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A COMPARTSON THEOREM FOR SEMIMARTINGALES
AND ITS APPLICATIONS
by YAN Jia-an

We work on a filtered probability space ({,F 3 (F )) satisfying
the usual conditions. Let X be a semlmartlngale such that Z0cs<t [AX |
< o for t<o ( as usual, we allow an evanescent exceptional Set in
our inequalities without mentioning it ) : this is the class of semimar-
tingales for which Yor ( Astérisque 52-53 , Temps Locaux, p.23-35 ) has
shown the existence of local times L%(X) continuous in t, and cadlag
in a . On the other hand, X has a unique decomposition

X=X~ +M+ A

0
where M is a continuous local martingale, and A is of finite variation.
We denote by A®  the continuous part of A .

LEMMA 1. Assume the follgwing conditions

(1) 19(x)=0  (ii) é I{Xs_>o}dAg <0 (iii) &< .
Then we have X<O on the set {Xogﬂ}.
Proof. We have from Tanaka-Meyer's formula

b
+ _ ot + 1-0
Ko = %0 * Tocset Tix__c0ffs * 26 * Zocsgy Tix_»>01%s * [ Tix_ >01%s

On {X §O} the first term vanishes. The second one vanishes because of
(iii) and the third one because of (i). Therefore on {X <0}
+ c
X = Tocsct Tz, >0 }(dM +ahg)
We have X™+4X = X*-X_ <0 on {X_>0} by (111) and / b
(ii). Therefore

(X +48X ) + / I{

c
{Xs_>0}dAs s 0 by

é IiXs_>O}dMs > 0 on {XO§O}
Since this is a continuous local martingale starting from O, it must be
equal to O, and from this we deduce X;§O, and finally X<O .

We apply this lemma to a generalization of the comparison lemms
given by Tkeda-Watanabe ([1], p.352 ). One might extract from the proof
a slightly more general version of lemma 1, but we shall not give it
explicitly.
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THEOREM 1. Let X*,X® be solutions of two stochastic differentials

equations . . . + +
i i i i i i i

X; = X5 + é o(s, X3 )M + / b*(s,Xs MB + / ¢’ (s,¥3 NC_ (i=1,2)

where M is a continuous local martingale, B is a continuous increasing

process and C an increasing process ( B and C adapted ). We assume

- o(s,x) is Borel measurable, |o(s, x)—o(s,y)[gp(]x—y]), where p is an
increasing function on B such that j “(uw)du = +o .

bl (s,x), ¢ (s X) are continuous on R XR given the product of the right
topology on R and the ordinary topology on R .

bl(s,x)<b2(s,x) and c¢*(s,x)<c*(s,x)

- X<y => ¢ (s,x)<c®(s,y)

I

Then we have X'<X® on the set {XB<XE} .
Proof. We may assume X1§X2 everywhere. Consider the stopping time

s . X:_x2
T = inf{ t>0 : X;-X# > 0 }

We assume P{T<w {>0 and derive a contradiction. First of all, we have
Xp2X% ( on {T<co} ), and Xp_Xf on {0<T<o0} . We cannot have Xp X2 _
on {O<T<no}, because AXT<1X2 ( last hypothesis ) would then imply XT<X2.
Therefore Xyj =Xi on {O<I<w }. On T=0, we have by convention X%__Xl ,
and it is clear that Xp=X# on this set.

Let X be the semimartingale (Xl-Xz)T+t on {T<w }, relative to
the family (£T+t>' From the above, we have X4=0. X belongs to the class
of semimartingales considered at the beginning, and we set X=M+A as be-

fore. There is an interval [0,U(w)[ on which AX<O, f'I{X sopd4g 20,
due to the third hypothesis, and the right continuity of b (T+s T+s)’

1(T+s, Tas ). Finally, theoflrst hypothesis will imply, exactly as in
LeGall's paper [2], that L”(X)=0 ( this is the key point of the proof ).

Then we apply lemma 1, not to X, but to X stopped at U~, where
. t c
U = inf{t>0 : X, >0 or é IiXS_>O}dAs >0 }

which is a.s. >T due to the above : we deduce that X<0 on [0,U[, which
contradicts the definition of T .

REMARKS. 1) The first hypothesis can be weakened as
- o(s,x) is Borel measurable, and for any x there is a §(x)>0 such that
| o(s,x)=0(s,y) |<p(|x-y|) for ye[x—é(X) yx+6(x)] .
1 2
In fact, if we set V=inf{t>0 : |o(%, X )= c(t X I >eClXg X D)
1’ (X 7)=0 and we may apply lemma 1 to X -
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2) As we mentioned, the key point of the proof is to check LO(X)=O, and
we deduced this from our first hypothesis as in [2]. Similar conditions
ensuring that LO(X)=O ( see [2], Corollaire 1.2 ) will lead to the same

conclusion XléX .
Similarly, we can prove the following theorem.

THEOREM 2. Let Xi be solutions of the following stochastic differential
equations

+ . t. . + . R
X%—Xé + é o(s,X;_)dWs + ét}(s,X;_)ds + é é f(s,X;_,u)Np(ds,du)

t . .
+ [/ gl(s,X:SL_,u)Np(ds,du)
0 U\,
Here (Wt) is a Wiener process, Np is the counting measure of a quasi-
left continuous point process P on a standard measurable space U, UOCU
is a measurable subset such that E[N (t,0\Uy)] < @ for t finite, and

Nf _N —N ( ™~ denoting compensation as usual ).

We may assert that Xngz on {XBéXS} if the following hypotheses are
satisfied :
- o0 and bi are as in the preceding theorem.
- f gi are measurable functions on B xRxU and for any fixed ueU,
i 6,%,u) and g-(s,x,u) are contlnuous on B xR in the same topology
as in theorem 1.

- (ng) = (f? <S1X’u)§f2(s,y.,u) and gl(s,x,u)ggz(s,y,u)
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