HAYA KASPI BERNARD MAISONNEUVE Predictable local times and exit systems

Séminaire de probabilités (Strasbourg), tome 20 (1986), p. 95-100 http://www.numdam.org/item?id=SPS_1986_20_95_0

© Springer-Verlag, Berlin Heidelberg New York, 1986, tous droits réservés.

L'accès aux archives du séminaire de probabilités (Strasbourg) (http://portail. mathdoc.fr/SemProba/) implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

\mathcal{N} umdam

Article numérisé dans le cadre du programme Numérisation de documents anciens mathématiques http://www.numdam.org/

PREDICTABLE LOCAL TIMES AND EXIT SYSTEMS

Haya Kaspi Department of Industrial Engineering Technion, Haifa 32000 ISRAEL Bernard Maisonneuve I. M. S. S. 47-X 38040 Grenoble Cedex FRANCE

1. INTRODUCTION.

Let $X = (\Omega, \mathcal{F}, \mathcal{F}_t, X_t, \theta_t, P^X)$ be the canonical realization of a Hunt semi-group (P_t) on a state space (E, \mathcal{E}) and let M be the closure of the random set $\{t > 0 : X_t \in B\}$, where B is in \mathcal{E} . We set $R = \inf\{t > 0 : t \in M\} = \inf\{t > 0 : X_t \in B\}$. If M has no isolated point a.s., the predictable additive functional with 1-potential $P^*(e^{-R})$ is a local time of M (the set of its increase points is M a.s. by [5], p.66). This restriction on M is essential, as proved by the following example of Azéma. Consider a process which stays at 0 for an exponential time and then jumps to 1 and moves to the right with speed 1. For $B = \{1\}$, R is totally inaccessible and $M = \{R\}$ cannot have a predictable local time.

One can always define an optional local time for M, as recalled in section 2. One unpleasant feature of such a local time is that it may jump at times t where $X_t \notin \overline{B}$, so that the associated time changed process is not necessarily \overline{B} valued. Nevertheless, one can construct a local time which avoids this unpleasant feature by using the methods of [4] (see Remark 2). Here we shall give a direct construction by taking the (\mathcal{F}_{D_t}) dual predictable projection of the process Λ_t of §2, where as usual

 $\mathbf{D}_{\!_{t}}$ = $\inf\{\mathbf{s} \! > \! \mathbf{t} \; : \; \mathbf{s} \! \in \! \mathbf{M} \}$.

We shall also prove the existence of a related (\mathcal{F}_{D_t}) predictable exit system in full generality, whereas the existence of an (\mathcal{F}_t) predictable exit system requires some special assumptions as noted by Getoor and Sharpe [2] (see V of [8] for sufficient conditions). From this one can deduce conditioning formulae like in the optional case ([8]).

2. THE $(\mathcal{F}_{D_{\star}})$ PREDICTABLE LOCAL TIME.

Let X be like previously and let M be an optional random closed set, homogeneous in $(0,\infty)$ and such that $M = \overline{M \setminus \{0\}}$. The following notations are taken from [6]:

 $\begin{aligned} & R = \inf\{s > 0 : s \in M\} \quad (\inf \phi = +\infty) , \\ & R_t = R \circ \theta_t , \quad D_t = t + R_t , \quad \hat{\mathcal{R}}_t = \mathcal{P}_{D_t} , \\ & F = \{x \in E : P^X \{R = 0\} = 1\} , \\ & G = \{t > 0 : R_{t-} = 0, R_t > 0\} , \\ & G^r = \{t \in G : X_t \in F\} , \\ & G^i = \{t \in G : X_t \notin F\} . \end{aligned}$

For every homogeneous subset Γ of G we shall set

$$\Lambda_t^{\Gamma} = \sum_{\substack{\mathbf{s} \in \Gamma \\ \mathbf{s} \leq t}} (1 - e^{-\mathbf{R}} \mathbf{s}) , \qquad \mathbf{L}_t^{\Gamma} = \sum_{\substack{\mathbf{s} \in \Gamma \\ \mathbf{s} \leq t}} \mathbf{P}^{\mathbf{X}} \mathbf{s} (1 - e^{-\mathbf{R}}) .$$

