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SIMPLIFIED MALLIAVIN CALCULUS

by James Norris

We aim to show, as economically as possible, using the Malliavin

Calculus that the solution xt of a certain stochastic differential

equation: 

x - x E 1Rd
0

has a smooth probability density function on IRd, whenever the

following hypothesis is satisfied at the starting point x :

H1 : X1,...,Xm; 
> ,.. etc. >

evaluated at x, span .

We assume above that :

- are C vector fields on IRd satisfying

certain boundedness conditions,

- w - (wl,...,wm) is an (3 , IP)-Brownian motion on 

We use ~wt to denote the Stratonovich differential ’ the symbol

being reserved for the Ito differential. We sum the index i

from 1 to m whenever it is repeated. Of course

[Xi,X j] ~ DX j.X i - DX i.X j.

Programmes for establishing this result have been given by Malliavin,
Stroock C12~, C13~, Bismut C3~ and others, though only Stroock C13~
has obtained the full result. All are agreed that the proof splits
naturally into two parts: namely, for a certain dx d random

matrix Ct , associated with xt , known as the Malliavin Covariance

Matrix,

Ct - 1 E for all p  ~ ~ x t has C~ density

and

H1 holds for and p  ~ . °
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Our proof of the first implication, given in Sections 1 to 3, uses

Bismut’s approach, which seems the most efficient in this context.

We have made some simplifications of Bismut’s work and been more

explicit in iterating the integration by parts formula. Simplified

versions of Bismut [3J have also been given by Bichteler and Fonken

[1] and Fonken C6~.

Our proof of the second implication, given in Section 4, follows for

the most part Meyer’s [10J presentation of Stroock’s [13J argument.

But by the application of a new semimartingale inequality (Lemma 4.1)

we are able to shorten the argument considerably.

Before we start on the probabilistic arguments we give a well known

result from Fourier analysis which explains how we set about obtaining

smooth density.

Theorem 0.1

Let X be an IRd-valued random variable with law 11. Let n z d + 1.

Suppose there exists a constant Cn  00 such that for all multi-indices

a with |03B1| I f n ,

for all f E 

Then there exists g E such that

u(dY) - g(y)dy .

Proof

Let

u(u) - ( 2,~ ) 1 d/ 2 u E 

Then for lal I S n , and f u ( x ) = 
,

lu°‘Ilu(u) I = 1 I IRdD03B1fu(x) (dx) |
= .~) ld /2 
 C n / (2~r)d/2 ,
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So for lal I s n-d-1 , and 

I = tu"!)p(u)t I

 / (2~r)d/2 .

Hence

D~p E ( a I _ n-d-1 .

So, inverting the Fourier transform,

D03B1  E 
’ I a I ~ n-d-1 . ° D
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1. Lp-Estimates and Differentiability in Initial Data for S.D.E’s.

In this section we first state two well known results for reference.

Then in Proposition 1.3 we deduce our main technical result on s.d.e’s.
This result enables us to deal easily with certain s.d.e’s arising in
Sections 2 and 3 whose coefficients are not globally Lipschitz; so

that the technical difficulties they present do not become confused
with the ideas of Malliavin Calculus. Sections 2 and 3 should perhaps
be read before the proof of Proposition 1.3 - for motivation.

We use systematically the symbol C(p ...,p ) to denote a finite

constant depending only on 

Proposition 1.1 (Existence and Lp-Estimates for Solutions of S.D.E’s)

For i - 0,1, ... ,m, let X.: S2 x [o,TJ x IRd be previsible and

differentiable as a function of x E ]R . Fix p  oo . . Suppose

there exists a constant B such that, for i = 0,1,...,m,

I Xi{~~ t~~) Ip~ ~ B , >
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and I B on 

Then, for each , thes.d.e.

dx~ = j
j f 

has a unique strong solution with

C(p.T.d.R.B)tP/2 (,.2)

for all t~ !:0,T].

Proof:

For the existence of the solution x. see (for example) Bichteler
and Jacod [2], Theorem (A.6). The Lp-bound is a straightforward
exercise in Burkholder-Davis-Gundy inequalities and Gronwall’s Lemma. Q

Proposition 1.2 (Differentiability Theorem for S.D.E’s.)

Let be C°° vector fields on with bounded

derivatives of all orders. Then there exists a map 03C6 : 03A9  [0,oo) x 

such that

(i) For each x e IRd , = (t)((jj,t,x) is the unique solution

of thes.d.e.

dx~ = + 

B (1.3)

x
o 

= x 

(ii) For each w and t the map is C°° on IRd with

derivatives of all orders satisfying the s.d.e’s obtained from (1.3) by

successive formal differentiation. for example, =

and = satisfy the s.d.e’s

+ 

(1.4)

U0 = I ~ IRd ~ IRd
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and

dW~ = + + 

+ (1.5)

w~ =0 c (R~ om~)e m~

respectively.)

