D. P. VAN DER VECHT Ultimateness and the Azéma-Yor stopping time

Séminaire de probabilités (Strasbourg), tome 20 (1986), p. 375-378 http://www.numdam.org/item?id=SPS 1986 20 375 0>

© Springer-Verlag, Berlin Heidelberg New York, 1986, tous droits réservés.

L'accès aux archives du séminaire de probabilités (Strasbourg) (http://portail. mathdoc.fr/SemProba/) implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

\mathcal{N} umdam

Article numérisé dans le cadre du programme Numérisation de documents anciens mathématiques http://www.numdam.org/ D.P. van der Vecht Vrije Universiteit, Amsterdam

The purpose of this note is to give a correct proof of a result of Meilijson [3,p394], which was originally based on an identity proved wrong by Neil Falkner^{*} (theorem 2). Our proof uses a special property of the Azéma-Yor stopping time (theorem 1 and lemma 1).

Let $(B_t)_{t\geq 0}$ denote standard Brownian Motion (started at zero) and for any stopping time τ define

$$M_{\tau} := \sup_{0 \le t \le \tau} B_{t}$$

A stopping time τ is called *standard*, if whenever σ_1 and σ_2 are stopping times with $\sigma_1 \leq \sigma_2 \leq \tau$, then

$$\begin{split} & E \left| B_{\sigma_{1}} \right| < \infty \text{, } i=1,2, \text{ and} \\ & E \left| B_{\sigma_{1}} - x \right| \le E \left| B_{\sigma_{2}} - x \right| \text{ for all } x \in \mathbb{R} \end{split}$$

(As N. Falkner [2,p.386] showed, a stopping time τ is standard if and only if the process $(B_{t\Lambda\tau})$ is uniformly integrable.)

Let X be a random variable with EX = 0 and define the function $\boldsymbol{g}_{\boldsymbol{X}}$ on $\boldsymbol{\mathbb{R}}$ by

 $g_{X}(x) := \begin{cases} E(X | X \ge x) & \text{ if } P(X \ge x) > 0, \\ \\ x & \text{ otherwise.} \end{cases}$

Azéma and Yor [1,p.95,p.625] showed that the stopping time T defined by

$$T := inf\{t: M_t \ge g_x(B_t)\}$$

embeds (the distribution of) X, i.e. $B_T \stackrel{D}{=} X$, and is standard. We will refer to it as the A-Y stopping time (embedding X in (B_t)). It is also known that for any standard stopping time T, that embeds X in (B_L) ,

(1)
$$P(M_{T} \ge g_{X}(x)) \le P(M_{T} \ge g_{X}(x)) = P(B_{T} \ge x) = P(X \ge x)$$

for $x \in \mathbb{R}$.

For the inequality we refer to Azéma and Yor [1,p.632].

The first equality is easily seen from the definition of T, while the second holds, because T embeds X.

^{*}I. Meilijson communicated this to me by letter.