The process (Λ_t) defined by

$$\Lambda_t = \int_0^t {}^1_M(s) ds + \Lambda_t^G , \quad t \ge 0 ,$$

is an $(\hat{\mathfrak{F}}_t)$ adapted additive functional with support (or set of increase) M. Its (\mathfrak{F}_t) dual <u>optional</u> projection (L_t^0) is a <u>local time</u> for M (i.e. an (\mathfrak{F}_t) adapted additive functional with support M). Its jump part is (L_t^{Gi}) , as it follows easily from [6] for example. But this jump part is too big with respect to the discussion of section 1.

THEOREM 1. 1) The set I of isolated points of M $(I \subset G)$ is (\mathcal{F}_t) optional and $(\hat{\mathfrak{F}}_t)$ predictable. Each (\mathfrak{F}_t) stopping time T in $I \cup \{\infty\}$ is $(\hat{\mathfrak{F}}_t)$ predictable and satisfies $\hat{\mathfrak{F}}_{T^-} = \mathfrak{F}_T$. 2) The set $G^{-i} = \{t \in G \setminus I : X_t \notin F\}$ is (\mathcal{F}_t) predictable. For each (\mathfrak{F}_t) predictable stopping time T in $G^{-i} \cup \{\infty\}$ one has $\hat{\mathfrak{F}}_{T^-} = \mathfrak{F}_T$.

3) <u>The set</u> $G^{-r} = \{t \in G \setminus I : X_{t-} \in F\}$ is (a countable union of graphs of) $(\hat{\mathcal{F}}_t)$ totally inaccessible (stopping times).

THEOREM 2. There exists an (\mathcal{F}_t) adapted local time (L_t) for M which is, under <u>each measure</u> P^{μ} , the $(\hat{\mathcal{F}}_t)$ dual predictable projection of (Λ_t) . Its jump part is $L^d = L^{I \cup G^{-1}}$.

It will be convenient in the sequel to write simply o.,p.,s.t.,d.p. for optional, predictable, stopping time(s), dual projection(s).

<u>Remark 1.</u> We know that T \notin G^r a.s. for each s.t. T. Hence $I \cup G^{-i} \subset G^{i}$

a.s. by Theorem 1, and L^d is less than the jump part of L^0 . When M is related to a Borel set B like in § 1, we have $X_t \in \overline{B}$ for $t \in I \cup G^{-i}$ a.s., since $X_T = X_{T-} \in \overline{B}$ a.s. on $\{T < \infty\}$ for each p.s.t. T in $G^{-i} \cup \{\infty\}$. Therefore our local time L is really local.

<u>Proof.</u> (a) The set I is (\mathfrak{F}_t) optional (see (3.3) of [7]) and can be written as a countable union of graphs of (\mathfrak{F}_t) s.t. . Let T be one of these s.t. and let $\mathbf{g}_T = \sup\{s < T : s \in \mathbb{M}\}$ (sup $\phi = 0$). By (2.4) of [7], \mathbf{g}_T is an $(\hat{\mathfrak{F}}_t)$ s.t. . Consider $\mathbf{T}_n = \inf\{t \ge \mathbf{g}_T : \mathbf{R}_t \le \frac{1}{n}\}$ for $n \in \mathbb{N}$. Since $\mathbf{T}_n < \mathbf{T}$ on $\{T < \infty\}$ and $\mathbf{T}_n \dagger \mathbf{T}$, T is $(\hat{\mathfrak{F}}_t)$ predictable (it is announced by the sequence $(\mathbf{T}_n \wedge n)$). In addition $\hat{\mathfrak{F}}_{T-} = \Pr_n \hat{\mathfrak{F}}_{T_n \wedge n} = \Pr_n \hat{\mathfrak{F}}_{T_n} = \Pr_n \mathfrak{F}_{D_{T_n}}$ and $\mathcal{D}_{T_n} = \mathbf{T}$ on $\{T < \infty\}$, so that $\hat{\mathfrak{F}}_{T-} \cap \{T < \infty\} = \mathfrak{F}_T \cap \{T < \infty\}$ and $\hat{\mathfrak{F}}_{T-} = \mathfrak{F}_T$. The first part of Theorem 1 is established.

