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FUNCTIONALS ASSOCIATED WITH SELF-INTERSECTIONS

OF THE PLANAR BROWNIAN NOTION1

E.B.Dynkin

Department of Mathematics,Cornell University,

Ithaca,N.Y.14853,U.S.A.

ABSTRACT

For every k=i,2,3,...and for a wide class of measures A,we

construct a one-parameter fami ly of functionals of the

planar Brownian motion ) related to its self-intersections of

multiplicity k during the time interval [0,u]. We investigate various

families of functionals which converge to and we evaluate the

moment functions 
i 
(~1’u) "’~k 

n 

l.MAIN RESULTS

1.1. We denote by the Brownian motion in R2 with the
initial law  (which can be any o-finite measure on R2). If

the joint probability density for Xt 
1 ,...,Xt n is

given by the formula

(1.1) 

Here

(1.2) p(z)= (2n) le ~Z~ /2,
Put

m

(1.3) 

for h21.
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We drop the subscript r if it is equal to 1.

We write f=g if for every 0a2 as 

is a vector (E 1, ... ,~,n) , then We also introduce an

equivalence relation for Brownian functionals depending on parameters

u and Y~Z means that

m

J f 
0 

du e-ru P -Z 
~.U’ 

for every r>0 and every course this relation depends on ~.)

A special role in our investigation is played by a function

(1.4) h~ = 1 03C0 03BBn 1 ~
and by a one-parameter group of fractional linear transformations in R

(1.5) ~h(w)=(w-1+h) 1=1 h .
1.2. We say that a pair of measures (~,~) ) on R2 is admissible if:

(a) A has a bounded density;

(b) either  is finite or A is finite and  has a bounded Holder

continuous density.

We consider finite sequences b=(bl,...,bM) of elements taken from

the set {l,...,n} subject to the condition: for j=l,...,M-l.

We call them routes. We note that if (~r,~i) is an admissible pair for

i=1,...,n,then:

1.2.A. For every route b and every r>0

(1.6) 

We put

(1.7) G 
w ~ 

1.3. We start from a probability density q(z) on R2 such that

(1.8) |ln |x||kq(x)dx~ for all k>0,

for some ~a>0.

Put

(1.9) q~ )

and consider a sequence of functionals



555

(1.10) 

Tk(~,03BB,u)=  dt1...dtk 03C1(Xt1)q
~(Xt2-Xt1)...q~(Xtk-Xtk-1),

k=1,2,...

Here A(dx)mp(x)dx and

(1.11) 

Theorem 1.1. Let (~,A) be an admissible pair of .easures and let

q satisfy condition (1.8). There exist functionals 

(independent of q) such that

(1.12) 7k(A,U).
Here

k

(1-13) (k-1] 
e=1

(1.13a) ~_~ ~] dy,

C=.5772157... is Euler’s constant.

n n

1.4. Putting {F(T)}=~ akTk for every polynomial F(T)==~ akTk, we
1 1

rewrite formula (1.13) in a compact form

)k 1 } ,
We note that

CO

(i.i4) 

k=l

and therefore we get from (1.13) the following equation for generating

functions

eo co

(1.15) ~ ~(~.A,U)W~= ~ ’h 
k=1 ~=1 ~

or

m m

(1.16) ~ 
c=1 ~ 

k=1

By comparing coefficients at vk and then taking into account (1.12),

we get
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m ee

( 1. 1 7) Tk (~, 03BB, u) = 

[k-1l-1 ] ( h~ -03BA)k-l l (~, 03BB, u)~ [k-1l-1 ] ( h~ -03BA)k-l l (03BB , u).

1.5. Let

(1.18) 

We consider a sequence

(1.19) 

=  03BB (dz)  q~(Xt 1-z)...q~(Xtk-z)dt1...dtk, k=1,2,...

and we renormalize it by the formula

k

(1.20) Tt (E,~,u), k=1,2,...

t =1

where is a polynomial with the leading term h k-l .

Theorem 1.2. Suppose that (~r,~ ) and q satisfy conditions of

Theorem 1.1 and let be the functionals described there.

