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POISSON REPRESENTATION OF STRICT REGULAR

STEP FILTRATIONS*

F. B. Knight

0. Introduction

This paper is an outgrowth of the ideas of a previous paper by the

author [6]. It is therefore convenient to begin by summarizing the

relevant hypotheses and conclusions from Section 2 of [6]. We assume

that is a complete probability space on which is a filtration

t > 0, augmented in the usual way to right-continuous and

satisfying the three conditions:

1) ~0+ _ (~~~) ~

2) is separable (it suffices here that each be

countably generated), and

3) all ~t martingales are strict in the sense of [8], or

equivalently any martingale starting at 0 of the form

XI{t ~ Tl } is indistinguishable from 0. (We always assume that

martingales have right-continuous paths with left limits for
t > 0, abbrevi ated 

According to the result of [8, p. 220], 3) is equivalent to assuming
" FT for all Ft-optional T, and we have argued in [6] that 1 ) and

3) express the fact that there is randomness of time without randomness

of place (in particular, since XT e for any martingale Xt, , the

"place" XT is predetermined at the time T). Under these conditions,

we obtain a representation of any X ~ ,P) with EX = 0 in the
t

f orm ( Theorem 2 . 4 of [ 6 ] )

(0.1) X = 

I E n (t) + J ~Mc~ ) )
c

+ 

j n (t) + 1 
J d) 

(u) ,(u A 
t 

)

where is a "halted + n P (t) - dimensional Levy process
with Brownian and Poisson components". The precise definition

(Definition 2.2 of [6]) of "halted" need not be repeated here, since the
verbal expression is both shorter and simpler. The meaning is simply

*Research supported in part by N.S.F. Grant 83-03305
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that (Bi,Pj) becomes a vector of mutually independent Brownian motions

and compensated Poisson processes when we prolong them indefinitely

beyond the "halting times" by attaching independent

continuations of the same type in a product probability space.

In the above representation, (B,,P,) are fixed, independently of t

and X e L2(~t,P), while the halting times are free of X, so that only

the integrands and depend on X.
i J

The representation (0.1) is not basically a new result. Rather,

it is mainly an application of a known change-of-variables formula in

stochastic integrals and an argument used in a different setting by

P. A. Meyer [11]. However, a serious deficiency of the representation is

of course that these integrands are not, in general, measurable over the

filtration generated by (B,,P,), so we cannot regard the theorem as
1 J

giving a canonical reduction of F t 
to the filtration of such a halted

Brownian-and-Poisson process. In more detail, we define (B,,P,) by

time changes and ~~d)(u) of corresponding martingales
(M~,Md), where ~(c)(u) (resp. ~~d)(u)) is the inverse of Mi>v
d ), in such a wa that h(c)i(u) = (resp. Mdj>v), in such a wa y that h (c)i

(u ) = h i(03C4 (c)i
(u- )) (res p.

h(d)(u) = h(03C4(d)(u-))) is a previsible process of the time-changed
7 J 7

(resp. ~ ~j (d) (t) ). 
At this point, one loses sight

of the meaning of (0.1) in terms of (Bi,P,) since the integrands
i J

introduce additional information.

Our objective in the present paper is to rectify this situation in a

particular case, previously introduced by Lepingle, Meyer, and Yor [9] as

"hypothesis (BO)". Our result here is perhaps not surprising, but it is

our hope that the same prescription will work in greater generality.

Indeed, there is no known counterexample to its working under 1)-3)

alone, but it is clear that the method used under (BO), namely

transfinite induction, is limited to that case. Here we will denote (BO)

as:

4) There are no continuous martingales other than constants, and

there is a single Ft-optional set D whose sections for each

w E S~ are well-ordered in t, and which contains the dis-

continuity times of any martingale up to a P-null set.

The essential meaning of 4) is given in [9] as follows (on p. 608,

line -4, a T a should be T a+1 for the proof). Let T0 = 0, and for

each ordinal a let Ta+1(w) - > (w,t) s D}, and for limit

ordinals 03B2 let T03B2 
= 

sup fi Ta, 
, where a and 03B2 exhaust the countable

03B1  03B2
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ordinals. Then the family (Ta) ) are stopping times which, for every

square-integrable martingale t, , contain a.s. all the discontinuity

times of M . . It is easy (and instructive) to connect this hypothesis

with the quantities obtained in [6]. For example, under condition 2)

above we obtained in [6, Lemma 2.5 and the Remark following its proof], a

single square integrable martingale Md whose times of discontinuity

contain those of any other, P-a.s. Thus the second part of 4) simply

means that the discontinuity times of Md are a.s. well-ordered (since a

subset of a well-ordered set is also well-ordered). For the initiated

reader, a yet simpler description is available in terms of the author’s

prediction process construction [5, Essay I] which will be used again in

the sequel. Here we transfer the filtration to a canonical space of

sequences of paths, f or example by usi ng a sequence

M n (t) = E(X n ( Ft) ) where {x n ) is linearly dense in (as in [6, ’

Theorem 2.4], where the subscript 0 indicates EX =0). Then the
n

prediction process Zt of is well-defined, and its times of

discontinuity contain those of any martingale a.s. (and conversely, they

equal those of Md a.s. when Md is represented on the canonical

space--this is really an extension of the representation theory of Doob

[3, I, §6]). Thus our hypothesis is that the times of discontinuity of

Zt are well-ordered (we can redefine Zt on a P-null set to ensure that

this holds everywhere).

The basic consequence of 4), as derived in [9, 2.2)], , may be

interpreted as saying that under 4) F is generated by a step process
(for the exact definition of which, see for example P. A. Meyer [10]).

