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Ultimateness and the Azéma-Yor stopping time

D.P. van der Vecht

Vrije Universiteit, Amsterdam

The purpose of this note is to give a correct proof of a result of Meilijson

[3,p394J, which was originally based on an identity proved wrong by Neil Falkner

(theorem 2). Our proof uses a special property of the Azéma-Yor stopping time

(theorem 1 and lemma 1).

Let denote standard Brownian Motion (started at zero) and for any

stopping time T define

M := sup B .
T t

A stopping time T is called standard, if whenever Q1 and Q2 are stopping times with

Q1 _ 02 s T, then
)  ~ , i=1,2, and

Q,
i

x for all x E 7R.
~1 ~2

(As N. Falkner [2,p.386] showed, a stopping time T is standard if and only if the

process is uniformly 

Let X be a random variable with EX = 0 and define the function gX on IR by

gx(x) := { 
E (X ~ X >_ x) if P (X ? x) > 0,

gX(x) := 
x otherwise.

Azéma and Yor [1,p.95,p.625J showed that the stopping time T defined by
T := inf{t: gX(Bt)}

embeds (the distribution of) X, i.e. X, and is standard. We will refer to it

as the A-Y stopping time (embedding X in (Bt)). It is also known that for any

standard stopping time T, that embeds X in (Bt),
( 1 ) gX (x) )  gX (x) ) = x) - 

for x E 1R,

For the inequality we refer to Azéma and Yor [1,p.632J.
The first equality is easily seen from the definition of T, while the second holds,
because T embeds X.

*

I. Meilijson communicated this to me by letter.
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Theorem 1.

Of all standard stopping times 03C4 that embed X, the A-Y stopping time T is
*

essentially the only one with

(2) P(M,~?gX(x)) - P(X?x) , x E ~. 0

A standard stopping time T zs called ultimate, whenever Y is a random variable with

EIY-xI I _ EIBT-xI I for all,.x E ~t, then there exists a stopping time ~ _ T, that

embeds Y.

Theorem 2. (I. Meilijson [3,p.394])

Assume T is a standard stopping time embedding X. If T is ultimate, then there are

a _ 0 _ b with P(X E {a,b}) - 1. 0

Proof of Theorem 1.

We write g for gX.

Let T be a standard stopping time embedding X such that (2) holds.

Def ine the stopping time H by H : = inf{ t : B ? g ( x) ~ and put ’C : = T n H . Then
x x t x x

{M03C4 ~ g (x)} = {Hx ~ 03C4}.
For z ~ x

EIBT - EIBT - zI _
x

(g(x) ’C) + zl } 
=

x

E(X - z) + EIBT - z =

x

E|B03C4 - z| + E|B03C4 - z|(1{B03C4~x,03C4H x} -1{B03C4x, 03C4~Hx}).
So

(3) ELB - z~ I 1 
{IS ~x TH  EIB - 1 

{B’ x T~H , 
z _x.

T ~ ~B~.x,’~?Hx}
Now using (2)

p x ~ T ~ Hx) -
P (BT? .x) - P x, T >_ Hx) -
p (X > x) - p (T > gx) + P (BT  x ,T >_ Hx) _

i

whence with z + -~~~ in (3) it follows that

P(B03C4 ~ x,03C4  Hx) = P (B03C4  x,03C4 ~ Hx) = 0.

*

apart from disagreement on a null set.
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Therefore

{BT >_ x} _ {MT > g(x)} for all x E ~ (= the rational numbers) a.s..

As for all x E 3R we can find a sequence (xn) in Q increasing to x and g is left-

continuous, we get

{BT >_ x} _ {M,~ >_ g(x) } for all x E ]R a.s.,

whence

M a.s..

(Simply observe that

for all x E ]R and all n E IN a.s..)

Now t  T implies Mt  g (Bt) and therefore T >_ T a.s.. As T is standard, it follows that

for any stopping time a with T  a  T a.s..

ElBa - x I = E~X-x~ I for all x E 7R,

which can only happen if T = T a.s.. D

Let T- be the A-Y stopping time embedding -X in (-B ), then
with m = inf B ~

t 

T- = inf{t: " ( Bt) }
and

DBT- - X.

Lemma 1. ,

If T = T- a.s., then there are a - 0 _ b with P(X E {a,b}) - 1.

Proof.

First observe that

- g-X (-x) 5 x _ gX (x) (x E ]R)

Now for a path (of (Bt)) with T = T- and B T = B T- = x we have

gX (x) (?x) , and

mT ~ -g-x (-x) (~x) . °

That implies however that

(4) -g_x (-x) = x or gX (x) - x.

[If such a path first reaches level MT and then level mT it is forced to cross level
x in between (continuity of paths) and ’T stops to soon’, unless -g-X(-x) - x;
conversely if level mT is reached before level M , ’T- stops to soon’, unless
gX (x) - x. J
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Now (4) implies x  es inf X =: a (_0) , or x > es sup X =: b (>_0) .

As T = T- a.s., we can conclude

BT ~ a or BT ~ b a.s..

As X S B , it follows that (a,b)) = 1.

By definition of a and b P(X E [a,b]) - 1.

It follows that a and b are finite and P(X E {a,b}) - 1. D

Proof of theorem 2.

By lemma 1 it is enough to prove T = T a.s. and T = T- a.s..

As T- is the A-Y stopping time embedding -X in it is sufficient to prove, that

an ultimate stopping time is equal to the A-Y stopping time a.s., i.e. T = T a.s..

With H as in the proof of theorem 1 we have for all x E ]R by (1)
x

P(03C4 ~ Hx) ~ P(T ~ Hx) = P(X ~ x).

As 03C4 is ultimate and T is standard, there is a stopping time Q x _ T with
B03C3x 

D 
BTHx . But then 

P(M03C4 ~ gX(x)) ~ P(B03C3x ~ gX(x)) = P(BT^Hx ~ gX(x)) = P(T ~ Hx),
and so 

(x) ) - .

By theorem 1 it follows that T = T a.s.. D
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