Proof:

This result is well known. See for example Carverhill and Elworthy
[4]: the s.d.e’s for the derivatives are obtained using Itô’s Formula
from the associated s.d.e. on the diffeomorphism group.

In Section 2 we will require an extension of Proposition 1.2 in which

the hypothesis is weakened to allow a wider class of vector fields,
which we now define. The extension is made in Proposition 1.3.

Definition of 

For d~ ... c ]NB{0}, with d~ + ... + d~ = d , and a c :IN, we

denote by the set of X c of the form

X ( x ) = X(j)(x1,...,xj) for x=(: t, (1.6)
; ~k~

...,x~)~ ~ ~

where R d is identified with JR 
~1 

x 
... 

x and such that

~X~S03B1,N ~ x ~IRd ( |DnX(x)| (1+|x|03B1)  sup |Dj jx(j)(x)|)

 ~ for all Ne JN.

We denote

"~"" ’’~ " -"’~-
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When manipulating S(d1’...,dk) vector fields below we will often

assume without comment they are given in the form (1.6).

To provide some motivation for this definition note that equations

(1.3), (1.4) and (1.5) may be considered together as a single s.d.e.

for (x ,U ,W ) whose coefficients are S(d,d2,d3) but do not satisfy

the hypothesis of Proposition 1.2.

A similar class of "lower triangular" coefficients is introduced by

Stroock C12~, §6 in his version of the Malliavin Calculus to play

more or less the same role that S(dl,...,dk) will play below.

Proposition 1.3

Let E Then there exists a map

such that :

(i) For each x E md, is the unique solution

of the s.d.e.

= 

(1.7)

x 

(ii) For each w and t , the map is C~ on 

with derivatives of all orders satisfying the s.d.e’s obtained from

(1.7) by formal differentiation.

(iii)  E[ |DN03C6(03C9,s,x)|p] (1.8)

~ C(p,t,R,N,d1,...,dk,03B1, ~Xo~Sa,N , ..., 
for all p  ~ , R  ~ and N E 

Furthermore the following approximation result holds. Let 

i = 0,1,... ,m, be sequences in such that, for all n

and N E 1N ,

Xi,n = Xi on {|x| ~ n| , 

(1.9)
~Xi,n~S03B1,N  ~ . 

(1.9)

Let 03C6n denote the flow map associated with the s.d.e.
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dxt = X
o,n

(xt )dt + Xi
,n

(x
t )dwit

(1.10)

x - x
0

then

E[ |DN03C6n(03C9,s,x) - DN03C6(03C9,s,x)|p] ~ 0 (1.11)

as n ~ ~ , for all p  ~, t >-0, R  ~ and N E 

Proof

(a) We show (1.7) has a unique solution with

IE[sups~t |xs|p]
’ ~Xo~S ,..., 

) .
a,o a,o

Write (1.7) as a system of s, d,e ’ s (j = 1,...,k)

dxjt = X(j)o(x1t,...,xjt)dt + X(j)i(x1t,...,xjt)dwit (1.12j)
xjo = xj E 

We show by induction on j that (1.12j) has a unique solution with

IE[ |xjs|p] ~ Cj(p) (1.13j)

where Cj(p) depends as C above. Suppose true for 1,...,j-1.
Let

X.(c~,t,x~) - X(j)(xl(c~),...,x~ 1(c~),x~) . °
Then, for i - O,l,...,m and p ~ ,

IE[|i(03C9,s,0)|p]

_ 

‘- (1 + (,J-1)ap~2(C 1 (ap) + ... +C. ~-1 (ap))) ,
.

a,o

So Proposition 1.1 applies to the s,d,e. (1.12j) when rewritten
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in the form

dxjt = o(t,xjt)dt + i(t,xjt)dwit

xj = xjo 

and (1.13j) follows from (1.2).

(b) Here and in part (d) of the proof we make use of a particular
choice of approximating coefficients which also satisfy the hypothesis
of Proposition 1.2. For j = 1,...,k , choose a sequence (~n) in

,[0,1]) such that for all n E ~1 B ~0} : 
n

~D03C8jn~~ ~ 1 n,
~DN03C8jn~~  ~ , for all °

Let

03C8(j)n = 03C81n.....03C8jn, j = 1,...,k, and 03C8(o)n ~ 1 ,

X(J ) - x(j).03C8(j-1).03C8j ,
i,n i n na

X(1)~i,n

Xi,n = 
It is easy to check that Proposition 1.2 applies to the s.d.e. with

coefficients X X1 n’ " ’ ’ Xm n ’ . Denote by 03C6n the flow map

thus obtained. Observe that for each x E ~,d the solution xt
of (1.7) obtained in (a) satisfies

xt(w) - ~n(~,t,x) for all t E [0,T n (w,x)) , a.s.

where inf {t >_ 0 : 1 t4) (~.t,x)t I = n} .