(b) Let T be an $(\hat{\mathfrak{F}}_t)$ p.s.t. which is a left accumulation point of M on $\{T < \infty\}$. If T is announced by a sequence (T_n) , it is also announced by the sequence (D_{T_n}) of (F_t) s.t., so that T is (\mathfrak{F}_t) predictable and satisfies $\hat{\mathfrak{F}}_{T-} = \bigvee_n \hat{\mathfrak{F}}_{T_n} = \bigvee_n \mathfrak{F}_{D_{T_n}} = \mathfrak{F}_{T-} = \mathfrak{F}_T$ the last equality following from the quasi-left continuity of (\mathfrak{F}_t) .

(c) Consider the (\mathcal{F}_t) p. part $G^{i,p}$ and the (\mathcal{F}_t) totally inaccessible part $G^{i,i}$ of the (\mathcal{F}_t) o. set $G^i \setminus I$:

$$\begin{split} \mathbf{G}^{i,p} &= \{ t \in \mathbf{G}^{i} \backslash \mathbf{I} : X_{t-} = X_{t} \} , \\ \mathbf{G}^{i,i} &= \{ t \in \mathbf{G}^{i} \backslash \mathbf{I} : X_{t-} \neq X_{t} \} . \end{split}$$

It follows from b) that $\hat{\mathscr{F}}_{T-} = \mathscr{F}_{T}$ for each (\mathscr{F}_{t}) p.s.t. in $G^{i,p} \cup \{\infty\}$ and that $G^{i,i}$ is $(\hat{\mathscr{F}}_{t})$ totally inaccessible.

(d) It follows from (a), (c) that L^{I} and $L^{G^{i,p}}$ are the $(\hat{\mathfrak{F}}_{t})$ d.p.p. of Λ^{I} and $\Lambda^{G^{i,p}}$ under each measure P^{μ} . Now consider under P^{μ} , the $(\hat{\mathfrak{F}}_{t})$ d.p.p. of $\Lambda^{G^{r}\cup G^{i,i}}$: it is continuous since G^{r} and $G^{i,i}$ are $(\hat{\mathfrak{F}}_{t})$ totally inaccessible (for G^{r} see (3.2) of [7]) and carried by M (recall that $M \setminus \{0\} = \{t > 0 : R_{t-} = 0\}$ is $(\hat{\mathfrak{F}}_{t})$ p.), hence it is (\mathfrak{F}_{t}) adapted ([5], p. 56 or [9], p. 229) and thus it is P^{μ} -indistinguishable from the continuous additive functional (K_{t}) which is the (\mathfrak{F}_{t}) d.p.p. of $\Lambda^{G^{r}\cup G^{i,i}}$. Therefore the (\mathfrak{F}_{t}) adapted additive functional

$$\mathbf{L}_{t} = \int_{0}^{t} \mathbf{I}_{M}(s) ds + \mathbf{K}_{t} + \mathbf{L}_{t}^{I \cup G^{i}, I}$$

is the $(\hat{\mathfrak{F}}_t)$ d.p.p. of (Λ_t) under P^{μ} . Since the support of Λ is the $(\hat{\mathfrak{F}}_t)$ p. set M, the support of L is M a.s. The proof of both theorems will be complete if we

show that $G^{\mathbf{r}} \cup G^{\mathbf{i}, \mathbf{i}} = G^{-\mathbf{r}}$ a.s. and $G^{\mathbf{i}, \mathbf{p}} = G^{-\mathbf{i}}$ a.s. But the continuous part $\mathbf{L}^{\mathbf{c}}$ of \mathbf{L} is carried by \mathbf{F} since $\{t \in \mathbf{M} : X_t \notin \mathbf{F}\}$ is a.s. countable. Therefore $X_{t-} \in \mathbf{F}$ for $t \in G^{\mathbf{r}} \cup G^{\mathbf{i}, \mathbf{i}}$ a.s.; on the other hand $X_{t-} = X_t \notin \mathbf{F}$ for $t \in G^{\mathbf{i}, \mathbf{p}}$ a.s.