Polynomials Lkt can be chosen in such a way that

(1.21) rk(E~~~u) ~ 

Namely,
m

(1.22) y[4~(w)~= ~ 
k=t

To describe ~ we consider independent random variables Y1’...,Yn’" ’
with the probability distribution q(x)dx and we put

(1.23) ~P - 1 n 
m

(1.24) 
1

The power series Y(w) is uniquely determined by either of two

conditions

( 1.25) Y [Q (w) J=w or 

1.6. The same argument as in subsection 1.4 shows that

m m

(1.26) ~ y~(e,A.u)w~ = ~ 
k= 1 c =1 

E
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or

0o eo

(1.27) ~’e (E ~~ ~u)~_ h [0(V)]~= ~ 
E 

k=l

We get from (1.27) the following asymptotic decomposition
k

(1.28) 

e=1

where Mke are polynomials defined by the formula
eo

(1.29) ~ ~- h [Q(v)] . .
k=t

We note that for Mnk is a polynomial of degree n-k with the

leading term h n-k (for 
1.7. ° We denote by the number of elements equal to i in a

route b =(bl,...,bM) and we denote the set of all routes for

which i=l,...,n.

For every n=0,1,2,... there exists a unique polynomial ~n such
that

(1.30) ln r 203C0]n r-i.

Theorem 1.3. For every 

(1.3i) 

where 
,

(1.32) mk(A,u)

- J 
DM(u) 

M 

.

with

( 1.33) , ) ;1 

I

(1.34) 

1.8. All the stated results follow from Theorem 1.4. In this

theorem we deal simultaneously with several density functions q and,to
avoid confusion,we write q as an extra argument for functions which

depend on q.
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Theorem 1.4. Suppose that densities satisfy condition

(1.8) and (~r,~i) is an admissible pair of measures for i=l,...,n. Let

Put

(1.35) for i=1,...,m,

] for i=m+l,...,n;

(1.36) for i=i,...,m,

=T for i=m+i,...,n.

We have

n
(1.37) e-rudu P [(i,~i,u)]

~r-1 03A3 a(k.b)[- 
beSk

where a(k,b) and 03BD are defined by (1.33).

1.9. Theorems 1.1 through 1.4 will be proved in Section 4 after

we develop necessary tools in Sections 2 and 3. The relation of the

paper to the previous work is discussed in Section 5.

We use the following notation: if a is a real-valued 
function on

a finite set J,then a means the product of aj over all jeJ.

Acknowledgments. I would like to thank Marc Yor for very

stimulating discussions during summer 1985 and Jay Rosen for sending

me the first draft of his recent results and for presenting them

during his visit to Cornell. I am especially indebted to Peter

Weichman who carefully read the manuscript and corrected various

mistakes. Some corrections were suggested also by Mark Hartmann and

Patrick Sheppard.

2. SOMB PROPERTIES OF GREEN’S FUNCTION

2.1. In this section we get some estimates and asymptotic

formulae for Green’s function Gr(X) defined by (1.3).

It is well-known (see e.g. [IM],p.233) that
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(2.1) >

where K~ is a modified Bessel function which can be described (see

[W],3.?1.14,and 3.7.2) by the formula

(2.2) 2+B(r).
Here

m

(2.3) I 0 (r)= a m r2m/(2m)!~ a m =~2m~2-2m~ m
0
CO

(2.4) B(r)=-C+ am(1 2+...+1 -C)r~’"/(2m!).1
It follows from (2.2) that

(2.5) ~ 
with

p~(r)=~ [B(2er) - r]

and h~ given by (1.4).
Since am.~0 and am(1 2+...m - C).~0 as exist constants

if ~ ~’~ ~ such that

(2.6) Ip~ (r) (~ for all r>0.

2.2. Suppose that a random variable Y has a probability density q

which satisfies condition (1.8) and put follows

from(2.1),(2.2) and (2.5) that

(2.7) 

and by (1.8) there exist constants 03B2k such that

( 2.8) 

for all sufficiently small e.

We claim that

(2.9) 

Indeed,the left side is equal to 2E[F(0)-F(EY)] where

F(y)=G(z)G(z-y)dz= ~0e-ttp t(y)dt

and (2.9) follows from an estimate
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O~F(O)-F(y)=(203C0)-1~0(1-e-y2/2t)e-tdt~const.y2(1+ dt e-t/t).

Y2/2
By (2.7)

(2.10) ) , (N), , b(e)=Et (N). .
The functions and b(e) are even and analytic in a neighbourhood

of 0. . Since (cf.(1.13a)),we have a(~)==l+0(~~), )

’=-K+0(e~) and
(2.11) -«

2.3. Now we investigate the functions

(2.12) ... ,EVk) , ’ k=l,2, ... "

where g is given by (1.3) (with r=l) ) and are i.i.d.random

variables with a probability density q subject to the condition (1.8).