Note also that is continuous the set {x : > t }

is open in IRd for all w,t and n .
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for all t E and all

x E 1Rd , a.s., we may piece together a map ~ : {(c~,t,x) : t  ~(c~,x)} -~ 

where ~((jj,x) = lim T (w,x) , such that
~

~n(~~t~x) on 

and is C°° on the open set

{x : t  ~(c~,x)} for all w and t .

For fixed x E lRd, (a) implies ~(c~,x) - ~ a.s. so "is"

the solution of (1.7). Moreover the derivatives of 03C6 must satisfy
the s.d.e’s obtained from (1.7) by successive differentiation, since

they agree with the derivatives of 03C6n up to T n .

Thus parts (i) and (ii) of the proposition will be established as
soon as it is shown that ~(c~,x) - ~ for all x,a.s. This is

actually a rather delicate point (see for example Leandre [8J or

Elworthy [5J p.91).

(c) Proof of (iii) and the approximation result.

Fix x E For i = 0,1, ... ,m , let (X~ ~) be a sequence
in satisfying (1.9). Denote and CPn the

flow maps associated with equations (1.7) and (1.10) respectively.
(We have shown in part (b) that these may be defined up to explosion
time ~(o),x) and that, for fixed x , ~((i),x) = oo a.s. ) For N E IN ,
let

and 

Now fix N E IN . Successive differentiation of (1.7) generates a

system of s.d.e’s for (U~,Ut,...,UN) with coefficients in

for some a’ (depending
on a and N). Moreover the Sa, -norm of these coefficients may

be bounded by a quantity depending only on the S a,N -norm of the
coefficients of (1.7), and N. (It may help to recall (1.4) and
(1.5) where s.d.e’s for the first two derivatives are written out.)
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Assertion (iii) now follows from part (a) of the proof.

Applying the above argument to ~n and using (1.9) we have

sup sup IE[ I DN03C6n (03C9,s,x) Ip7  ~ (1.14)
nEIN 

ID J  00 (1.14)

for all p~, t>_0, R~ and N E ~1.

IE[sup I UN - UN (n) IpJs_t s s

- IE[sups~t I UN - UN ( n) |p.1{sups~t|xs|~n} ] bY (1.9)

 sup I UN - UN ( n ) ( p, sup ( x ( J
s_t s s s_t s

 2pn1 C sup i UN I 
2p ]1 2 + IE C sup I UN ( n ) I 2p ]1 2)st s s

. IE[sup|x I 
2 J! .sst s

So (1.11) follows from (1.14).

(d) We show ~(~,x) - ~ , for all x E IRd , , a.s.

We recall the particular choice of approximating coefficients used

in part (b). We show firstly that (Xi n) ) satisfies (1.9) for

i - O,l,...,m . It suffices to observe that

|DN X(j)i,n = | (Nr)DrX (j)iDN-r
(03C8(

j-1)n
03C8jn 03B1)|

s N 
r=0 

(r)( ) 
1 S a,N

~ 
Sup S~p II

r ., N n n 
°°

and, since

IX(J) ~(J-1)( 1 i . n 
x ,...,

~ sup |X(j)i03C8(j-1)n(x1,...,xj-1,0)| I + 
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~ [(l+(3n)") + (l+!x~!)]
a,o

we have

= )D.X~~/~-~.~ + X~)./~-~.D~ ) IJ 1, n j 1 n ~~ i n ’ a

 ~Xi~S (1+2(1+(3n)03B1)/n03B1) .
a,o

Thus (1.9) holds. We deduce (1.11) :

as for all p°°, t>0, R  ~ and N e JN.

We turn now to a well known inequality of Sobolev.

For C°° functions 03C8 on IRd define

~03C8~Rp,N = (|x|R |DM03C8(x) P dx 
= I sup 

’ M=0 

Then (Sobolev, [11]), for each Rand N > 0, there exist

R> > N, p  ~ and a constant K such that

for 

It follows from (1.11) that

IE(|x|~R|DN03C6n(03C9,s,x) - DN03C6 m(03C9,s,x)|pdx) ~ 0

as for all t>0, R  ~ and N e :IN.

So, extracting a subsequence if necessary, there exists a null set

F s Q such that for 03C9 ~ r

|DN03C6n(03C9,s,x) - DN03C6m(03C9,s,x)|pdx ~ 0 (,.15)

for all t.R.N and p  ~ . By the Sobolev inequality, (1.15) then
holds for all t,R,N and p = oo .