Thus, according to [9, 2.2)], , if F is the usual stopped a-field of
a

T , a , we have ~ _ V a F T and for any stopping time T,
a

~ { Ta  T  Ta+1 ~ _ {Ta  T  }T ’ 
a - a+r a ’a 2014 a+1~

for each a. Now for any Borel set E in the state space of Zt and

s > 0, we have

{ZT 
a 
+S 

£ E} n {T a +s  = 

a 
+s 

£ EJ n 

a 
+ u 

is continuous,

0  u  s} , ,
so taking T = Ta + s it follows by the strong Markov property of Zt
at Ta that on {ZT +u is continuous, 0  u ~ s} (which is an element

a

of F ) ) we have
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+u 
is continuous, 0  u ~ s}}

a

ZT
= P a{Z 

S 
s EIZ 

u 
is continuous, 0  u -  s}.

Consequently, on {T +s  T }, Z T +s = f(Z T ,s) where f(z,s) is non-

a a

random, from which it follows that F is generated (up to P-null sets)

by the step process Wt = Z Ta on {T03B1 ~ t  T }, ’ all a. . It may be

remarked that, besides the usual requirements for a step process, this

Wt also has left limits (along with Zt) . .

Having stated our hypotheses 1)-4), we turn to discussion of

conclusions. Instead of halted Levy processes as in [6], , we will obtain

stopped Levy processes in the usual sense, but only after prolonging them

beyond the natural time span lim 

t + oo 
~

Definition 0.2. Let k  N+1), N  ~, be processes defined on

the same space. We say that (Yk) is a stopped N-dimensional Levy

process if there are measurable 0 _ Tk  ~ such that

a) Yk(t A T ), k  N+1, 0 ~ t, and

b) there is a sequence (Wk; Wk(0) - 0, k  N+1) of independent

Levy processes (processes with homogeneous, independent

increments) on a disjoint space such that, if we construct the

product probability space ) and on it define

y*(t) = Y.(t A T.) + W (t - (t A T )), t ~ 0, then * is a
sequence of independent Lévy processes, and (Tk )def T is a

stopping vector of (Y*) def Y* with respect to the generated

filtrations F*t ~ Fo*t+, t = (t). In other words, for any

0, k n {Tk ~ tkT e tk, k  where, here

and in the sequence, _ c{’} denotes the generated a-field o{’} , .
augmented by all P-null sets.
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Remark. That these last 03C3-fields contain Fo*t+ follows as in the case

N = 1. For a fairly general treatment of vector-valued stopping times,

see [T. Kurtz, 7]. Of course, the above definition is a transparent

extension of the case N = 1.

It is trivial that a stopped Lévy process is also a halted Lévy
procéss in the sense of [6], so Theorem 2.3 of [6] implies that the laws

of Yk and Wk coincide unless P{Tk = 0} - 1 or P{Tk = ~} = 1, ’ when

the question becomes mute. We will prove an extension of (0.1) in

which (P,(u A Md> ), j  n (t)+1) becomes, for each t, a stoppedJ ~t P
Poisson process in u. It is therefore important to understand how these

processes are related for different t. Suppose, therefore, that 

are such that both Y(t) - Y(t and Y(t A U) are stopped L~vy
processes. Even if Uk or Tk are permitted to be 0 it

is easy to see that we can use the same W = (Wk) ) in Definition 0.2 to

extend either process. However, we can extend Y(t to a Levy
* 

~ 

process in another way. Namely, let Y be the extension of Y(t A T)~ 

* 
_ _

using W. Then we can recover Y from Y using the stopping vector
T, and therefore we recover k on ~Tk  ~} for each k in such a way

that k is independent of Y. Since Y(t is also a stopped L~vy
process, if we follow the same prescription to recover U, but we apply
it to Y instead of the continuation of Y(t A U), we again recover a

process with the same law as Wk on {Uk  ~} which is independent of
Y(t A U). Then it follows that Y* is also a continuation of Y(t A U)
as prescribed by Definition 0.2. But this means that we actually
recovered Y(t A U) a.s. (not just a process having the same law).
Therefore, we can use the same continuation Y * to recover both

processes. Similarly, if we have a continuous family (T(t), 0  t  ~)
which is non-decreasing in t, and each T(t) makes! a stopped L~vy
process, then we can recover all the processes Y(u A T(t)), up to a
fixed P-null set, from the single process Y(u A T(~)).

1. The Representation Theorem

We require here only the cases N = 1 or N = ~ from Definition
0.2 (the general case being needed only if there are continuous
martingales). Besides, the case N = 1 is probably well-known, but we
present it first for simplicity.

Theorem 1.1. a). Suppose, beside 1)-4), that for every t we have

P{the number of times a discontinuity in (O,t] is finite} - 1. Then
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there is a stopped Poisson process P(u) on (Q,F,P), and a continuous
*

family T(t), 0  t, of stopping times of P (u), such that, for every t,

F = T(t)), 0  u).

Theorem 1.1 b) is the converse and is stated following the proof.

Proof. We make use of the martingale Md referred to above, whose times

of discontinuity equal those of the entire filtration F t in the sense

explained. (This is not a deep result, and probably not new.) Moreover,

under 1)-3) we know by Lemma 2.5 of [6] that M generates all the

square-integrable martingales of mean 0, in the sense that for any such

t 
_

M we have M(t) = J for a previsible h(s),
0

 .