By (2.1) )

(2.13) ck(~ )=E[1 03C0 KO(2~Rj) ]

where J={1,2,...,k-1), , 

By (2.1) and (2.5), ,

(2.14) ) c~)=~ fAr(). "

Here ) and the sum is taken over all partitions of J

into disjoint sets r and ~.)~! I meaning cardinality of ~.

The functions have the same properties as a(c) and

b(c),and where i~. are defined by (1.23).Therefore

f^r ( E ) =E~rr +0 ( E 2 ) . ° By (2.14) l

°

2.4. . Consider the set J as a linear graph with bonds (1,2),...,

(k-2,k-1). Denote the connected components of r enumerated in the

natural order by r1,...,rm. The sets rj and are separated by a

connected component A j of /~. . Besides ~11,...,~m-1 the set /t can have

two extra components: to the left of ri, and Am - to the right of

rm.All numbers and are strictly positive except lO and
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tm which can vanish. The case m’=0 is exceptional. In this case 

Since 0393
1

,...,03C80393
m 

are independent,E03C80393=a~...am where ai=

Therefore

(2.15) ck(~)=hk-1~+03A3hl0+l1+...+lm~ ak1 ...akm,

the sum is taken over all nel and all representations

( 2 .16 ) 

such that and the rest of terms are strictly positive.

It follows from (2.16) that

m

(2.17) [Q (v) J

_ 1 
~

where Q is defined by (1.24) and the equivalence relation = for power

series should be interpreted as an analogous relation between the

corresponding coefficients.

3. RANDOM FIBLDS ON DIRECTED TREES

3.1. A directed tree S is a finite collection of sites connected

by arrows in such a way that:

(a) every site is the end of at most one arrow;

(b) there are no loops 

We say that a site s is initial if no arrow enters it.Every

connected component of S contains exactly one initial site.

We consider a family of independent random variables Zs indexed

by sites seS and random variables Y ss’ indexed by arrows ss’ and we

assume that,within every connected component Sb,all Zs are identically
distributed with a law Ab,and all Yss, are identically distributed
with a density qb.

Let be a positive function on S constant on each connected

component. Obviously there exists a unique solution Vs of the
equations:
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(3.1) , for every arrow ss’,

for every initial site s.

We call it a random field over S with parameters (c,A,q).

3.2. Suppose that a directed tree is ordered and let l,...,k be

its sites enumerated according to the ordering. We consider only

orderings with the property: all arrows have the form ij with ij.

If a directed tree S is connected,then 1 is its only initial

site. We note that the joint density for is equal to

qg(x~,...,x~:~,A) ~ 

and the joint density for V ~...,V. is

where the product is taken over all arrows, A(dz)=p(z)dz, and q~ is

defined by (1.9). Put

(3.2) J ""~t 
"

S(q,~,03BB,u)=S(Xt1,...,Xt k-1 ;~,03BB)dt1...dtk-1.

(the domains are defined by (1.11)). In particular,random

variables corresponding to the ordered tree

(3.3) Lk : l-.2~...-~k

coincide with Tk defined by (1.10),and the random variables 

corresponding to

3

k ~
(3.4) L : 2-1~4

4.
k-t-1

are identical to T~ given by (1.19).

Theorem 3.1. Consider a tree S with ordered connected co.ponents

S.,...,S and put

b 

~~ b=l,...,m:

b 

for b=m+l,...,n.
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*

Let V be the rando~ field over S with parameters (E,A,q) and let S be

the set of all the sites In S except the initial sites of the

components Sm+1,...,Sn. Consider all one-to-one mappings from the set

{1,2,...,N} onto S and put if the restriction of a to any

component Sb is monotone increasing relative to the ordering of Sb.
We have

(3. 5) ~0e-rudu P [ T(b,u) ]=r-1 Eg r (Va1~,...,VaN~ )

where V is the randoa field over S with parameters and

.