Theorem 1. Of all standard stopping times τ that embed X, the A-Y stopping time T is essentially the only one with $P(M_{\tau} \ge g_{\tau}(\mathbf{x})) = P(\mathbf{X} \ge \mathbf{x})$, $\mathbf{x} \in \mathbb{R}$. П (2)A standard stopping time τ is called *ultimate*, whenever Y is a random variable with $E|Y-x| \leq E|B_-x|$ for all $x \in \mathbb{R}$, then there exists a stopping time $\sigma \leq \tau$, that embeds Y. Theorem 2. (I. Meilijson [3,p.394]) Assume τ is a standard stopping time embedding X. If τ is ultimate, then there are $a \leq 0 \leq b$ with $P(X \in \{a,b\}) = 1$. Proof of Theorem 1. We write g for g. Let τ be a standard stopping time embedding X such that (2) holds. Define the stopping time H_x by H_x := inf{t: $B_t \ge g(x)$ } and put $\tau_x := \tau \land H_x$. Then $\left\{ M_{\tau_{t}} \geq g(\mathbf{x}) \right\} = \left\{ H_{\mathbf{x}} \leq \tau_{t} \right\}.$ For $z \leq x$ $\mathbf{E}|\mathbf{B}_{\tau} - \mathbf{z}| \geq \mathbf{E}|\mathbf{B}_{\tau} - \mathbf{z}| =$ $(g(\mathbf{x}) - \mathbf{z}) P(\mathbf{H}_{\mathbf{x}} \leq \tau) + E|\mathbf{B}_{\tau} - \mathbf{z}| \mathbf{1}_{\{\tau < \mathbf{H}_{\mathbf{y}}\}} =$ $E(X - z) = 1_{\{X \ge X\}} + E|B_{\tau} - z| = 1_{\{\tau < H_{\tau}\}}$ $\mathbf{E}|\mathbf{B}_{\tau} - \mathbf{z}| + \mathbf{E}|\mathbf{B}_{\tau} - \mathbf{z}| (\mathbf{1}_{\{\mathbf{B}_{\tau} \geq \mathbf{x}, \tau < \mathbf{H}_{\nu}\}} - \mathbf{1}_{\{\mathbf{B}_{\tau} < \mathbf{x}, \tau \geq \mathbf{H}_{\mathbf{x}}\}}).$ So $\mathbb{E} \left| \mathbb{B}_{\tau} - \mathbf{z} \right|^{-1} \left\{ \mathbb{B}_{\tau}^{\geq \mathbf{x}, \tau \leq \mathbf{H}_{\mathbf{x}}} \right\}^{\leq -\mathbb{E}} \left| \mathbb{B}_{\tau} - \mathbf{z} \right|^{-1} \left\{ \mathbb{B}_{\tau}^{\leq \mathbf{x}, \tau \geq \mathbf{H}_{\mathbf{x}}} \right\}^{-1} \left\{ \mathbb{E}_{\tau}^{\geq \mathbf{H}_{\mathbf{x}} \right\}^{-1} \left\{ \mathbb{E}_{\tau}^{\geq \mathbf{H}_{\mathbf{x}}} \right\}^{-1} \left\{ \mathbb{E}_{\tau}^{\geq \mathbf{H}_{\mathbf{$ (3)Now using (2) $P(B_{\tau} \ge x, \tau < H_{\tau}) =$ $P(B_{\tau} \ge x) - P(B_{\tau} \ge x, \tau \ge H_{x}) =$ $P(X \ge x) - P(\tau \ge H_y) + P(B_{\tau} < x, \tau \ge H_y) =$ $P(B_{\tau} < \mathbf{x}, \tau \geq H_{\tau})$ whence with $z \rightarrow -\infty$ in (3) it follows that $P(B_{\tau} \ge \mathbf{x}, \tau < H_{\tau}) = P(B_{\tau} < \mathbf{x}, \tau \ge H_{\tau}) = 0.$

*apart from disagreement on a null set.

Therefore

 $\{B_{_{\mathcal{T}}} \geq x\} \; = \; \{M_{_{\mathcal{T}}} \geq g\left(x\right) \; \} \text{ for all } x \; \epsilon \; \mathfrak{Q} \; \; (= \; \text{the rational numbers}) \; \text{ a.s.}.$

As for all x ϵ IR we can find a sequence $(\underset{n}{x})$ in ${\tt Q}$ increasing to x and g is left-continuous, we get

 $\left\{ B_{_{_{\mathcal{T}}}} \geq x \right\} \; = \; \left\{ M_{_{_{\mathcal{T}}}} \geq g\left(x\right) \right\} \text{ for all } x \; \in \; \mathbb{I} R \text{ a.s.,}$

whence

$$M_{\tau} \ge g(B_{\tau})$$
 a.s..

(Simply observe that

$$B_{\tau} \in [x, x + \frac{1}{n}) \iff M_{\tau} \in [g(x), g(x + \frac{1}{n}))$$

for all $x \in \mathbb{R}$ and all $n \in \mathbb{N}$ a.s..)

Now t < T implies $M_t < g(B_t)$ and therefore $\tau \ge T$ a.s.. As τ is standard, it follows that for any stopping time σ with $T \le \sigma \le \tau$ a.s..

 $\mathbf{E} |\mathbf{B}_{\tau} - \mathbf{x}| = \mathbf{E} |\mathbf{X} - \mathbf{x}|$ for all $\mathbf{x} \in \mathbb{I} \mathbf{R}$,

which can only happen if $T = \tau$ a.s..