In particular, for 03C9 ~ 0393 03C6n(03C9,s,x) converges to uniformly on
compact subsets of [0,oo)  IRd. So = oo for all x, for r .
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2. The Bismut Integration by Parts Formula

For X~X.~...,X ~ .5(cL,...~cL) and x e 3R , by Proposition 1.3,

the s,d,e.

dx~ = + ~
x0 = x 

(2.1)

has a unique solution with sup|xs] for all t > 0 and p  °°.

s~t ~ 
We obtain in this section an integration by parts formula involving

x. under conditions sufficiently general for the purposes of Section 3.

The formula first appeared in Bismut [3] as Theorem 2.1, but written

without the helpful Dx. notation of Bichteler and Fonken [1]. we

follow in outline Meyer’s simplification of Bismut’s proof [9] but

work in greater generality. This generality is needed for the

iterations of the integration by parts formula involved in proving
the smooth density result.

The integration by parts formula is obtained by viewing a perturbed
solution of (2.1) in two ways. Let u : TR ~ IRm 0 IRr be C°° and

bounded, with all its derivatives of polynomial growth. For h c ]R ,
let

t

w~ = 

w~ + f u(x~) .h ds
The perturbed process x is defined by

dxht = X0(xht)dt + Xi(xht) dwh,it
(2.2)

xh0 = x

or equivalently (writing ).h)i for the ith component)

dx~ = (X~(x~) + X~(x~)(u(x~).h)")dt + 
(2.2)’

xh0 = x 

Using Girsanov’s Theorem a new probability measure TP may be found

to make w~ an ~- motion. Since x~ measurable
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function of the path , (2.2) thus implies that the law of x
under independent of h, i. e.

~ f =0 for all f 

Using (2.2) one can show x is differentiable in h and a differen-
tiation under the integral sign is possible yielding an integration

by parts formula.

Let

Z 
h 

= ’ t t 

(u(x) .h)ldw1 - .. _2 1 
t t 

Bu(x ) .hl 
2 ds (2.3)Zht = exp -t0 (u(xs).h)idwis - 1 2 t0|u(xs).h|2ds (2.3)

and let

on~ . °

Lemma 2.1 1

(a) For I Z satisfies the 

= . 
I
- 
i (2.4)

~ j
(b) For all t ~ 0 and p °°

sup E 1  - (2.5)
s_t 

~ ’

(c) Under ~ , , Wt iS an motion.

Proof:

(a) Use Formula

(b) Apply Proposition 1.3 to the system of s.d.e’s.

dht =0 . 

dxt = X0(xt)dt + Xi(xt)dwit, x0 = x 

dZt = - Zt(u(xt).03C8(ht)ht)idwit , 

Z0 = 1
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where ~ is a C°° function of compact support on ]Rr with ~ (h) = 1 for
’

The coefficients lie in 

(c) By (a) and (b), Z is the exponential associated with the
martingale - 

J Q 
(u(x 

s 
and is itself a martingale. So by the

Girsanov Theorem (see example Jacod [7], Theorem 7.24), wt being a
JP -martingale,

wh - w >
0

is a IPh - martingale. But the quadratic variation of wt under 1Ph
is exactly that of wt under 3P . So by Levy’s characterization of

Brownian motion we have (c).

In the next proposition we obtain, for each w , differentiability
in a parameter of solutions of s.d.e’s by the trick of turning the

parameter into a starting point.

Proposition 2.2 (Differentiability with respect to a parameter)

Let S(d1,...,dk) and d1 + ... + dk - d.

Let u : ~m 0 ]Rr be C°° with all derivatives of polynomial
growth. Then there exists a function

t) : 03A9 x [0,~) 1  IRd ~ IRd

such that

(i) For each (h,x) E x 

is the unique solution of (2.2)’:

h
x 

.

(ii) For each w and t, ~(~,t,’,’) is continuously differentiable

on IRr x IRd with

sup IE {|~03C6 ~h (03C9,s,h,x)|p)  ~

for all x E ~d , F t > 0 and p  °o.
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(iii) Define ~ " Then Dxh satisfies the s.d.e.
obtained by differentiating (2.2)’ formally:

dDxht = (DX0(xht)Dxht + DXi(xht)Dxht(u(xt)-h)i) dt

+ Xi(xht)u(xt)i dt + DXi(xht)Dxhtdwit (2.6)

Dxh0 = 0 ~ IRd ~ IRr

(where denotes the ith row of 

Proof:

Apply Proposition 1.3 to the system of s.d.e’s.

dht = 0, h0 = h

dxt = X0(xt)dt + Xi(xt)dwit , x0 
= x

(2.7)
dxht = (X0(xht) + Xi(xht)(u(xt).03C8(ht)ht)idt + Xi(xht)dwit

"0 x ’

(where 03C8 : is C°°, of compact support and 03C8 (h) = 1 for

system has coefficients. 

(it)The conclusion of Proposition 1.3, parts (i)-(iii), implies (i), (ii)
and (iii) above.

