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THE FIRST PASSAGE PROBLEM FOR GENERALIZED ORNSTEIN-UHLENBECK

PROCESSES WITH NON-POSITIVE JUMPS*

Dimitar I. Hadjiev
Institute of Mathematics, Bulgarian Academy of Sciences

P.O.Box 373 1090-Sofia BULGARIA

1. Introduction. Let (Q ,F,P) be a probability space. We consider a cadlag statio-

nary random process with independent increments and non-positive jumps

St S = St lim 0, that is defined on this space and satisfies So 0.
stt

It is well known ([31) that the characteristic function of St has the form

(1.1) E exp(iuSt) = exp t{ibu - cu2 + F(dx) (eiux-1-iux.1{X~-1})},

where -~ b ~, ca 0, and the Levy measure F(.) > satisfies

(1.2) J F(dx) lAx2  ~ .
(_~~o)

Following Skorokhod ([8] ) one can use the analytical continuation of (1.1) to

the half-plane Re(iu) > 0 and obtain the Laplace transform of St by substituting

u instead of iu. Thus, we have

(1.3) E exp(uS ) = exp t~ (u) , u > 0,

where

(1.4) = bu + cu2 + / F(dx) -ux.l{x >_1})’

For arbitrary a>0 and we define the random process Xt, by the

formula

(1.5) Xt = + dSv) ,

the stochastic integral w.r.t. the semi-martingale S being understood in the

usual sense.

Definition. The random process X will be called the starting at x generalized

Ornstein-Uhlenbeck process with parameter ~>0.

~ 
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Certainly, I the process X is characterized by the triplet (b,c,F(.)) > as well. With

b = 0, I c = 1/2 and F(.) =0 our definition yields the standard Wiener process S

and the usual Omstein-Uhlenbeck process X.

Given a real number p > x, let us introduce the first passage time

(1.6) > - Tu(x) = inf {t ~ 0 : u}.

As far as aXt = 0, I if T11 (x)  0° one gets imnediately the equality

XT (x) = .

The purpose of this paper is to determine the distribution of T (x), p > x, by

means of Laplace transform

(1.7) y (e,x) = E exp (-6T (x) ) , e > 0.

It should be noted that generally speaking, we have no equation for the transi-

tion density of X and the usual Darling-Siegert approach to the first passage prob-

lem of diffusion processes (~2~) > is not applicable in our case. Our approach is

based on martingale techniques and depends essentially on the existence of suitable

martingales on the process X (see Theorem 1 belcw). Besides the new generality of

the explicit representation for (Section 4), this approach gives us in

particular the possibility to obtain ones again and in a natural way the interesting

result of Novikov (J6} ) concerning the first passage times of a stable process S

through one-sided non-linear boundaries. The basic tool in this special case is the

suitable time-change (Section 6) that transfers the linear problems for Xt’ t ~ 0,
into some non-linear problems for St, t ~ 0, and conversely. We make use of the

reconversion in order to give an example of optimal stopping problem that admits a

solution in terms of T (x).
2. The process X. For the next we need to calculate the conditional Laplace trans-

forms of the process X that was defined in (1.5). Let us introduce the a-algebras

Ft = 0 ~s ~t); t ~ 0, and the functions L(u;t,s)=  t, u >0.
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Since the stochastic integral in (1.5) might be looked at as an integral taken

in the sense of convergence in probability (C4~), a simple argument leads to the

following result.

Proposition 1. For any 0 ~ s  t and u ~ 0 one has

(2.1) L(u;t,s) = .u + > 

Proof. With an arbitrary subdivision s = t0  t1 ...  tn= t, ~ = max|t1-ti-1 |

and Yt  e03BBv dSv, we get 

exp (uY ) . E{exp(u .f ew FS }t s s 
(s,t] 

~ ~

= exp(uYs) lim 03A0 E exp(u.e03BBti-1.(St.-St. ))
~ 

i=1 1 i-1

=exp(uYs) lim  exp{03C8(u.e03BBti-1)(ti-ti-1) }

= exp(uYs +  03C8(u.e03BBv) dv)

as a consequence of (1.3) and the independent increments property of S.

Now starting with (1.5) we have

L(u t,s) = exp(e E{exp(u.e 

= exp{e + 
s 
u + (u.e ~‘ (t v) ) ) dv}

s

and the latter obviously implies (2.1).

Corollary 1. The Laplace transform of Xt has the form

E exp(uXt) = exp{e-03BBt.xu + t0 03C8(u.e-03BB(t-v)) dv}, u ~ 0.