<u>Remark 2</u>. We indicate here how to construct a local time by using the methods of [4]. Consider the local time of equilibrium of order 1 (\overline{L}_t) (see [5]) for the perfect kernel of M, and define $\overline{G}^i = \{t \in G, \Delta \overline{L}_t > 0 \text{ or } t \in \overline{I}^g\}$, where \overline{I}^g is the left closure of I. Then $L' = \overline{L}^c + L^{\overline{G}^i}$ is a local time such that $\{t : t \notin I, \Delta L'_t > 0\}$ is (\mathcal{F}_t) predictable and thus is good with respect to the discussion of §1. One can even show that L^c is absolutely continuous with respect to \overline{L}^c , and that $I \cup \overline{G}^{-i}$ and \overline{G}^i are indistinguishable.

3. THE $(\mathcal{F}_{D_{L}})$ PREDICTABLE EXIT SYSTEM.

In this section we shall assume that R is \mathfrak{F}^* measurable, where \mathfrak{F}^* is the universal completion of $\mathfrak{F}^0 = \sigma(X_t, t \in \mathbb{R}_+)$. The universal completion of \mathcal{E} will be denoted by \mathcal{E}^* .

THEOREM 3. There exists an \mathcal{E}^* measurable positive function ℓ on E, carried by F, and a kernel $*^P$ from (E, \mathcal{E}^*) to (Ω, \mathcal{F}^*) such that (L is defined as in Theorem 2)

(i)
$$\int_{0}^{t} \mathbf{1}_{\mathbf{M}}(\mathbf{s}) d\mathbf{s} = \int_{0}^{t} \boldsymbol{\ell} \circ \mathbf{X}_{\mathbf{s}} d\mathbf{L}_{\mathbf{s}} ,$$

(ii)
$$\mathbf{P} \cdot \sum_{\mathbf{s} \in \mathbf{G}} \mathbf{Z}_{\mathbf{s}} \mathbf{f} \circ \boldsymbol{\theta}_{\mathbf{s}} = \mathbf{P} \cdot \int_{0}^{\infty} \mathbf{Z}_{\mathbf{s}} * \mathbf{P}^{\mathbf{X}_{\mathbf{s}}}(\mathbf{f}) d\mathbf{L}_{\mathbf{s}} ,$$

for all positive $(\hat{\mathfrak{F}}_{t})$ predictable Z and \mathfrak{F}^{*} measurable f,

(iii)
$$\ell + {}_{*}\mathbf{P}^{\cdot}(1-e^{-\mathbf{R}}) \equiv 1 \quad \underline{\text{on}} \quad \mathbf{E} \quad \underline{\text{and}}$$

$${}_{*}\mathbf{P}^{\cdot} \equiv \mathbf{P}^{\cdot}/\mathbf{P}^{\cdot}(1-e^{-\mathbf{R}}) \quad \underline{\text{on}} \quad \mathbf{E} \setminus \mathbf{F} .$$

The system (L, $_*P$) will be called the (\mathcal{F}_{D_t}) <u>predictable "exit system"</u> (according to the terminology of [6]). Note that in (ii) X_s can be replaced by Y_{s-} , where $Y_s = X_{D_s}$.