Theorem 2.3 (Integration by Parts Formula)

Let ° Let xt be the solution of (2.1) : ’

dxt = Xp (xt ) dt + 

Xi (xt) dwt
J

Let u : ~ IRm ® IRr be C~, with all derivatives of polynomial
growth. Then the linear s.d.e.

dDxt = DX0(xt)Dxtdt+DXi(xt)Dxtdwit
+ i dt (2.8)
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has a unique solution with sup|Dx| [ e for all t > 0 and n  oo.

st 
~ ~ 

Furthermore, for any function f : G + ]R , where G is an open subset

of JR with x ~ G a.s., such that f is differentiable and and

e L~(~P) , ,

E fDf(x.)DxJ = JE 

J . 

(2.9)

Remark:

Equations (2.1) and (2.8) combine to form a system of s.d.els with

~(d.,...,d,; d.d ,...,d.d,) coefficients. This is the crucial

observation for iterations of the formula.

Proof:

Assume for now u and all its derivatives are bounded. Let x. be the
solution of (2.2)/(2.2)’. Define by (2.3). We make three

observations:

(i) By Lemma 2.1 I (c)

for ° (2.10)

(ii) By Proposition 2.2 we may assume is differentiable

in h a.s. with

sup IE (|~xht ~h|p)  ~ for all t ~ 0 and p  ~.

(iii) For each w , Z is evidently differentiable in h
with

h = f u(x~)~dw~ + f II/0 0 j

so by Lemma 2.1 I (b)

sup IE(|~ ~h Zht|p)  ~ for all t ~ 0 and p  ~.

)h)~1 
1 

~ ~

It follows that we may differentiate (2.10) under the expectation

sign at 0 to obtain (2.9). Equation (2.8) is just (2.6) with h = 0.
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It remains to relax the boundedness conditions on u and f. For f

as in the statement of the theorem take a sequence fn in with

Df) and f -~ f, Dfn+ Df

(pointwise) on G. Then (2.9) extends to f by the Dominated Converg-
ence Theorem.

We extend the result to functions u with derivatives of polynomial
growth by means of an approximating sequence of compactly supported
functions u . Choose C°° functions 03C8n : IRd ~ (0 ,1 ) with

1 

{~x~n} 
_ ~n  1 

{~x~n+1}

with derivatives of all orders uniformly bounded in n and on ~td.
Let un = u.03C8n then (2.8)/(2.9) holds for u . Since sup|xs|p E 

for all t > 0 and p  co, -

t0 un (xs) idwi ~ t0 u(xs) idwis in Lp(IP)

for all p  . and t > 0. We may thus extend (2.8)/(2.9) to u by
taking the limit as n -~ ~, provided that (with an obvious notation)

Dx~ in some p > 2

But by virtue of our assumptions this is a consequence of the

approximation result of Proposition 1.3 applied to the system of
s.d.e’s

(2.1 ) and

(2.8) with u replaced by un.

Alternative proof:

One can avoid using the full strength of Proposition 1.3 by establish-
ing the formula first for Xi bounded with bounded derivatives of all
orders then extending to Xi E s(d1," ,,dk) by the same approximation
as was used in parts (b) and (d) of the proof of Proposition 1.3.
Thus the use of the Sobolev inequality in Proposition 1.3 may be
avoided.
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3. Application of the Integration by Parts Formula:
Smooth Density and the Covariance Matrix

We fix vector fields X1,...,X m on IRd which are assumed C°" with
bounded first derivatives and higher derivatives of polynomial growth.
We obtain a sufficient condition for the s.d.e.

dxt = X0(xt)dt + Xi(xt)dwit

(3.1)

to have a smooth density.

We will make use of two processes Ut and Vt associated to the s.d.e.
(3.1), which are in fact the derivative of the flow associated to (3.1)

and its inverse. However we will regard them as defined by the

following s.d.e’s.

dUt = DX0(xt)Utdt + DXi(xt)Utdwit  (3.2)

U0 = I ~ IRd ~ IRd

dVt = -Vt

(
DX

0 ( xt) - DXi(xt)2)dt - VtDXi(xt)dwit 
(3.3)

V0 = I ~ IRd ~ IRd

The system { (3.1 ) , (3.2) , (3.3) } has coefficients so by

Proposition 1.3

sup ] and sup for all p 

st 
s 

st 
s

Furthermore an easy application of Ito’s Formula shows that for

U t and V t so defined we indeed have Ut-1 = Vt for all t > 0, a.s.