Corollary 2. The process X is a cadlag Markov process. (Certainly, X has also the

strong Markov property.)

3. The martingale M. We are going to introduce a martingale t ~ 0, depen-

ding on the process X trajectories. To this end, one observes that because of (1.2)

the quantity FC-1,-z~ is finite for every z, 0  z ~ 1. Thus, the measure
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G(dz) = F[-l,-z] dz

on (0, 1] is well defined. We need the following assumption.

Hypothesis G. Either c > 0 or the measure G(.) satisfies the condition

(3.1) lim zK.G(z,l] = C > 0

for some constant K, 0  K  1.

Next, one defines successively

Y
(3.2) g(y) = - 1 f ~(u) du, y > 0,

I 1 u

and

(3.3) 
. M t (8) - e _ et. 0 f g(y)} dy, t > 0. °

The next statement is crucial because it permits an essential use of the martin-

gale theory later on.

Theorem 1. . Under the hypothesis G for any positive e the randan process Mt(9),

t ~ 0, is a martingale w.r.t. 0.

Proof. First, we observe that our hypothesis G implies the convergence of the in-

tegral in ( 3 . 3 ) . In fact, we have

g (y) - - b (y - 1 ) - (y2 - 1 ) - 1 a a -1 (y) - 1 ~ a 2 (y) ~
where

y y

g1(y) =  03C81(u) u du , g2(y) =  03C82(u) u du
and

03C81 (u) =  
-1) 

F(dx) (eux - 1), 03C82(u) =  F(dx) (eux - 1 - ux), u ~ 0.
(-~,-1) [-1,0)

The convergence of the integral at y = 0 is obvious, because . >lim g(y) > -°o.
-

Now let us denote d1 = 
 

F(dx) ~ 0, d2 = f F(dx) x2 ~ 0. In consequence

of (1.2) one gets 0 ~ d1 + d2  °o. Our function 03C81 satisfies 0 ~ 03C81 (u) ~ -d1 and
0 ~ 03C81(u) u ~ 0 as u~~. This means that |g1 (y) ~ |03C81(u)| u, du ~ d1 ln y. On the

other hand 0  eux - 1 - ux ~ u x , u > 0, -1 ~ x  0, and in this way one
2

obtains the inequalities 0 ~ 03C82(u) u ~ u 2. d2 
 ~ and 0 ~ g2(y) ~ d 42 (y2 - 1) .
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If c > 0, the corresponding term - 2014 (y~ - 1) in g(y) ensures the convergen-

ce . If c = 0, by the equality 03C82(u) u =  (1 - e-uz) G(dz), where obviously 
’

0 ~ z G(dz) = d2 2  ~ , the hypothesis (3.1) and the corollary of Theorem 4.15 in
"0 "

[l) one gets lim u’~.~2~ ~C.r(l - K) > 0. Consequently, ~~-~C~.u~ for
.u-~o U + U +

any C2 belonging to the interval (0, C.(1 - 03BA)) and u > 0 (sufficien-

tly large). This implies g2(y) ~ C2.y1+03BA + C1, y > u2(C2), and the convergence of

our integral too.

Secondly, applying Fubini’s lemma and (2.1) for 0 ~ s ~ t (and with z = ye-03BB(t-s))
we get

E{Mt(03B8)| FXs} = e-03B8t.  03B8 y03BB-1 E{exp(Xt.y + y(y))| FXs }dy

= e-03B8s. 03B8y03BB -1 exp{g(y) -e(t-s) + e-03BB(t-s)y.X
s +  03C8(ye-03BB(t-v) > dv} dy

= e-03B8s.  03B8z03BB -1 exp{zX + g(ze03BB(t-s)) > + 03C8(ze03BBv) dv} dz.
0 

~ 
’ 

0

But the function f(u,z) = + / 03C8(ze03BBv) dv, u ~ 0, satisfies the con-
0

dition

~~ = g’(ze~). ~(ze~) =g’(y).Xy + ~(y) =0

with y = in view of (3.2). Therefore,

f(u,z) = const = f(0,z) = g (z)

and we get E{Mt(03B8)| FXs} = Xs, that completes the proof.
Remark 1. We emphasize the fact that Theorem 1 is valid for every process X with S

containing a Gaussian component (c > 0) . If the process S has no Gaussian component

(c = 0), the condition (3.1) is nevertheless fulfilled for a class of measures F(.)

that includes the stable processes S with parameter a satisfying 1  a  2. Be-

cause of its importance, we consider this special case in Section 5.