0

To clarify the implications of 4) in this situation, we again view

the problem on the canonical sequence space where the process Zt is

well-defined and generates F . . Indeed, let us go one step farther and

view the problem as defined on the canonical "prediction" space of Z
itself, as defined in [5, Essay I, Definition 2.1]. The advantage of

this step is that the Levy system of Zt, used to construct Md in [6],

originally is defined on the canonical path space of a Ray

compactification for Zt, in accordance with [2]. Then, as explained in

[5, Essay IV, Theorem 1.2], we can identify the Ray-left-limit process

with z t- , t > 0, excepting a P-null set of paths if necessary, in order

to transfer the Levy system for fixed P to the path space of Zt. . Now

the point here is that the Levy system ([5, Essay IV, Theorem 1.2])

consists of (N , , H ) ) where N (z ,dz ) ) is a kernel in the usual sense

and H Z is an additive functional of Zt (this is an advantage of

using the canonical space of Zt). On this space we have, just as in

*It can be shown, although it is tedious and will be omitted here,

that the collection of all P satisfying 1)-4) on the canonical

prediction space of Zt defines a complete Borel packet (stochastically
In order to avoid this argument, we simply

consider Zt on the Borel space of all r.c.l.l. paths with values in

the prediction state space H0 and left limits in H (= all probability
measures on the sequence space). Then our particular P defines

completed a-fields F which suffice to prove Theorem 1.1, in view of

[5, Essay I, Definition 2.1, 2)]. This is, again, simply the device of

representing the problem on a more convenient probability space.
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Lemma 2.5 of [6] ,

t

(1.1) E 
~’ ~ 

0 H 
~" 

Then the assumption 4) and the strong Markov property of Z at times

Ta imply, just as for Z itself, that the increment

(1.2) o gT
a

is P-a.s. a fixed function of Z on {Ta+s  Ta+1J’ (Here we have
(X

used the translation operators 8t of Zt, which are not available on
the original sequence space but only on the "prediction space" of Zt).
The same reasoning applies to any other additive functional of Z which

obeys (1.2) at each Ta. In particular, this is true for Md(t).
For the present theorem, we need still more, namely a martingale

which generates the given 03C3-fields Ft, in the sense that

t = ?(M ~ s ~ t). It is possible to show that Md does have this

property, but the proof requires several results which at present have no

very convenient source (originally they were proved under extraneous

hypotheses such as "absolute continuity", whose availability under 1)-4)

is not clear). We will sketch the argument, and then show how to avoid

it by constructing a different martingale which makes the desired

property obvious.

It is easy to choose a sequence 0  f  1 such that
Z 

n

(R~ 0  ~ rational) generates the 6-field of H (for example, as

in Lemma 2.5 of [6], where Z is the resolvent of Z ) and therefore~ t

Ft = s  t, 0  03BB rational).

Then the generating martingale additive functionals of Kunita-Watanabe

Mf ~~(t) - ~ fn(Z ) 0 + t J ~ (f n (Z ) - s ~,R A Z 
have the same discontinuous as R~ fn(Zt), and it follows that
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F = cr(Mf ~~(s), s ~ t, 0  ~, rational).
n

This is clear because the right side contains the generated a-field of

the step process Wt = Zt on {T03B1 ~ t  T }, in view of the quasi-

left-continuity of Zt at limit ordinals ~ (all the discontinuity 
,

times of Z are totally inaccessible when 3) is assumed). Thus to show

that Md generates F t it suffices to show that each is

measurable over the generated a-fields of Md. At this point we can

invoke Motoo’s Theorem for right processes ([2, (2.5)]) to project

Mf I~ 
onto the subspace of martingale additive functionals generated by

n _

Md, , and since Md generates all square-integrable martingales (using

previsible integrands) it follows that it also generates the subset of

all martingale additive functionals. Thus we obtain functions gn~~(z)
such that

t

Mf n /~(t) - j 0 gn~~(ZS-)~d(S)~ .

and it is clear by induction on a that the discontinuities

~Mf ~~(Ta) - 
n a-

are in the a-field generated by (Md(t A Ta), 0  t). Then it follows

that Md generates F t in the required sense.

To avoid this argument, we can also directly construct a martingale

M * (t) which obviously generates F , as follows. It is well-known that

there is a bounded, one-to-one, Borel function

f*(x ,x ,...): ° X°°(0,1) -> (0,1). (In fact, any two uncountable Lusin

spaces are isomorphic [1, Appendix to Chap. III, Theoreme 80].) It

follows that if we order the collection

fn, , 1  n, 0  ~ rational) = (g 1 ,g2’...) , ,

then the process h*(Z ) - f*(g1(ZS),g2(Zs),...) does generate ft’
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since it generates f n(Zs)) for each n and ~. Here again, since

the process is a fixed function of ZT on {T ~ s  it suffices
a

* *

to generate its "discontinuities" h (Z ) - h (ZS-) ) at all times T .

On the other hand, from (1.1) we know that for any e > 0 and k > 0,

* * *

s  t (h (Zs) - h (Zs-) + ) > s}

-t0dHZ(s) {f(Zs-,z) > ~}NZ(Zs-,dz)(h *(z) - h *(Zs-) + K)

is a square-integrable martingale additive functional with

E(M*~,K (t))2 ~ (1+K ~) 2E(d (t))2. Now let M*3(t) = M*1/3,6 (t) and
* * *

,2n (t) - M (n-1) -1 ,2n (t), n > 3. The martingales

*

M n (t), 3 -  n, are orthogonal (having no jumps in common) and together

they generated F in the sense required. Also, the jumps of M n * (t) are

* 

of size 2n - 1  AM(t)  2n + 1. It is easy to check that the

intervals (2 n(2n-1), 2 n(2n+1)), n > 3, are disjoint. Therefore, if we

define

M*(t) = E 2"~M*(t) , ,
n=3 

"

we obtain a square integrable martingale whose jumps determine uniquely

those of all the Mn. . Then M (t) generates F 
t 

as required. We note

explicitly, for use in Theorem 1.2 a) below, that no use was made so far

of the extra "finite number of jumps" assumption. Thus M * generates

F under 1)-4) above.