We now make the optimal choice of perturbation u for the process

xt. We aim by this choice to make the matrix Dxt non-degenerate.
Recall that

dDxt = DX0(xt) Dxt dt + DXi(xt)Dxt dwit + xi(xt) u(xt)i dt

So

d(Vt Dxt) - VtdDxt + dVtDxt + 
= VtXi (xt).u(xt)i dt

Thus Dx = U it V x. (x ) .u(x )1 ds. So we would like to take
t t 0 s 1 s s

"u(xs )i = (Vs Xi(xx) )T ". That we can allow u to depend on Vt as
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well as x follows by the technical device of applying Theorem 2.3
not to ( 3 .1 ) but to { ( 3 .1 ) , ( 3 . 3 ) } . We then choose u (x,V) = (VX. (x ) ) T
(x ~ IRd, V E IRd ~ IRd y IRd) so that Dxt = Ut Ct, where 

1

t

Ct = 0 VsXi (xs) ~ VsXi (xs) ds 

(3.4)

- the Malliavin Covariance Matrix.

The main result of this section is that if for some t > 0, C t 1 E 

for all p  oo, then xt has a smooth density.

Assume for the rest of this section that for a certain t > 0,
for co. Then since Utct’ 

for all p 

The following definition will be used to provide classes of functions
to which the Integration by Parts Formula applies.

Definition:

For an IRn- valued random variable Y, denote by D[Y] the set of all

functions f : ~tn-~ ~t such that for some open set W ~ :

(i) Y E W a.s., (ii) f W is C~ and (iii) E for all 03B1 ~ 0.

The point of this definition is that the inverse map on dxd matrices
lies in D[Dxt] .
Recall the remark following Theorem 2.3: if a process yt satisf ies an
s.d.e. with s(d1 ,", ,dk) coefficients, then (yt,Dyt) satisfies one
with ddl,...,ddk) coefficients. So (for a fixed

u(yt)) we may define inductively

.

In particular let

y(0)t = (xt,Vt,Rt)
where

t

Rt = 0 
(VsXi(xs))Tdwis

then satisfies an s.d.e. with coefficients so we may
def ine for n > 1
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y~ = (y~~Dy~~,...~~) .
Theorem 3.1

Suppose for some t > 0,C’~ c for all p  co. Then for each

n ~ 1 and k = 1,...~d there exists a map

~ : D[y~] ] ~D[y~~] l
such that:

E[(D~f)(x~)g(y~~)] l = E[f(x~)(A~g)(y~~)] l (3.5)

for all f c C~(~) and g 6 D[y~] ] (where D~ is the kth partial
derivative).

Proof:

Apply Theorem 2.3 to the process y~ and the matrix function F such
that

y~ -~ f(x~) ~ 

(where ~(D) = D"~ for D ~ TR~ 0 TR ). The components of F are all

D[y~] ] since e for all p  co. So we have the following

equality in 0 0 ~

E Q ~(Dx~)g(y~)] i

+ 1

+ E 

= E > 8 R~]

Summing the (k , j , j ) component over j and rearranging we have (3.5)

with

(Ankg) (y(n+1)t) ~ (03A8(Dxt)g(y(n)t) ~ Rt

-D03A8(Dxt)D2xtg(y(n)t) - 03A8(Dxt) ~ Dg(y(n)t)Dy(n)t) (k,j,j)

The fact that Ankg 6 D[y(n+1)t] follows from l and

for °°.
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Theorem 3.1 is ready-made for iteration, which we now perform and

which leads immediately to the main result.

Theorem 3.2

Suppose for 0, for Then the law of

x. 
t 
has a C°° density with respect to Lebesgue measure on JR .

Proof:

Let ~) E 1 then g c By repeated application of Theorem

3.1~ for each n ~ 1,

1E [(D "1 ...D. "n I = E (A" "n °...°A~ "1 ’ cf) (y~~)] ~ ]
for 

So !E 
i 

... D~ )f(x~)] ~ I j !! f 

[! 1 g) (y~"~) !]. °

The result follows by Theorem 0.1. n

~’ Non-Degenerac of the Covariance Matrix under the H condition.

It is convenient in this section to relabel the coefficient X
appearing in (3.1) as X~ whilst preserving in all other respects
the set up of §3. This is because we wish to reserve the symbol Xfor the dt coefficient X~ - ~ of the associated 
Stratonovich s.d.e.:

dxt = X0(xt)dt + Xi(xt)~witx0 = x ~ IRd

We show that the covariance matrix C~, defined at (3.4),satisfies
for all pco and t>0, provided that the following

local condition on the vector fields is met:

H, : X,,...,X,; EX~X~~~; ~~,X~~~~; ... e t c. ,

evaluated at x, span ]R~
This result, combined with Theorem 3.2, completes the task of showing
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that H. is sufficient for the smooth density of Xt,t>O.

The proof of the main result is given in Theorem 4.2 following

Meyer [10], himself following Stroock [13]. The new contribution

is the semimartingale inequality set out in Lemma 4.1.

Lemma 4.1

Let a,Y E IR. Let (03B31t,...,03B3mt) and ut ~ (u1t,...,umt) be

previsible processes. Let

at = 03B1 + t0 03B2sds + t003B3isdwis and

Yt = y + t0a sds + t0uisdwis .

suppose T is a bounded stopping time (T  to say) such that for some

constant C  oo:

I  C for all t ~ T.