4. The Laplace transform of T (x). Now we are in a position to derive an explicite

expression for the Laplace transform y (6,x) . Due to the particular structure of
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the martingale M(e) we have the following result.

Theorem 2. . Under the hypothesis G the next equality holds:

. e -1
f y exp(xy + g (y) ) dy

(4.1) 0 ~ e -1 l exp(py + g (y) ) > dy
0

Proof. We put T (x)At instead of t in (3.3) and we make use of the well known

martingale property that
oo ~-1

E ~I’ (x) nt ( e ) = E = ~ y~ exp(xy + g (y) ) > dy.

Next, one observes that

oo i-1

0 ~ MT (x)^t(03B8) ~  y03BB exp( y + g(y)) dy

and, moreover, when then 
~ e - 1 

,

0 ~ MT (x) ^t (03B8) = Mt (03B8) ~ e
-03B8t y03BB exp( y + g(y) ) dY

as well. Therefore,

lim = E MT (x).1{T (x)  ~} =  exp( y + g(y)dy. 03B3 (03B8,x).
The right-hand sides of our equalities give directly (4.1).

Remark 2. . For the validity of Theorem 2 we need not (and we did not use) any fact

about the finiteness of T (x). It is well known that T (x) P-a.s. if and only

if lim y u (e,x) - 1. The latter equality is easily verified when there exists
lim g (y) > -oo or when f F(dx)||x|  ~.

y+O (-~~-1)
5. The case of stable process S with parameter 1  a  n., 2. . Now we turn to the par-

ticular case when the following hypothesis is satisfied.

Hypothesis H03B1. Either F(.) = 0 and c > 0 (we characterize this by posing a = 2),

or c = 0 and F(dx) = 03C3dx |x|03B1+11{x  0} for some 03C3 > 0 and 1  a  2.

Using standard arguments (see [8], §25, Theorem 4) one obtains the equivalent
form of Ha in the terms of our function ~ : H , 1  a  2, means that

(5.1) V~ (u) _ ~!u) = bu + aua.
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with some b, -~  b  °o, and ~ > 0. In this situation by (3.2) we get

(5.2) g(y) = g(y) _ - b (y - l) - (ya - i) ,

and the martingale M(e) is well defined via (3.3).

Following Novikov we introduce the function

= 1 f a y") dY~
0 

~

which turns to be analytic in the half-plane Re v  1. All the essential properties

of H(B),a,x) are collected in the supplement of 

Next we obtain a special case of Theorem 2.

Proposition 2. Under the hypothesis H , 1  a  2, the following equality holds

for 03B8 > 0 : 

(5.3) 03B3 (03B8,x) = H(-03B8 03B103BB, 03B1,(03BB03C3)03B1(x - b 03BB) .
H(- 03B803B103BB, 03B1,(03BB 03C3)03B1 (  - b 03BB))

Moreover, this formula defines also an analytical continuation of the Laplace tran-

sform y (6,x) to the half-plane Re 8 > ( ) , where ’j7 = (03BB 03C3)03B1(  - b 03BB) and

va(z) is the smallest positive zero of H(v,a,z) with (a,z) fixed.

Proof. Applying the change of variables y = (~’)az we see the formula (5.3) is

another form of (4.1) for e > 0. As far as the right-hand side of (5.3) is analytic

in 6 in the half-plane Re 6 > (see ~6~ ), the left-hand side can be

analytically continued in 6 to this half-plane.

Corollary 3. Since lim 1, -oo  x  °o, under the hypothesis H we get"

lim ~u(e,x) - 1 and, consequently, T (x)  °° P-a.s.

6. The time change - two applications. Throughout this section we suppose the hy-

pothesis Ha holds with some a, 1  03B1 ~ 2, and b = 0 (see (5.1)) . As a consequ-

ence we have

~ (u) - ~ (u) - 1  a  2,

and the process X is stationary too (see (2.1)).
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Let us introduce the real (increasing and continuous) function

~ (t) - (a~) 1 (eaat - 1), t > 0 ~

which determines an one-to-one mapping of [0,~) onto [0,~) , and the convers func-

tion

03C1(t) = (03B103BB)-1ln(1 + 03B103BBt) , t ~ 0.

Lemma 1. . The distributions of St, t > 0, and of St = f t n 0, coin-

side.

Proof. As in Proposition 1 one calculates

E exp(uSt) = E exp(uY03C1(t)) = exp{03C3u03B1.03B4(03C1(t))} = exp(03C3u03B1t), u > 0.

But under the hypothesis stated (Ha and b = 0) the latter term is just E exp(uSt).
The lemma is proved.