Under the extra assumption of finitely many jumps in finite time, we
*

next replace M by a local martingale with unit jumps. We can write,

for a certain g(z,z) whose exact expression in terms of h*, f, etc.
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need not concern us,

* t

(1.3) M (t) - E J dHZ(s) J NZ(Z s- ,dz)g(Z s- ,z) .
s  t 0 Hp

Now let T1,T2,... as before denote the successive jump times, so that

P~ lim T - ~} - 1 in the present case (these jump times are the samen

*

for M (t) as for Zt, P-a.s.). It follows easily from the definition

of a Lévy system and the optimal stopping theorem for martingales that

for each n the expression

t ^ T

Ma(t n Tn) ’ 
s E  (t AT) Ij tZs- $ Zs~ } 

- J p 
- 

n

is a square integrable martingale with

E2Md(T ) - 1 n = E 

S E  T If lZs- # ZsJ l _ n .
- n

Thus if we def ine

d t
Md(t) - 

s E t I Z s- # Zl } -0 dHZ(S)NZ(ZS-,H) ,
we obtain a locally square integrable local martingale. Now letting

h(Z ) - v- = (j N Z (Z v- ,dz)g(Z v- ,z))(N Z (Z v- ,H)) 
1

where 0~0 = 0, it follows that for each n,

tn T
* 

n 
dM*(t n Tn) - J h(Zv_)dMd(v) .

Indeed, both sides have the same continuous part, and an application of

Schwartz’ inequality (as in [6, (2.7)]) shows that the right side is

square integrable. Then the difference is a pure-jump martingale, which

must be 0 by 3). Consequently, we see easily by induction on n that

M * (t n n) and Md(t n Tn) generate the same 03C3-fields, and hence
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letting we obtain that likewise M~ generates Ft. In other

words, Ft is generated by the process 
s Z I{Zs- 

~ Zs 1 r 
alone (since

the compensator " is a fixed function of Z T in 2014 tT n+1’ } , and it
is clear by induction that ZT e Q(T1,...,Tn)).

Now we define, as in [6], P1(u ^ Md1>t) = Md1(03C41 (u) ^ t), where

03C41(u) = inf{s: u} is the inverse of

Md1>t =  dHZ(s)NZ(Zs-,H),

in such a way that

P1(u ^ Md1>t) = Md1(t) for u ~ Md1>t .

It follows immediately by a theorem of S. Watanabe [13], as in the case

of [6, Theorem 2.4], that P1(u A ) is a halted compensated Poisson

process for each t. We need to show that it is actually a stopped

compensated Poisson process, whose generated a-field equal F . . We note

that P1(u) is defined for all u  lim Ma> - Md1>~. Now on

 P1{u) obviously has a.s. only finitely many jumps in

(0,Md1>~), and it is clear that if we define P1(Md1>~) = lim P1(Md1>t)
t ~ ~

then Md>~) is again a halted compensated Poisson process (the

joint distributions of its product space continuation for all u are the

limits as t ~ oo of those of the continuations of P1(U A Ma> ) )),
hence the continuation is again a compensated Poisson process).

We will reconstruct M~ from P (u A Md>~). Recalling that, given

, a.s. a fixed function of t in {T n  t  T n+ 1 }, while

ZT 
n 

e Q(T1,T2,...,Tn), let 0  n, t1  ...  tn  t,

denote a choice continuous in t and measurable in (t 
1 
,...,t 

n 
), in such

a way that if T ’ ,T ~ .... are given then M~> ) t = A n (t;T 1 ,...,T n );
t ~ Tn+1, defines conditional on {T ,T ,...} (in case

n = 0, we just have = AO(t)). Such A n are easy to construct by
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considering an arbitrary choice defined for rational t, since is

continuous in t. Then by definition of P1(u) we have a.s.

=Md1(T1), P1(A1(T2;T1)) = M1(T2)’...’
P 1 (A n (T n + 1 ;T 1 ,...,T n )) = ) for all T n + 1 (we recall that

there is zero probability that any T occurs interior to an interval in

which remains constant). Letting S 1  S2  ... denote the

successive jump times of P1(u A ) it follows that

S1 l = 
= for all n with Tn+1 ~ 00. °

Thus to reconstruct from P1(u ^ Md1>~) we need only define

T1 = inf{t: S1 = A0(t)},...,Tn+1 = inf{t > = 

for all n with S  co, and then P1(An(t;Tl,...,Tn)) on

{T ~ t  } for all n, where and T 1 - oo when

S n+1 . = m (on an exceptional set where the corresponding Md> 1 t is

discontinuous, we take = 0).

It is immediate that, apart from the exceptional set, we have for

s j_ t, M (s) e t ), 0 _ u) since for n > 0 the right side

contains t , 
1  n} and therefore also t , 

1  n}.

But this is equally true if we replace P1(u) by the ordinary Poisson

process P(u) = P1(u) + u, as in the statement of the theorem. Finally,

to see that is a stopping time of the continued process P (u)

(Definition 0.2), we can use a result of Pittenger [12] explained below,

provided we show that (considered on the product space) we have

Md1 (t) ~ 03C3(p* (u), 0 ~ u) for all t. For this it is enough that

* * *

T n E o’(P (u), 0  u) for each n. Now let 
! 

 S2  ... denote the

*

discontinuity times of P. . Then

S*n on {Sn  ~}

S = c. on = .}, ,n 
00 on {S n = ~ } ~

and

T1 = inf{t: 

S*1 = A0(t)} on {S1  ~}

~ on {S1 = ~}
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But on {S1 = ~} we have S * > Md1>~ = so

T1 1 = inf{t: S1 1 = A~(t)} holds everywhere. Suppose for induction that
- *

T1,T2,...,Tn e Q(P (u), 0  u). Since

*

Tn+ 1 = 

> T : n Sn+1 1 = An(t;Tl,...,Tn)} on 

j {Sn+1 1  ~} 
r

n + 1 
°° on l Sn+ 1 = oo}

where Sn+1 > Ma> - A n 1 ,...,T ) n on ~S 
n 
 ~ = S 

n+1 }, it follows

*

that (with ~) Tn+1 = inf{t > T : n S n +1 = An(t;Tl,...,Tn)}
holds everywhere on  ~} - {T n  Then by induction

*

Tn+1 s Q(P (u), 0  u), as required.