Then for any q > 8 and v  (q-8)/9

IP{T0 Y2tdt  ~q and T0(|at|2 + |ut|2)dt ~ ~}

- 1 / v
~ .

Proof

We adopt some notation. Let

At = t0asds ,
Mt = t0uisdwis,

Nt = t0Ys uisdwis,Nt = 

t0Ysusuisdwis,

and Qt = t0 As 03B3isdwis.

Define for e,5 >0

B1(~,03B4) = {N,N>T  ~ and sup |Nt| ~ 03B4},
t~T
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B~(e,6) =  e and 6}
~ " 

t~T 
"

and B3(~,03B4) = {Q,Q>T  ~ and sup|Qt| ~ 03B4}
J i 

By a well known exponential martingale inequality,

- 6~/2e
IP (B~(e,6)) ~ 2e for i = 1,2,3.

Let q~ 
= -~(q-B)), q~ 

= ~(~.’~) and q~ = ~-(2q~-B~).
i q,

Then q~ 
= g(q-9B)) > 1. For i = 1,2,3, let 6. = e .

We will choose below in an appropriate way such that 

- 1 / v
has probability 0(e ~ ), i = 1,2,3. For our choice of e., e~, e~
we will show further that

{T0Y2tdt  ~q and T0(|at|2+|ut|2)dt ~ ~} ~ B1 ~ B2 ~ B3

for sufficiently small e, thus completing the proof.

Suppose that 03C9 ~ B ’ u B " u and T0 Y2dt  ~q .

Then N,N>T = T0Yt2|ut|2dt  C2~q. Choose e, ’ 
= 

.

Then since B , sup ] J  6. = e ~
t~T ~ ) ’ .

Also I  ~c ~
Thus sup|t0YsdYs[  (1 + C ~03BD/2) By Itô’s Formula

~~ ~ "

Y2t = y2 +2t0YsdYs + M,M>t. So

T0M,M>t dt dt - Ty" - 2T0t0 YsdYs dt
 ~ . 2 to ( 1 + t~Ce~~) ~
(2t~+1)e 

q~ 1 
for sufficiently small e.
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Since M,M> is an increasing process we must have~ 

~1 qi 
’ 

~1 q 2
 (2t..+1) e /y and hence  (2t~+1) e ’/Y + for

any y > 0. Choose y = (2t..+1) ’ e ’ and

E2 
= (1+C~)(2tQ+1)~e~. . Then since w ( B~

sup|M| (  03B42 = e 
q2

~ 
.

~ 

T 

’

Recall that 0Y2dt  ~q so that

Leb {t E [0,T] : e~~} j and so

Leb {t 6 [0,T] : : e~ + e~} ~ e~~~ .

So for each te [0,T], there exists sc [0,T] such that and

~y+A ) e~~+e~. . Therefore )~)y+A ~+n +E .
In particular  (1+C)e~~ /~ + e 

~9 
so for all [0 ,T] ,

 2[(1+C)e~~ + e ~ ~ 3e ~ for sufficiently small e.

By Itô’s Formula

T0a2t dt = T0at dAt = aTAT - T0At(03B2tdt + 03B3itdwit)
We have |aTAT|  3C ~

q2
,

 3C and

Q,Q>t = T0A2t|03B3t| 2dt  9C2 t0 ~2q2 .

So, since ~ ~ B , choosing e~ 
= 9C 2 t~ e ~2 :

|QT| = |T0 At03B3it dwit|  03B43 
= ~q3

Therefore T0 a2tdt  3C(1+t0) ~q2 + _ 2 for sufficiently small E.

We have thus shown that for

£.. 
- 

- r~ ~ 
q~ e  = C (1+c~)(2t~+1)~ e (2 to +1)~ e Q ~~ and

~ 
= 9C~ 2 t e 

~2 
, 

’
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for any 03C9  B 1 u B 2 u B 3 such that T0 Y2tdt  ~q we have for

sufficiently small e (depending only, as the reader may easily check,
on C, to’ q and v).

~u t ~2)dt  2eq3 + (1+C2) (2t 0 +1)~Eq1/2  ~ for
sufficiently small e.

It is furthermore clear that, for i - 1,2,3

(03B42i / 2~i)-1 = 0(ev) as ~~0

with constants depending only on C, to,q and v.

Remark

The above lemma is more powerful than we actually need. It suffices

in Theorem 4.2 that

IP{T0Y2tdt  e q and f T (|at|2 + |ut| 2)dt~~} = 0 (e ) p for all p  ~.p 

o 
t 

 cq and + =O(cp) for all p  "".

However, if it were necessary to establish that

IE (exp(03BD|C-1t|))  ~ for some v > 0,

Lemma 4.1 would still provide good enough estimates.