1
Now for any constants a, b and c such that b > 0 and ab + c > 0, define

the stopping time w.r.t. F~, t > 0, by the formula
1

(6.1) T(a,b,c) = inf {t > 0 : t St ~a(t + b)a + c}

and pose

(6.2) > T u (X) - T ( (a~) _ 1 ~ , -x), r u > x.

The following simple fact is valid in our situation.

Theorem 3. . The stopping time T (x) has the same distribution as p(r (x)) does.
Proof. We define similarly T(a,b,c) and Tu(x) by replacing St by St in (6.1)

and (6.2). Next, starting with (1.6), we calculate

Tu (x) = inf {t : x + 
= inf {p(s): t Y p ( s ) ~ e03BB03C1(s) - x}.

= inf {03C1(s): Ss ~ (1 p(T(x)). .

The statement of the theorem follows from Lemma 1 which says the distribution

of T (x) coinsides with the distribution of Tu(x).
From Theorem 3 and Proposition 2 we deduce the following result of A.Novikov
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(see C6~ , Theorem 1) .

1
Theorem 4. . For every a,b,c with b > 0, aba + c > 0, one has

1

(6.3) > E (T (a,b,c) > + b)v = , if b > 0 and v  va (ad) ,
H(v,a, ad) 

and 
’

(6.4) E (T (a,b,c) v) - (~) av 
, if v  va (ad),/ H(v,a, ad) 

~

+ 00 , if 

1
where d = 

Proof. Assume b > 0 and put x = -c, 03BB = (03B1b)-1,  = ab. Then
~ 

1 - 1
=ad

(7

and by Proposition 2 with v = - we get the equalities 
,

E (T (a,b,C) + b) V - E (T u (x) + 

= b03BD.E exp{- 6P(Tu(x))} - bv. H(v,a,-cb a.d) ) ,

H(v,a, ad)

provided that 6 
a 
(ad)  ~ 

a 
(ad)). The rest statements of the theorem

follow from the properties of H(v,a,x), the case b = 0 being taken into account

by letting (or ~~ +°o).

Remark 3. In the original theorem of Novikov (with d = 1, see C6~) one makes use

of the fact that

(t + b) v. H(v,a, t ), t ~ 0, b > 0,
1

, (t+b)a

is a ccnplex-valued martingale (w.r.t. F~, t ~ 0) for every complex v with Rev  1.

This fact involves an analytical continuation in contrast to our Theorem 1.

As a second example we consider an optimal stopping problem originally treated

in more general setting in [5] , ~7I and [9] . This problem admits a simple solution

in terms of stopping times T (x) .
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Under the hypothesis stated at the beginning of this section (Ha and b = 0) the

quantity
x + S

(6.5) v(x,b,r) = E ~ ,b>0,-~  x  ~ ,
b + i

is to be maximized on stopping times T = T(c~) w.r.t. Ft, t > 0.
By Lemma 1 we have

V(Xrb,T) = V(X,brT) = E 2014201420142014I- , ,
b + t

using St = Y , . , t > 0, and T in the place of St, t > 0, and T . Now taking

03BB = 1 03B1b and 

x + St b + t 
= 

x + Y
03C1 (t) b + t = e03BB03C1(t).x03C1(t) 1 03B103BB + t = e03BBs.xs1 03B103BBe03B103BBs 

= 03B103BBe-(03B1 - 1)03BBs.xs.

Consequently, it is equivalent to consider the problem of maximizing the quantity

(6.6) V(x,b,T) = b E = 

03B1 - 1 03B1b 
> 0,

on stopping times T = T(c~) w.r.t. Fs, s > 0, provided that T = p(T), because

V(x,b,T) - v(x,b,T) .

By ~7~ for a = 2 and ~5’ for 1  a  2 one knows the solution of the origi-

nal problem of maximizing (6.5) is one of the stopping times r(a,b,-x) or the

stopping time To 
= 0.

Let us denote 
°° / Ya dy

~(p) = ,-~u~. .

f Ya dy
0

As far as ~Y(u) is positive, decreasing and continuous and ~y(p) - > ~~ ’

the equation u = 03A8(u) has a unique solution  (moreover, 0  u  03A8(0)). The

corresponding result in our case is given below without proof because it can be

justified as in ~5~ and [7) (see also [9] , Example 2, for the case a = 2 and a = 1) .

5. For every real x and b > 0, either the stopping time or the

stopping time T~(x) = 0 maximizes the quantity (6.6). More precisely,
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and

if x >p.
T
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