special semimartingale.

The following result forms the essential part of Theorem 1 .

Proposition 2, Let X _be a special semimartingale such that
=eeatall Se =5
sup [X(t)] <c , sup Var X (1) <c for some constant ¢ >0 .
Tﬁen the two conditions given below are equivalent :

@ x> ¥ in o(R)
o)
€k the property (T) is satisfied.

Proof. (ii) =>» (i) First let us observe that it is very conve-
nient to have the following property Q‘*) instead of (T)

* for every predictable ‘3: stopping time S there
Q‘ ) exists a sequence {S‘n} nepnN ©f predictable
¥ n Stopping times such that

lim P[ffcs);tgn, Agl=0 .

Ny
The equivalence (7)< *) is evident if the stopping time
satisfies pPLGe T, 1 =0 , né&lN . To obtain the general

case we use the following lemma.

Lemma 6. Let us supposﬁe5 that the predictable (3: stopping time

© is of the form k2= 1 s, I (=5 on _the set Ag
for_some sequence of positive constants {sk'} kelN
Then for the stopping time S the conditions CT) and (T*)

hold.

Proof of lemma. Let us note that without loss of generality we
may assume that the stopping time Q is of the form

(60) G - I% 5 1@G=5) +1+w] 1(Grs, . kEN).

We begin with a simpler case where ©Q satisfies

(5.1) @ = k=§1 skIG=sk) +t+oo'jI(G';lsk,1$k<j>'

for some fixed je N . observe that for every k , 1<gKk<g
there exists a sequence ﬁskn']‘ nenN sknGTn, Skn < S » skn’l\ Sk
and a sequence of positive constants flcn’i nenN * Sn ™ +og

for which
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I('Ank) L\TI(E(-I (-6= sk> l 3’(skn))>’1 - cn-l) W I (6 = Sk)

for every k , 1 £k £j . Finally if we define the sequence 5_«5}%
by the equalities

S):e(sp on the set Anq K -1
4 * L)
§n Al gn(sk) on the set ALk \ ~, Ani
for every k , Zjéks,j
+ 00 on the set ( U A )c
{. } kK= 1 nk
then the condition 7%) is fulfilled by the stopping time ©
defined by (61) . If we put ‘in(sk) instead of :é(sk) we
get a sequence %Gn} of 3;5" stopping times satisfying
the condition (T) .
Now, let us suppose that 6 is of the form (60) . We denote
for every j &€ N  the stopping time of the form (61) by 6J .
Therefore for each je& [N we can define the sequence 52} ~of
pred:i..ctable '}o , Stopping times for which iim :@3);‘ S}]\'
Gl +o0 :l: O . Since lim P EGJ £ 6 ]:—- 0 we can choose
i 00
a sufficiently slowly increasiné—)sequence {jn} PR T + ©
such that :
(62) lim P [ gf(@) £ 8n . G<&w ] = 0 .
n-o0
Analogously we show that the condition (T) is satisfied for the
stopping time @ , too.

S0 we can assume that the condition LT"') holds .

: : i
Now, we will consider the sequence of processes {Y -§ielN

defined by Yi(t)= —Z_ AX (Gik>1 (t > Gik> , teRY , ieN

where the array {Gik of predictable ¥ stopping time is defined

as follows :
(63) 6C9=0 , 6 = inf [t > ikt ,IAQ'@)[7£1]

i,k E-.\N for some sequence of positive constants {ii} ielN ?
o
e, Vo . Pp(laxm|= & . teRt)=0 , ieN.

In the next step of the proof we will show that

(64) :uépql Y/i%(t) ] ﬁl(gn(O) | > o . aeR".
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First let us note that by Proposition 1.49 from ['8]
Y@ - kil e(ax (@) | F(@™P1 (x » 65D
teR* n/&&l}. We denot/gk\/\(ik(t) éf4x§ik)1% t >,Gik) i,kelN.

i i i T
Then Y7 = Y™ and vl = Y
fn* = fn K= 1
Now let us assume that the following convergence holds :

(65)  sup | Y/i?g:m - @‘(gn(t)))? 0o . geR*, i,keM.