Theorem 4.2

Suppose H1 is satisfied at x, and t > 0.

Then for all p  ~.

Proof :

In this proof t > 0 is fixed. Let x~ be the set of vector fields
appearing as brackets of length at most ~, in H1. Fix an integer £
such that K~ at x. Then

a _ inf sup K(x)|v>2 > 0

K~Kl
For a given B > 0 define the stopping time

T - inf~s > 0 : 1/B or 1/B}~~ t.

Then for e E (O,t) ~



126

,~T  (A = sup I~  > I/a}
( " J s~ 

~ " 

By Proposition 1.2 (b)

E sup|x-x|p  sup|V - I|p = 0(ep/2) for all p_  co

s~ s , ’

It follows that T 1 e for all p  co.

Since the coefficients Xi, i = 0,1,...,m and their derivatives are

continuous, by choosing B sufficiently large we have

(a) for 

(b) For all v E S (S = {u e IRd : |u| = 1 } ) , there exists

K e x~ and a neighbourhood N of v in S such that

inf V K(x~))u>~ ~ 6/2s s

We deduce immediately from (b) and the fact T 1 for all p~ that :

(c) For all v E S, there exist K and a neighbourhood N of v in S

such that

sup ~’ { T V K(x ) ~  e)j ]F{ 2  e} - 0 (~p) for all p  co.

ueN ~0 s s 

We divide the remainder of the proof into two parts.

Claim 1

(d) ~ Ct1 E Lp (~) for all P  ~, where

(d) For all v e S, there exist i E {1,...,m} and a neighbourhood

N of v in S with

sup V  e} - for all p 
~ s i s

Claim 2

(c) -~ (d)

Proof of Claim 1

To show E for all p  °°, it suffices to show

(det L~(]P) , for all p  °°; so it suffices to show
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03BB-1min ~ Lp(IP), for all p  oo, (where is the smallest eigenvalue

of Ct) t
r 

V  E} - 0 (ep) , for all p.

So it suffices to show

IP {inf T VsXi(xs)|v>2ds  ~} = O(~p), for all p.~ ~

By our choice of T the random quadratic forms

T

v ~ r f  V X. (x ) are uniformly Lipschitz on S.

Denote their common Lipschitz constant by 0 and cover S with balls of

radius centre v.. The number of these balls may be chosen less

than D (E /p ) d for some fixed D  ~. Note that

T0  VsXi (xs)|v>2ds  ~ for some v ~ S
i=1 

~ T0  V sXi (xs)|vj>2ds  2~ for some j .

So IP {inf T  Vsxi(xs)|v>2ds  ~}

T

~ { j V X, (x )  2E) .
j i=1 

s i s ~

So to show Ct1 E for all p it suffices to show

sup IP {T VsXi (xs)|v>2ds  ~} = 0 ( ep) for all p  ~ 
,

vES 
s i s

which by compactness of S is equivalent to (d).

Proof of Claim 2

Let v f S and suppose (c) holds. Choose K E x~ and a neighbourhood
N of v in S with

sup IP{T VsK(xs)|u>2ds  ~} = O(~p) for all p  ~.
ueN ~ p S S ~ p
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We may write K in the form i[Xi k ,[...,[X. ~2 ]...]] where

,~O,l,...,m}, i 1 + 0 and k  R,. Define

K1 = 

Kj = [Xij ,Kj-1] j = 2,...,k

so K = Kk. We show by induction on j (decreasing) that for

j = 1,...,k,

sup 1P { T /V K.(x  E} =0(Ep) for all p  ~

which completes the proof of (d) - with i = il.
By Ito’s Formula

+ Kj-1](xs) + 

Let Ys - 

y = 

a s = 
and

ui - 
It is easy to check the conditions of Lemma 4.1 hold for

Y = y + s a dr + s uirdwir, with C chosen independently of uc N.
s 0 r 

So we have for q > 8,

+  

= 0(~p) for all p  ~ uniformly in u E N.

If i. =t= 0 this is all that is required to complete the inductive step.



129

If i. = 0 , we apply Lemma 4.1 as above but with K~-1 replaced by
1,...,m to deduce

and 

= 0(eP) for all (i is not summed).

Hence

= 0(~p) for all p  ~.

But then

= for all p  °°

(using the first application of Lemma 4.1), which completes the

inductive step. D

Finally, Theorems 3.2 and 4.2 combine to give:

Theorem 4.3

Let be C°° vector fields on IRd. Let

0 ~ X0 + 1 2 DXi-Xi. Suppose that 0, X1 ,...,Xm have bounded

derivatives and higher derivatives of polynomial growth. Suppose
that H1 is satisfied at some x E . Then, for any t > 0 ,
the solution xt of the s.d.e.

dxt = X0(xt)dt + Xi(xt)~wit

x0 = x

has a C~ density with respect to Lebesgue measure on lRd. D
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