Let T- be the A-Y stopping time embedding -X in $(-B_{+})$, then

with $m_t = \inf_{\substack{0 \le s \le t}} B_s$,

010.

 $T- = \inf\{t: m_{+} \leq -g_{-x}(-B_{+})\}$

and

Lemma 1.

If T = T- a.s., then there are $a \le 0 \le b$ with $P(X \in \{a,b\}) = 1$.

Proof.

First observe that

$$-g_{\mathbf{v}}(-\mathbf{x}) \le \mathbf{x} \le g_{\mathbf{v}}(\mathbf{x}) \qquad (\mathbf{x} \in \mathbf{I} \mathbf{R})$$

Now for a path (of (B_t)) with T = T- and $B_T = B_{T-} = x$ we have

```
\begin{split} \mathbf{M}_{\mathbf{T}} &\geq \mathbf{g}_{\mathbf{X}}(\mathbf{x}) \quad (\geq \mathbf{x}) \text{ , and} \\ \mathbf{m}_{\mathbf{T}} &\leq -\mathbf{g}_{-\mathbf{x}}(-\mathbf{x}) \quad (\leq \mathbf{x}) \text{ .} \end{split}
```

That implies however that

(4)
$$-g_{\perp x}(-x) = x \text{ or } g_{x}(x) = x.$$

[If such a path first reaches level M_T and then level m_T it is forced to cross level x in between (continuity of paths) and 'T stops to soon', unless $-g_{-X}(-x) = x$; conversely if level m_T is reached before level M_T , 'T- stops to soon', unless $g_X(x) = x$.

Now (4) implies $x \le es$ inf $X =: a(\le 0)$, or $x \ge es$ sup $X =: b(\ge 0)$. As T = T-a.s., we can conclude

 $B_{m} \leq a \text{ or } B_{m} \geq b a.s.$

As $X \stackrel{D}{=} B_m$, it follows that $P(X \notin (a,b)) = 1$.

By definition of a and b $P(X \in [a,b]) = 1$.

It follows that a and b are finite and $P(X \in \{a,b\}) = 1$.

Proof of theorem 2.

By lemma 1 it is enough to prove $\tau = T$ a.s. and $\tau = T$ - a.s.. As T- is the A-Y stopping time embedding -X in $(-B_t)$, it is sufficient to prove, that an ultimate stopping time is equal to the A-Y stopping time a.s., i.e. $\tau = T$ a.s.. With H_a in the proof of theorem 1 we have for all $x \in \mathbb{R}$ by (1)

Π

 $P(T \ge H_{y}) \le P(T \ge H_{y}) = P(X \ge x)$.

As this ultimate and T is standard, there is a stopping time $\sigma_x \leq \tau$ with $B_{\sigma_x} \stackrel{D}{=} B_{T \wedge H_x}$. But then

$$\mathbb{P}(\mathbb{M}_{T} \geq \mathbb{g}_{X}(\mathbf{x})) \geq \mathbb{P}(\mathbb{B}_{\mathcal{O}_{X}} \geq \mathbb{g}_{X}(\mathbf{x})) = \mathbb{P}(\mathbb{B}_{T \wedge \mathbb{H}_{X}} \geq \mathbb{g}_{X}(\mathbf{x})) = \mathbb{P}(\mathbb{T} \geq \mathbb{H}_{X}),$$

and so

 $P(M_{\tau} \ge g_{X}(x)) = P(X \ge x).$

By theorem 1 it follows that $\tau = T$ a.s..

References.

[1] J. AZEMA et M. YOR,

a. Une solution simple au problème de Skorokhod.
b. Le problème de Skorokhod: compléments à l'exposé précédent.
Sem. Prob. XIII, Lecture Notes in Math. 721, 1977/78.

[2] N. FALKNER,

On Skorokhod embedding in n-dimensional Brownian Motion by means of natural stopping times. Sem. Prob. XIV, Lecture Notes in Math. 784, 1980.

[3] I. MEILIJSON,

There exists no ultimate solution to Skorokhod's problem. Sem. Prob. XVI, Lecture Notes in Math. 920, 1980/81.