tsq
Hence for every je[N

suz l kZ @Y/({.)- 2 ik LY (_t))l-—-) o, qeR‘f
t £&q =
Since max [i : G« q]4+co we have 1lim sup Var(z Ylkfn7(q>

j%0 n
=0 and lim Var( 2', lk)(q) = 0 . Then it follows by Corollary 3

that (ps) J1mp11esk J(64)
Therefore without loss of generality we will consider a process
Y of the form Y(t)= AX(G) 13 6) ., t &Rt for some pre-

dictable 35 stoppini\)t:.me 6 . Itis easy to verify that
r (t

Y‘j’n(t) = 2 ax(6) I(\f*@) i)
)
: %@:) = 2 E(AXCG) I(S*CG> = tnk) |3:(tn k=~ 1)>
telRY, nelN .

In the next considerations the notations from the proof of
Proposition 1 are used.

Let us fix Yy*>0 and a subsequence {kn} nelN - We de-

note t)= {'AX(G'C.)I (t 36 , teRY . Smce for every
nelN [g,,@jlﬁé}, » Gpre ] fg G) £S5, . oa]CEg"‘(G)fS

QL J by Corollary 3 d (T* we hav
v | %%, F*§al) - e(Av” EF D (e » § ))-—-> 0
q &lQ* It is clear that E(A"Sk(g)p:% (S;( )) E(A ¥ Sk (5' )B(q ))

Now, let us observe that by the J.mplicat:.on < + 00

g;ﬂ < Skn(G) and the definition of GK‘
Lin PLG, * © f Ty

Hence the convergences : AYb.oskn(S'kn) -? AX(.GO*> on the set
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[G‘<.+oo__l ,llnP[gk <q , %-—-Hﬁ] =0 qeRwae can

assume the convergence k -—-—> X ) imply that

sop | & (aveep () plECH MWG28,) - cax@p (o % F(8)|

+
——> o ’ QGR .
(4

Since G K’ et 6‘8. , E(ax(Gy1 (6"4«»)] S(G'kn. lf‘))? EQAX(Syr (thm)
l}'(@-)) . Hence
sup | ‘\f’-\g/ (t) - E (AX(.GG-)H’(G-))I Qt > S’fn(q)))? 0

t<q
q ¢ Rt . Therefore there ex:.sts a sequence U‘nz new ¢ I v o
and one subsequence s{ {ﬂ Sc{k } such that
/\/
Y ° - Y 4 o , t.
ve | TR, (- Vg @l 0 . ack
. ! - ) +
Since Var (Y h‘ k, Y 5Ikn) (a) --g)-) o , gelR' it

follows by Corollary 3  that
sup er-?{@)-Y(gl (t))l-—-—) 0 , qelRt

Moreover. we could prove that for everi subsequence C {n
there exists a further subsequence & Cim % for wh:.ch the
above convergence holds. Therefore the prBof of (64) is complete.

Let {Zi be a new sequence of processes given by the

equalities Z (t)= X() - v (t) , teR?, i&N . By using the
arguments of Meyer [:15]

E sup l zi g (t) q(gﬂ(t)))z L 4E 2 (_Ek-iAk A‘:{{)z

nGi\2 noi ot
4E 2, z < 4 E max |ApZ*| var 2*(q)
4 k = 1(Ak = kér'an,)Ak ]
1
nzi 2 ]
< {kim:’E!Ak , }
Since lim lim E max ]Akz l 2 .0 we have
iwon> kgr, (€)) ~
(66) lim lim P [sup | Z* “ ¥ - (x)- z‘(yn(:))]zg,] .
190 N30 t £q
for every £> 0 and every qecRt. It is easy to show that
(66) and (64)  imply

sup lx-s ® - X(Yn(t))\-——} o , ge Rt -
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Finally (10) gives (i) .

@) => (ii) First assume that @ = G ik i.e G is of the
form given by (63) . Then by the arguments from the proof of Pro-
position 1 the condition T*‘) is fulfilled . Now, let remark that
we can assume that

o oo
G- z; kZ 6 1(6= 0%)+ fr} 1(6= € 1keW).