If we apply the same reasoning to the stopped martingale 
*

for fixed to, we get a different Poisson continuation P (t;to) which

coincides with the former up to time Ma> . The above argument now
t

shows that Md> is in the completed 6-fields of the continuation of
1t

0
*

P (t;t ).
0

Once again, an argument of (A. 0. Pittenger, 12, ~6] shows

immediately that Md> is a stopping time of the generated ~-fields1t
0

~* of P*(t;t ). The proof of this result will be included in a moret o

general case needed below for Theorem 1.2 a), so we postpone it here.

Let us simply state the result we need as

Lemma 1.2 (Pittenger). Let Xt be a Borel right process with semigroup

Px, and let 0  R e ~~ (= the usual completed, generated a-field of

Xt). Then if, for a fixed P~, we have the strong Markov property
X

P R(S) on {R  ~} for all S e ~o, where
~R = R), 0  ~(R), then R is an ~~-stopping time.

In our case, Xt is a canonical realization of the ordinary Poisson
* 

a.s. d
process P (t;t ), and R - Md> . The strong Markov property at R

follows immediately from the definition of the halted Poisson process

P(u ~ Ma>t ).
0
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Let us remark, finally, that the converse of Theorem 1.1 a) is also

true (but we must be careful to include the fact that M>t is

continuous).

*

Theorem 1.1. b). Let P (u) be an ordinary Poisson process, and let
*

T(t) be a non-decreasing family of F -stopping times with T(t) con-

tinuous in t and T(o) = 0. Then the family

r = A T(t)), 0  u} satisfies 1)-4), and has finitely many times

of discontinuity in finite time intervals.

Proof. It follows by the optional sampling theorem of Doob that for each
* *

t , P (to A T(t)) - (to A T(t)) is a martingale, hence P (T(t)) - T(t)

is a local martingale, and locally square integrable. Since T(t) is

*

continuous, it is clear that P (T(.)} - T(.)>t = T(t). Now we can use

P (T(t)) - T(t) the same way as M (t) above to define for each t a

**

stopped Poisson process, which is obviously the same as P (u A T(t)).

Therefore, (F(P (u A (T(t))), 0  u) C j(p (T(u)), u  t). According to

the reconstruction of {p (T(u)), u ~ t} from {P (u A T(t)), 0  u}

given in the preceeding proof, we also have

o’(P (T(u)), u ~ t) c o’(p (u A T(t)), 0  u), so that

F t = o’(p (T(u)), u ~ t). Now it is clear that the fields generated by
*

P (T(t)) as on the right do satisfy 1)-4) and have finitely many times

of discontinuity in finite times, concluding the proof (that there are no

continuous martingales follows routinely because T(t) is a fixed function

of (S ,...,S ) on {s ~T(t)  S }, where (S ) denote the jump
*

times of P (t)).

It is obvious that if the discontinuity times have a finite

accumulation point with positive probability, the conclusion of a) does

not hold. Indeed, there cannot be a finite N and a stopped

N-dimensional Poisson process generating Ft. Nevertheless, we have

Theorem 1.2. a). Under 1)-4) above, there is a stopped Poisson process

(P n (u), 1 2014  n) = 2014 P(u), and a continuous family (T ~ (t)) = of

*

stopping vectors (of dimension N = oo) such that, for every t,

ET n (t)  ~, 1 1 2014  n, and = A T n (t)), 1 ~ n, 0  u).
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Proof. The proof is essentially the same as for Theorem 1.1 a) except

for two difficulties: first, the original order of the jump times T

is not preserved in the combined set of jump times of (P ), and second,
n

we must use transfinite induction on a so the case of limit ordinals a

is a new feature. Neither problem, however, causes any great

difficulty, as we shall see.

We go back to expression (1.3) for the locally square integrable

martingale M (t) which generates ~ , , and for 1 _. ~ set

~ ~=~,~s-’~I{!g(Z,_,Z~ ~}

- ~ ~(~_~)g~..~)i{,~_~ ,~
* * * * *

Then the sequence M , M - M.... , M .... is orthogonal and

together they generate F. Moreover, each has only finitely many jumps

in finite times. Then we can proceed exactly as for M (t) in Theorem

1.1 to show that the sequence

~ ~~L~~!~
- ~s)~(Z,_.dz)I~~~ ~ ~ ~ ,

Mdn+1(t) "’ I{1 n+1  , ,1,
t

- ; ° ~ / !~-~!~ 
, 1 "  n , ’

is locally square integrable, and
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(1.6) 

for suitable h (z), 1  n, with an analogous expression for Now
n - 1

it follows as before by induction on a that for each finite integer

a, M 
* 

T ) ) and (M d (t A T ), 1  n) generate the same a-fields.
a n a -

Moreover, if this is true for a, then since Z is a fixed function of

Za on {Ta ~ s  it is likewise true for a + 1. Suppose finally

that 6 is a limit ordinal. Then lim T = T~, and T  T~ on

~ " 

{T 
a 

 00} . Thus Z , , which under 3) has only totally inaccessible times

of discontinuity, is a.s. continuous at T.. on {T~  o°}. Therefore

T P 
s  t) - a ~  P T ’ 

s  t)

- ~ T ), 1  n, s  t)
n a - -

- A T S ), 1 -  n, s -  t)

which completes the induction step. It is well known that there exists a

sequence of countable ordinals with 

k 

~ 00} == 1 (we will

review the proof of this just before Lemma 1.3 below). Consequently we

obtain as required

(1.7) Ft = lim 
m 

), 1  n, s  t)

= 03C3(Mdn(s), 1  n, S  t).
n - -

At the same time, we note explicitly that, since each Mn(t) is

continuous at limit ordinals P (along with (1.7) implies that ~t
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is generated entirely by the times of discontinuity T03B1 ~ t of the

combined sequence (Md, n 0  n). In symbols, Ft = cF{T 03B1I{T03B1  X 0
We now set n n (u ^ n t = n n n n (u) ^ t), 1 - n, 0  u where