<u>Proof.</u> - Let ${}_{*}P'$ be defined on $E \setminus F$ as in (iii). The equality (ii) is immediate with $I \cup G^{-i}$ and L^{d} instead of G and L, due to Theorem 1. By the arguments of [6] we then establish the existence of a kernel N from (E, \mathcal{E}^*) into (Ω, \mathcal{F}^*) such

that $N \{R=0\} = 0$ and

$$\mathbf{P} \cdot \sum_{\mathbf{s} \in \mathbf{G}^{-\mathbf{r}}} \mathbf{Z}_{\mathbf{s}}((1 - \mathbf{e}^{-\mathbf{R}})\mathbf{f}) \circ \mathbf{\theta}_{\mathbf{s}} = \mathbf{P} \cdot \int_{0}^{\infty} \mathbf{Z}_{\mathbf{s}} \mathbf{N}^{\mathbf{X}} \mathbf{s}(\mathbf{f}) d\mathbf{L}_{\mathbf{s}}^{\mathbf{c}}$$

for all positive (\mathfrak{F}_t) p.Z. This formula extends to positive (\mathfrak{F}_t) p.Z by the argument of (d) of Section 2. If ℓ is a Motoo density of $(\int_0^t \mathbf{1}_M(s)ds)$ relative to (\mathbf{L}_t^c) , the kernel N can be modified in such a way that $\ell + N \cdot (1) = 1$. We can also assume that ℓ is carried by F. Setting ${}_{*}P^{\cdot}(f) = N^{\cdot}(\frac{f}{1-e^{-R}})$ on F, we get (ii) with G^{-r} and \mathbf{L}^c instead of G and L and the proof is complete.

From this result one can extend some results of [8] and [3] (based on the (\mathcal{F}_t) p. exit system). For analogous results without duality see Boutabia's thesis [1].

REFERENCES.

- BOUTABIA, H., "Sur les lois conditionnelles des excursions d'un processus de Markov". Thèse de 3e cycle, Grenoble, 1985.
- [2] GETOOR, R.K., SHARPE, M.J., Last exit decompositions and distributions. Indiana Univ., Math. J., 23, 377-404 (1973).
- [3] GETOOR, R.K., SHARPE, M.J., Excursions of dual processes. Adv. Math., 45 No. 3, 259-309 (1982).
- [4] KASPI, H., Excursions of Markov processes : an approach via Markov additive processes.
 Z. Wahrsch. verw. Geb. 64, 251-268 (1983).
- [5] MAISONNEUVE, B., Systèmes Régénératifs. Astérisque 15 (Soc. Math. France) 1974.
- [6] MAISONNEUVE, B., Exit Systems. Ann. Prob. 3, 399-411 (1975).
- [7] MAISONNEUVE, B., Entrance-Exit results for semi-regenerative processes.
 Z. Wahrsch. verw. Geb. 32, 81-94 (1975).
- [8] MAISONNEUVE, B., On the structure of certain excursions of a Markov process.
 Z. Wahrsch. verw. Geb. 47, 61-67 (1979).
- [9] MAISONNEUVE, B., MEYER, P.A., Ensembles aléatoires markoviens homogènes IV. Séminaire de Probabilités VIII. Lecture Notes 381. Springer 1974.

<u>Note</u>. There is an error in Theorem V.3 of p. 64 of [5]. The functionnal (A_t) should be assumed $(\hat{\pi}_t)$ p. and the condition $H_U^{\lambda} \Phi(y) < \Phi(y)$ should be required for each $(\hat{\pi}_t)$ s.t. U such that $P^{y}\{U>0\} > 0$. For the proof of the converse part (1.3 of p. 65) one considers the predictable s.t. $T = S_{\{A_S>0\}}$ and a sequence (T_n) that announces T. One has $A_{T_n \wedge S} \le A_{S^-} = 0$. Hence $H_{T_n \wedge S}^{\lambda} \Phi(y) = \Phi(y)$ by (13) and $T_n \wedge S = 0 P^y$ -a.s. by assumption. Since $T_n \wedge S + T \wedge S = S$, we have $S = 0 P^y$ -a.s. and the proof is complete. Note also that Definition V.7, should be modified accordingly.