We begin with the simpler case where & satisfies

) S - 2 61(6-6, 6y 6% 1gkg11)
(67 =
+ o} (er 6t 12145)

and each Gl is of the form Gl = Gik . Observe that by
Lemma 3 there exists a sequence icn}neyN , cn'hgg for which

T(e@UpIFLERED-D >a -0t )= 1))
where Ay if [G= 6‘1 ) G'l # Gk 1<k<1-1] for every 1
1£1¢3j . Since for each s} the condition Cl‘") is fulfilled
there exists a sequence §53;} ncly ©°f predictable }-fn stopping
times satisfying (57) . As a consequence

) 1) Hx(e ) F,ED > 1- ) = 16y -

Therefore if we take g}"*ﬁlgél (Anl) + i+ oa] I(Anl °) .
18143 and Sn = min_o.’ then it i® easy to see that
the condition (T") is s%t‘i%fiéd for the stopping time & of the
form (67) .

Finally let us observe that we can extend this fact to every
predictable F stopping time () (just as in Lemma 6) o
since (T)<&=>@*) the proof is complete . |

Let us note that in general i.e. if we do not assume that
the property (T) is satisfied then (i) 4is not true , Using
" the method ef Laplacians " we can obtain only that
W(t) — (;(J(t) , weakly in )I? , t € cont 1'e .

4.3 Necessity of the condition (T) .

Theorem 1 says that the semimartingale X belongs to Sq (r,0
iff X satisfies the condition (T) . The above result seems
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to be not true in the general case. But we have .

Proposition 3. Let X be a process T tangent to PII .
Then the condition (T) is fulfilled.

Proof., Let {81} i6 N be a sequence of constants, Si N

such that Py (lfo. 1 x] )) 0, i€N . The family
g i
{ ((0 t}({xl 2 % )}iem‘ is a predictable process for which
39)
=9, :

(69) %fkq I(€i<lAkxl)—_‘> ))g@-'] X([x]}i’,i» . 16V,
Let s be a sequence of positlve constants , XL JI o,
Png({.t xﬂx[}ﬁ )) rk . tGR‘) i, k&WN . If we
denote

%=0 , &% < inf [t > Gi.k-2 .))g(it'j*(lxl}ii)»ﬁ ]

then repeating the arguments from the proof of Proposition 2
we obtain that the property (T) holds for every predictable
¥ stopping time of the form
o9 SO
G -= 2 G*i1(e-6%):lwjr (65 6™ 1,keN).
k=11i=1

And as a consequence the property (T) is fulfilled also in the
general case. M

4.4 The class B, (1,0) .

Exactly in the same way as in the proof of Proposition 1 we
obtain that the bounded process B belongs to B(T,D) iff
one of the following two conditions is satisfied

0) (B-gn, %)_{a; (8,8) in o(@®®) .
Bop” in O(R)
€£)) B fn _50-; B D

Now we collect fundamental properties of the class

Bloc&T’D) *
Proposition 4.(@) Bloc(T,D) is a vector space.
i) 1f B €8, (T,0) _and B is a local martingale
then B=0.
(1ii)If B € Bloc(g,o) then B € s (7,0) and has ﬁ triplet

B ,65,)’9 for which : Bg = 8" ,

of characteristics
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52 =0 , and ))g is equal to the jump-measure N associated

to tge process B .

Proof. It is clear that in the proof of (i) , (ii) and also
(;ii) (py Corollary 4 ) it suffices to consider B(T,D) instead of
Bloc(I,D).In this case (i) and (ii) are evident .

Therefore we give a proof of @'.ii) only . Let BeBQ‘,D) .
We will show that the conditions (§7) - (}9) in Proposition 1
are satisfied.Since the process B satisfies the condition (T)
it is obvious that B - B fulfills the condition (T) too.