Proof. . We note that

P [ T(b,u)]

=~ f -"~t ) ) dt 1 ...dt N
 ... ta N u I aN

where ) is the joint density for . Since

given by (1.1) is the joint density for

Xt

a1
,...,Xt

aN
, we have

(3.6) P f ,...,Xt ) )

=Ep (Va1~,...,VaN~).
Formula (3.5) follows from (3.6) if we take into account that

m

(3.?) ~ p e -ru du ) dt= r lg Nr (x 1 ,...,x N ).° 

DN(u) 
" ~ ~ "~ ~ 

3.3. Theorem 3.2. Consider a tree S with ordered connected

components

(3.8~ for b=1,...,m;

=L-_b f or b=m+l,...,n
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and l~t Suppose that the first ti elenents in

(al,...,aN) belong to Sb1 ,the next l2 eleaents belong to Sb
2 
with

b2~b1 etc.Elements b1,b2,...,bM form e route b in the sense of

Sabsection 1.2.

If (N,al,...,~ln) and q=(qi,..,qn) satisfy the conditions of

Theorea 1.4, then

(3.9) )

M 
_

- (‘.lct b Jr)
j=1 j j j

where is given by (1.6) and

(3.10) c tb (E )_[ J fG(EY)Qb(Y)dYlc 1 if b_m,

t

... ,Eyt ) qb(yj)dyj if b>m.

j=1
r

Proof. We have

(3.11) 

where J={1,2,...,N},

(3.12) A1(~)=G r(Va1~),

) for j=2,...,N.

Let v b be the initial site in Sb,
r={j: aj-1 and aj belong to 

different connected components of S},

^={j: aj-1 and aj belong 
to the same connected component of S}.

Note that J= { 1 } U 1’ U ~ and

(3.13) if 

if alESb,b>m;

Aj(0)=Gr[Z(aj)-Z(aj_1)] if 3Er;

Y(aj_i,aj)J if 

j

[Y(o b,aj)-Y(ob,aj-i)1
j

if aj-l,ajESb, b>m,j>1.

By (2.9),
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(3.14) for .

Taking into account (2.8),we get

(3.15) 

Note that

(3.16) ,...,Zs M )
where 

. Since A^ (E ) is a function of the

Y’s,it is independent of (3.16) and,by (3.15)

(3.17) ,...,Zs M )] )"

We claim that

(3.18) 

Indeed the function F(x)=Eg (x,Z ,...,Z ) ) is bounded and therefore

it is sufficient to check that

(3.19) E[A1(E)-A1(0)12=0.
Suppose that alESb.If bm,then A1(E) does not depend on b>m,then

If  is finite,then we get (3.19) from (2.9).If  has a bounded Holder

continuous density,then G Hr (x) and its gradient are bounded and,since

A is finite, we get (3.19) from the inequality

.

The set A is the union of ~1=[2,e1],...., . By (2.1)

) and therefore

( 3 . 20 ) 
( ~’ b ~r ) . °

We note that 

,...,A~ M are independent and formula (3.9) follows

from (1.6),(3.17) (3.18) and (3.20). .
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4. PROOFS OF MAIN RESULTS

4.1. Proof of Theorem 1.4. Let

(4.1) m P.,[mT(i,~ ,u)] . .
It follows from Theorems 3.1 and 3.2 that

(4.2) 

where k is the set of all routes in {!,...,n} which

contain k elements equal to l,...,k elements equal to n.

We introduce generating functions
ee

(4.3) ~(~,V)= ~ C~(~)V~. °
~=1

By (3.10),(2.11),(2.17) and (1.35),

(4.4) ~~~~b~e~r~" ~~’~~ ~~ ~~ ~~ ~’
Since ~i+...+~M=~i+-"+~n’ ~~ ~~ ~’~~ ~~ ~’~~ ~~~

(4.5) k(~,03BB;r) vk11...vknn = r-1 grb( ,03BB)bj(h~bj -03C1,vbj),
the sum is taken over all routes b in the space {!,...,n} which pass

through every point.

We note that,if where

(4.6) ~i~~~h-~(q )~ ~~ ~~~
~or i>m.

In both cases,for every p, ,

(4.7) ~[h-p,a~(h,w)]=~(w)
We rewrite (4.5) in the form

(4.8) 03A3 k(~,03BB;r) 1(w1)k1...n(wn)kn = 

k,,...,k~l 
b

It follows from (1.15) (1.26) and (4.6) that
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(4.9) (i,k,~ i u ) wk = i(h~ i 
,w) 

l 

T(i,l,Ei,u).
k=1 l =1

By comparing (4.8) and (4.9),we see that the right side in (1.3?) is

equal to the coefficient at wk11 ...wknn in the ri g ht side of ( 4.8 ) .

If ti is the number elements in (bl,...,bM) which are equal to

i,then by (1.14)
M n ei

(4.10) )_ i=1 I> 
p 

( wi)
n ki-1 ki ki-li}

=( i=1 1 { ~e 
i 
-1~ wi ( -P ) ?