03C4n(u) = inf{s: > u}. The definitions are obviously consistent in

t, which defines lim for all n and u. It follows byn n t

[13] or [11, Theorem 2’] ] that (P (u A 1  n) is a halted

compensated Poisson process for each t (as also in [6, Theorem 2.4,

Case 2]), and letting we obtain by convergence of distribution

that (P (u A Mdn>~)) is likewise (as in Theorem 1.1 a) above). Thus

our problem is again to show that this is a stopped compensated Poisson

process, and we will follow the same line of argument as in Theorem 1.1,

by reconstructing (Md) from (P ). We know that the have no jump

times in common, so we introduce the notation (T ,n ) ) for the jump

times and their associated processes, setting for completeness n = 0

if a is a limit ordinal of if T =00. We also know that in each

{T03B1 ~ t  T03B1+1}, each Mdn>t is a fixed function of t and

{(T ,n ), S  a}. Since is continuous, we can again introduce

functions A such that  a) == on

{T03B1  t  Ta+1} given (TQ,nQ) =  a, where each A 
a,n 

is

continuous in t for ta  t, and measurable in a) over

the product Borel field.

For a = 0 we just write A o,n (t). Thus, apart from a fixed P-null

set, we have

(1.8) 

on ~Ta  t ~ for all n and a, where we again use the fact that

each Mdn is a.s. constant during the level stretches of M n d > (easily
seen by optional stopping of the martingale (Md)2 - Md> at times

- 
n n

T = inf{t > r: Mn> # Mdn>r }).
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Next, suppose that P n (u A ), 0  u, 1  n, are given for fixed

t, and let us reconstruct (Md(s), 0  s  t) outside a P-null set as
n 

-

follows. Let S(k,n) denote the kth jump time of P (u A 1  k,

or ~ if there are  k jumps, and set

( 1.9) T1(t) = inf{s: S( 1,n) - for some n}. .

We note that T1(t) coincides a.s. with the first time of discontinuity

T1 I on ~T1  t}, and in this case it occurs for a unique n = n1.

Indeed, we have Md(s) - n = P n (A o, n(s)), 0  s  T1, , for all n, and since

~, T1(t) - ~ is equivalent to "S(1,n) - ~ for all n". Thus

we have determined t A T ) ) for all sand n. Assume now that

for a countable ordinal a we determined ((T03B2(t),n03B2), 03B2 ~ a) in such a

way that a.s.

(1.10a) T~(t) 
= 

T on 

,(1.10a) T~(t) - ~ m elsewhere 

’

and consequently on s  A t}, for all n,s,~  a,

(1.10b) ^ t ^ = ), Y  ~) ^ t) °

Then by the inaccessibility of jumps, if a is a limit ordinal we have

also determined

(1.11) M d (t AT) = lim A T ) , ,
n a 

~ 
tJ

so in any case Md(s A t ^ Ta) ) is determined for all s. Then we
n a

define

(1.12) Ta+1(t) - inf{s > Ta(t): S(k,n) -  a)

> -  a) for some nand k~,
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with ~. Since -  a) - > ’ it follows by

(1.10b) and the continuity of that for each n only one k is

possible in (1.12) on the basis of A t A T ), namely the first k

exceeding the number of jumps of A t A T ), 0  s. Moreover, it

follows from 4) (well-ordering of jump times) that the n in (1.12) is

uniquely determined on {T a+1  t~, P-a.s., where it equals na+1’ . Con-

sequently, we see that a.s.

T03B1+1 on {T03B1+1 ~ t}
T03B1+1(t) = { ~ elsewhere

as required, and this extends the determination (1.10b) of Md to
n

n Finally, if a is a limit ordinal and we have

determined ((T03B2(t),n03B2), 03B2  a) satisfying (1.10a) and (1.10b) with T03B2
in place of Ta, , then we need only set lim TS(t), n - 0, and

repeat (1.11) to extend the determination to 03B2 = a. Thus by transfinite

induction, applying (1.12) whenever n and k are uniquely determined,

and setting Ta+1(t) _ ~ otherwise, we determine Ta(t) for all a,

P-a.s., from (P (u A t ), 1  n, 0  u), which simultaneously deter-

mine (Md(s A t)) by (1.10b). It can be seen easily that these

definitions are consistent in t, so that apart from a single P-null set

we have determined Ta (= lim 
m 

for all a, and for all t and n,

from A Mdn>~), 1  n, 0  u).
n -

To show that the thus determined are stopping vectors of
*

the continuation (or more precisely that when we extend (Q,F,p)
* * *

to the product space (S~ , ~ ,P ) ) the (Ta(t)), as functions of (w,w’)

depending only on w e S~, are stopping vectors of the augmented generated
*

03C3-fields of (Pn(u))), it will be enough by Lemma 1.3 below to show that
_ 

*

e o(Pn(u), 1  n, 0  u) for all a and t. This will then

imply that is also in 1  n, 0  u). As in Theorem 1.1

a) above, we can just as well treat the case of (T ) ) and then
a
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specialize to T (t) by using the stopped processes A t). The

necessary induction on a is then quite analogous to that of Theorem

* *

1.1. We let S (k,n) denote the successive jump times of Pn, , and

S(k,n) the jump times of P n (u A ) on S~*. . Then S*(k,n)  S(k,n).,

*

and S (k,n) = S(k,n) unless S(k,n) = ~. We claim that (1.9) implies

T1 I = inf~s: S * (1,n) - A o,n (s) for some n}, a.s. Clearly the above is

 T1. . Suppose for contradiction that it is  T1 at a certain sample

point. Then there is an n with
o

inf {s: S * ( 1,no) - Ao,n (s)}  inf {s: S( 1,n) - Ao~n(s) } for all n. .

o

*

In particular, S (1,no) )  ~ and S(l,no) - ~. But this implies

S 
* 

o > n 
o 
>~ = Ao,n 

o 

(~), which is a contradiction.