By Proposition 2
fn fn fn 7 '
By Lemma 4 and Corollary 3

~ . ~
(72) (Bogn)h {(Bofn)h - E.\f:)+ g?n/ —= (B -8)+B = B
h

i.e. the condition (37) is satisfied with 8" - 8 .
By the arguments used previously , (72) and Davis-Burkholder-Gundy

inequality imply that [(B-gn)h -(Ban)h] (a) —339 o , qeRT,
Finally by Corollary 3
T~
h h
[@g)" (o) ]G)=> 0 . aeR' .
i.e. the condition (38) follows with Gg =0 .

h

Similarly by Proposition 2 , Lemma 5 and Corollary 3

/\_/
Q@)@ —> [rane L fe o
R ¥ R (

where N is the jump-measure associated to the process B .
Therefore the condition (}9) is satisfied too . Hence Be SgCT,D).

5. Proofs of theorems.

5.1 Proof of Theorem 1.

Let us suppose that X is a semimartingale for which the
condition (T) holds. By Proposition 1 it is sufficient to check
that the set of conditions (37) - (39) is fulfilled. The following
proposition is very useful in the proof of (37) - (39) .

Proposition 5. Let X be an 37adapted process and let c
be some constant c> 0 . The following implications are true :

P
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) Af sup th(t” <c  _then_

l . _ /.\'/h +

sup | X S(t) Q(sn (_t)]—-> 0 .qe R",

t<q

@i) if (37) holds and  sup(x*(tl< c , sup [Mg-_kt)<c
t

\(where Mg o X" . Bg ) tthen
I - —~—"
h
‘;‘lqu [Mg]"rnit) -l_(x"fn)h "Q"Yr&h]@)] 5 ° . aeR?,
(11i) if  f6C .  and Z f(Ax(t)) <c then

su x) N (dx) = - X ° X .
t;q & @))] ) yn (t) f()QJ frp@ )(t) ? o, qep

Proof. The conditions (i) and (iii) are casy consequences of
Corollary 3 and, Lemma 4 and 5 respectively. In order to prove
(ii) first let us observe that

—~— " T
Ty, - D] - [ g

On other hand we have the following estimation :

vor (g - ’T] ) @6

:
< oo " - n@l e [y AP - e

= 8cVar(Xh° Q(of ) )(q) + 8cVar‘Q( ° Q<°§n)h )@

Thus twofold application of Corollary 3 enables us to test (di)
by simply exaﬁing if

M
O~
@) sue |[6" - gkl - [Xgn - O Jol=> o . aet

It is clear that for every n&IN and t & R?
r (t

Y, )
[ - 1O [ - Prde) - 2R - i)’

r _Lt‘)
-2 n n,h - n n_h n-.h n
k%Ek'l X = Eing AiX )AkBg - Ek-1A:Bg )

Since BgeB (7,0 the first term converges to O in probabili

ty. Now, let us note that second sum is of the form [Mn,Nn](t) R

where M, N are two local martingales given by the formulas
h h N\

n d¢ oh M h h : X -
N -j'BgoSn - Bg°?n . M 2] X fn - X Y" . By the Kunita -Wata
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nabe inequality

1
var [M",N"]1(q) 4{[»1"]@)[:«"](«;)} 3 , qe RT .
Since by the arguments used previously [_N"_] (q) ——=>» O and
[Mn] _7? [M;] in DCR) where sup [Mg](t) < c it
‘ t
followspy Corollary 3 that (73) and (i) are satisfied. Il

Let {’vk} k§N be a localizing sequence ‘Ck ™ + o0

for which sup!X (t))sk . k6N . By Proposition 2
ts /—\./
(74) XYk °§n ? x"’k'h = Bh"vk . ke .

Therefore by (i) we have
/\/
(_Xttkogrph —s 8Ty , keN .
‘6)

Hence there exists a sufficiently slowly increasing sequence {kn}
kp, A+ such that