The coefficient at wki...wkn in ( 4.10 ) is a ( k , b )P v with a ( k,b ) and v

defined by (1.33).This implies (1.3?).

4.2. Proof of Theoress 1.1 and 1.2. The integral in formula

(1.32) is the convolution of functions -z0),
1

for j=1,...,M-1 and P03BD(log t)1t>0. Therefore

(4.11) ~0e-rudu mk(03BB,u)=r- 1 ln r 203C0]03BD .
0 

mk rb ‘ 2n

We compare this expression with (1.3?) and we get

m_ m_
(4.12) 0e -ru d u P 

u 1 
...rk 

n 
]~

0
e -ru d u ,u) .

To every r>0 there corresponds a measure Mr(du,dw) =e - ru du P(dw)

on R+xn.It follows from (4.12) that where

~.~r ,p 
means the L2p(Mr)-norm.Thus there exists an L2p(Mr)-limit

(4.13) ~’k(~ u) =lim ~’k(e ,~ ,u)
E10

and

(4.14) ,u) .

We conclude from ( 1.3?) that Hence

does not depend on the choice of q.Theorem 1.1 is proved.

The same arguments prove Theorem 1.2.
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4.3. Proof of Theorem 1.3. By (4.14),(1.37) and (4.11)
~0e-rudu P { ki(03BBi,u)}

_~ 
which implies (1.31).

5. BIBLIOGRAPHICAL NOTES

5.1. Interest in the self-intersections of the Brownian motion

has increased significantly in connection with Symanzik’s ideas in

quantum field theory. The functional where m is the Lebesgue

measure has been introduced in a pioneering work [V~ by Varadhan which

has appeared as an Appendix to Symanzik’s memoir.For k>2,the

functionals ~’k(~) have appeared first in [Dl] and [D2] as a tool for a

probabilistic representation of P(p)2 fields.

In [D2] we considered polynomials of the field

(5.1) 

where p is a symmetric transition density,X. is the corresponding
Markov process and S is an exponential killing time independent of X.

Assuming that Green’s function

m
(5.2) 

has singularity of the same kind as Green’s function of the planar

Brownian motion, we defined functions such that there exists

an L-limit
n

(5.3) !T~-= lim .

A ~~~J ~_0
for all p~2 and for a wide class of measures A. In our present

notations ~T ~ =y~(A ~ ) . .
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The random fields (5.3) are closely related to Wick’s powers

:p2n:A of the free Gaussian field associated with X. In fact,we have

arrived at our renormalization by using this relation.

The direct construction of the fields 1k given in the present
paper for the case of the Brownian motion on R2 has a number of

advantages:

(i) Computations are much simpler than in [D2] and we get fields

defined for each u (not only ~’k(~,s)).
(ii) We prove that is the limit of fields 

corresponding to a rather general density function q not just to the

transition density p.

(iii) We get an explicit expression for the coefficients 

as polynomials in In e (because of translation invariance of the

Brownian do not depend on z).

(iv) We show that the functionals Tk given by (1.10) also can be
renormalized to converge to 1k.Moreover the renormalization is much
simpler than in the case of Tk.

The case k=2 has been studied also in [D3] and [D4].In [D3],the

existence of LP-limits

(5.4) 

=lim ds dt p~(z,Xs) 203C0(t-s)+2~ ]~~O 
0st 

~ s ~ w -s + ~

has been proved for all sufficiently smooth functions f with compact

support.In [D4] the functional PA(f) has been expressed in terms of
stochastic integrals.The method is due to Rosen who used it in [Rl] to

get a simple proof of Varadhan’s result.

5.2. Various results about the functional 72(m,u) are contained
in [Y1],[Y2],[Y3] and [Ri],[R2] and [Ll]. In particular in [Ll], a

relation between this functional and the measure of the Brownian

sausage has been established. A renormalization for T3(m,u) is given
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in [Y4] (it has been discovered independently by J.Rosen).

5.3. Recently Rosen [R3] proved that for every bounded Borel set

B~{0t1...tk} there exists an L2-limit

Ik(B)=lim B{p4(X t1,X t2))...(p ~(X tk-1,X tk))dt 1...dtk

where {Y}=Y-EY.An interesting open problem is to express Ik(Dk(u))
through y~(m,u). Such an expression is known only for k~3.
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