_ 
*

Suppose next, for induction, that T~ e Q(P ), ~  a. We want to

*

show that we can replace S(k,n) by S (k,n) in (1.12), namely that

(1.13) -- > Ta: S (k,n) -  a)

>  a for some n and k~.

Obviously we may assume Ta  ~ and that the right side is also finite.

Hence it this is false at a certain sample point there is an n o and k o
with

(1.14) inf{s > Ta: :  a)

> Aa,n (T03B1;(T03B2,n03B2), 03B2  03B1)}
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 inf{s > Ta: S(k,n) -  a)

>  a)}, all k and n.

This implies (with n = no) that S (k ,n )  S(k ,n ) and S(k ,n ) - ~,
which last implies S * (ko,no) > Mdno>~. Now we distinguish two cases:

a) Ta  Ta+1 = ~, and b) Ta  Ta+1  °°’ In case a) we have

S(k,no) #  a) for all k and s when the right

side exceeds its value at s = Ta, whence Mdn
o 
>~ = (~;(T03B2,n03B2), 03B2 ~ a),

which contradicts S*(k,n) > Md > . In case b) we have a unique0 o n 00

0

na+1 such that

Ta+1 1 = inf{s > Ta: S(k,n03B1+1) = A03B1,n(s;(T03B2,n03B2), 03B2  a)

> A a,n (T 03B1;(T03B2,n03B2), 03B2 -  a) for some k}.

Now we observe that without loss of generality we can assume that k - 1

is the number of jumps of Pn by time Mdn > . Otherwise, since P 
n

o no Ta n o
and P * agree up to time Md> , we could reduce k in (1.14) andno no Ta+1 o

strengthen the inequality (it also is clear that no smaller k than
0

this is possible when T  ~). But since

S 
* 

{k ,n ) > M d > > M d > - A  a)0 o no 00 - no t a,no /’.I /’.I 
-

for T03B1 ~ t  Ta+1, the left side of (1.14) is not less than Ta+1 if

 a) > (Ta;{T~,n~)~ ~  a) ,0 o a /’.I /’.I 
- 

0 0 a /’.I /’.I 
-

as follows by the definition of Ta+1’ This contradicts (1.14) with

n = na+1. On the other hand, if
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A03B1 ,n o (T03B1+1 ;(T03B2,n03B2 ), 03B2 ~ 03B1) = A03B1,n
o 

(T03B1 ;(T03B2 ,n03B2), 03B2 ~ 03B1)

then the left side of (1.14) is still at least T , and the same
a+I

contradiction obtains, proving (1.13). Finally, if a is a limit

_ 
* _ 

*

ordinal and T e J(P ), fi  a, then clearly T = lim T e J(P ).
# ~ 

- 
~ 

a 
p . ~ # ~

Thus by induction we have shown that T e J(P ) for all countable
a -

ordinals a.

, 
d _ 

* _ 
*

Now to obtain M (t) e J(P ), we note first that T (t) e ) by

applying the above proof to A t, 0  s). Now let a be an
n k 

increasing sequence of ordinals with P( lim T (t) > t) 
= I. Then

k + m ~k 
/(t) = lim A T (t) a.s., which is in J(P ) as required.
~ 

k + m 
~ ~k 

-

We turn now to the demonstration that each is a stopping
~ 

n t

vector of the continuation (P ). This is an immediate consequence of

the following lemma, which is easily generalized farther as indicated in

the proof.

Lemma 1.3. Let (B. ,P ,;I  m+I, j  n+I); m,n  m be a halted Brownian-
i j 

-

and-compensated-Poisson process, with halting vector
* *

T = (S ,T ;I  m+I, j  n+I) and product space continuation (B.,P,) so
- I j i j

* ..

that Pj(t)(= Pj(t ^ Tm+j ) + Pj(t - (t AT,», with Pj and Pj
independent) is a compensated Poisson process, j  n+I. Then in order

that (B ,p ;I  m+I, j  n+I) be a stopped Brownian-and-compensated-
i j

poisson process (Def. o.2) with stopping vector T is is necessary and

_ 
* *

sufficient that T e J(B,(s), P ,(s), 0  s).
- i j 

-

proof. For notational convenience we take m = 0. The general case is

treated by obvious modification. The necessity is also obvious, so we

_ 
* 

assume T e j(p ). Replacing T by (T , A t), and then letting t + m ,
- - 

- J

we may and do assume that all components are finite.

**The existence of such a sequence is easily shown. Consider

E(T (t) A t), which is non-decreasing in a, and strictly increasing
a

unless E(T (t) A t) = t. Then clearly ( SUp At»  t

~ a countable 
a 

-

and there exists a sequence «~ with iim t> At) = sup At).

k + m k a

If this were  t, then letting a~ 
= lim a~, We would have

k + m

E(T (t) A t) > sup(T (t) A t), a contradiction. Therefore
a 
m 
+I 

a 
a

E(T (t)) = t as required.
a
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* *

We now take, without loss of generality, P (=(Pj)) to be the

* 

~ 

J

coordinate process on the canonical space S~ of sequences (wj) of

paths, and for any t = (tj) we define the translation operator

6t by 8t(wj(s)) - (wj(tj , + s)). By definition of a halted Lévy

process, T satisfies the strong Markov property

*

(1.15) P(8 1SIG ) _ P(P (T))(S)r S e 6(P*).