/-".D,\__/
k h h
X ne ——> B .
G —
Finally by _C&?rollary 3 the condition (37) is fulfilled. By exactly
ents,
the sang‘ﬂ%he conditions L38),(39) are satisfied,too . To obtain

the converse implication we use Proposition 3. |

Proof of Corollary 1. First let us note that if a predictable

F stopping time © is of the form (_18) then the condition
(T) follows by Lemma 6 . Next let Q be of the form (19).
Then without loss of generality we may assume that @ < g for

some constant q > O . Let us put &n = max((tn ke = thk ) e
sr (@

neWN . Since for en Lc n (’U +¢c) is" an }'orn stopping

time the convergence €5 v 0 implies the condition (T) . N

5.2 Proof of Theorem 2.

We start with the proof of property (iii) . Let us assume that
X & Sg(T,D) . Therefore by Proposition 1 the condition (37) is
fulfill;led. Let {’Ck} kev Pe a localizing sequence  for which
sue‘lkBth)ISk . kelN. 8y (71) Bg"vk e 8(1,0) .
ts Now, let us consider the process X - B . Repeating the
arguments from Jacod [:8] we can prove that X - B is a semi~
martingale with the triple ofjpredictable characteristics (_Bh, 6'2, )’h),
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By Proposition 3 and Proposition 4 the processes X , Bh
satisfz the condition (T) . As a consequence the semimartingale
X -B fulfills the condition (T) , too. Hence Theorem 1 implies
that X - Bg € sg(T,D)
Let us suppose that X is a semimartingale T tangent to PII
and the process B betongs to  B,,.(, D) . We show that X + B
D) . s

& Sg(_T, ) Let {G ? kel be a sequence of 3"' stopping times

such that :

6% =0 , 6F=unf [t >EkT, max(|ax ), [aBCYP4"1] .
We will consider new processes defined as follows :
. k . " Z k
-Sk';.‘\x@) S TS Bi‘)'dsf@@):az=3“31-

Let us observe that we have the following equality

h h h
5 (x+8)" = (x, +8,) " + (xl + Blf),
= x,+8, +(x,+8)" .
Since the processes Xz ’ B: ) (} + B )h have locally integrable

variation and satisfy the condition (T) by Proposition 2 and
/\/ /_Ka
®1°Pn

(£¥ + Bl) gn‘)h (} + flz_//" It is easy to see that :

(} otn) --> X2 and B, o B, . Therefore by

(ZS) Propositlon 5 (1) F
/—-__,/’
(Q(+B)°gn> -—;‘39 /)(\2’ + 82 +Q(1+81)h

and the condition (37 ) is fulfilled. The remaining conditions

(;8) and (;9) are also corollaries from Proposition 2 , 3
and 5 (i) ,(@ii) . Hence the proof of (iii) and (i) is
complete.

The property (i) is an easy consequence of (d4i) , Proposition

4 and the simple remark that the set of semimartingales T tangent
to PII forms a vector space. Let us also observe that the property
(iv) is clear by Proposition 2 and @o) . |

Proof of Corollary 2. Let us suppose that X is a process with
conditionally independent increments given 6 algebra G . By the
arguments from Jacod [B] there exists a system of G measurable
characteristics LBg, 6‘2,'))9) satisfying the properties (22)

(24) for which X - Bg is a semimartingale. Since ¢ < ¥F(o
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and the predictable stopping times {Bk} ke W exhausting the pre-
dictable jumps of X are G measurable so for all k,n & W
gn@’k) is n stopping time. Therefore by Theorem 1 X = B9
Y . h .
I3 Sg(T,D) . Similarly by Theorem 2 (iv) Bg € BlocQ‘,D) . Using
Theorem 2 (i) the proof is complete. W

5.3 Proof of Theorem 3.

Let X be a process T tangent to PII  with random
measure ._h_.x . First we define the family of characteristic fun-
ctions of &'g . We take

§;‘@,t) 3 é exp it x ._n_,;‘(t,dx) PeR teRr?.

Proposition 6. Let X eSg(T,D) . Then for each #elR $*
is a predictable process such that the process Yo defined

by formula :
Ye(t] ;H: exp i9x(t)/ E:@,t) telRt.

is _a local martingale on the stochastic interval [[,0, RJ[
where Ry = inf |t :]@;(ﬂ',t)l= o].
Proof., Let Z = X - Bg . Then

Y glt)= (exp i%z(r) / @:(&,t) > exp C—iﬁ‘Bg(t))
and a simple computation based on Theorem 2 (iii) shows that
X h .
Eg@"t) exp(—iGBg )= 4 g@-,t) .

Since the local martingale property for {exp i0z(y /ig@"t)}telﬂ*
is well known the proof is finished. @l
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