*

Here, to avoid notational confusion, we write P rather than P for the

probability, and PX for the probability of an n-tuple of independent

compensated Poisson processes starting at x, and we write also Gt for

the uncompleted filtration, with GT = Q(P.(t n T,), j  n+1, 0  t).
T J J 

It is important to note that T e GT (even without knowing T is a

*

stopping vector) because the continuous part of P ,(t n T,) is -t for
J J

t  Tj and -Tj for t > Tj. The lemma actually can be generalized to

an arbitrary right-continuous strong Markov process with parameter t,

simply by replacing GT by in ( 1.15) and thereafter.

We fix t, and show that over the set {T  ~, where  is taken

component-wise, we have

*

(1.16) v GT) - PP (t)(S), S ~ Q(P*).

To this effect, we note first that

( 1.17 ) GT = GT ~ + (u n (t - T) v 0 ) ) ; 0  u) .

Indeed, the right side is included in the left by composition of
*

measurable functions, since each (P,(s), s  t.) is measurable in
J - 

J

(s,(wj)) with respect to X G 
t. Conversely, for s  t and

m j _ ---

_ = X k=1 ~, with finite m  n and Borel sets I~, we can write

1P (s) s HJ _ 
K ~ 

u 

{ 1, ... ,m} 
L 
k ~ 

n 

K 

 Tk~ ) n
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~ {P*k(sk ^ Tk) ~ Ak}) ~ {k ~ K}({sk > Tk}

n + (sk - Tk) n (tk - E Ak})] ,

where K ranges over all disjoint subsets. Then by filling in extra

Ak = R for the coordinates not included in ~k ~ K} it is easy to see

that this set is in the right side of (1.17), as required.

Next, for S1 =  (P* (T + (ui ^ (t - T) ~ 0)) ~ Ai), with Ai as

above, 1  i  N, we will show that on {T ~ t} we have

( 1.18) 
n S1|GT) = E(Pp* (t) (S)IS1|GT); S E 03C3(P*) .

Indeed, using (1.15) and routine measurability argument the right side

becomes

* *

Ep 

on {T  t}, where we define

6TS1(w) - {w’ e n (P * (ui A (t - T(w)), I w’) e 

- i=1 

But the left side of (1.18) becomes

E(I03B8T(03B8-1t(S)~ S 1)
) = EP*(T)(I03B8-1t-T(S)I03B8T(S1)) ,

where for fixed T we have 9T(S1) E G t-T . Thus by the (simple) Markov

property of P* at time t - T this becomes the same as the right side,

proving (1.18) for such S1. Both sides being monotone in S1, (1.18)

follows. Then it follows that if S2 with S2 c {T  t} we have
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*

P( (8 1S) n S n S ) - E(~ (t) (S) ~ S n S ) ’

and because finite unions of such S1 n S2 generate the trace of ~T

on ~T  t} by (1.17), this implies (1.16).

Now we can show that {T  t~ is in the augmentation of G , as

required. First of all, changing T on a P-null set if necessary, we
*

may and shall assume that T e ) (the definition of a halted or

stopped Lévy process is immune to such a change). It follows that there

is a Borel function f(x ; ; 1  m) such that
*

I  (w) =f(P (t ,w); 1  m) for some vector sequence (t ).

Moreover, replacing each t by the pair and t, and for

each j changing f to depend on 
A t)j , if this equals 

but to depend on t)j - P,(t .) otherwise, we can assume that
J ’ 

~ 

J J 
*

each tm is either  t or > t. Next we introduce sets C(w), w ,

gi ven by

C(w) - {w’ E S2*: 1 = f(P*(t - m ,w), t  t; P*(t - t,w’), t t) .

In other words, we fix the coordinates t  t, and translate the rest of
__

the coordinates by t. Since f is Borel in any subset of coordinates,~ 

* 
it is easy to see that C(w) e ~ for each w, and that is

measurable in (x,w) with respect to B~ x F*, denoting the Borel
field of R . Indeed, this is trivially true if, for Borel f 1 and f 2 ,

* *
= (_t.m~w) ~ ~  (~,w) 7 ~ ~ t)

and linear combinations of such products generate all bounded Borel f

by monotone closure. Finally, by the same reasoning and the Markov

property, we have

*

( 1.19) P( {T  ~ I ~t) = p"’ - (C(w) ) , ,

and in the same way

*

(1.20) PP n C(w)), S E Q(P*).
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Returning to (1.16) it follows that for S2 E Gt we have

*

~S ) - ~t)(S); {T  t} ~ S ).
*

Since E G t , (1.19) and (1.20) now imply

* *

(1.21) P(03B8-1t(S) ~ {T  S ) - (t)(S)PP (t)C(w); S )

- E(PP* (t)(S ~ C(w)); S ) ,

and consequently

* * *

~ (t~C(w) - PP (t)(S ~ C(w))~ P-a.s. .
*

Since Q(P ) ) is separable, this identity holds P-a.s. for all
*

S e U(P ), and taking S = C(w) yields P- - C(w) - 0 or 1, P-a.s.

*

But {w: PP (t)C(w) - 1} E G , and we see from (1.21) that this set is

P-a.s. equal to {T  t}, since finite unions of 8t generate

Q(P * ). Therefore {T ~ t} ~ G up to a P-null set, and hence T is a

stopping vector of the augmented filtration.

Final Remark. The converse of Theorem 1.2 a), analogous to Theorem 1.1

b) proved above, is also true, but we omit the proof at present. It is

easiest to assume ET(t)  ~ for all t, which was the case in Theorem

1.2 a) anyway. The main point is that any filtration

F = i  m+1;  n+1; 0  s)

where T(t) = is continuous in t, T(0) - 0, ET(t)  m,
- i J 

- - -

and each T(t) is a strict stopping vector, automatically satisfies

1)-3). To get the absence of continuous martingales, one then requires
*

only absence of the Bi (Brownian) terms. Thus the well-ordering of

discontinuity times is unnecessary for the converse, provided we also

omit it from the conclusion. Since this argument has its natural setting

in greater generality than the present paper, we will defer it to a later

date.
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