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THE GAUGE AND CONDITIONAL GAUGE THEOREM

K. L. Chung*

Let t > 0} be the Brownian motion in Rd, d > 1.

Let D be a bounded domain in Rd, D its closure, aD its

boundary; and let q be a Borel function defined in Rd and

satisfying the following condition:

t

(1) lim sup EX{f lD|q| I 0

where 1D is the indicator of D. Such a function is said to

belong to the Kato class Kd. The equivalent condition (1) is

given by Aizenman and Simon [1].

The gauge for (D,q) is defined to be the function u on

D below:

TD
(2) q(Xg)ds)} . .

o 

. From here on we write for abbreviation:

t

(3) e q (t) = exp(o q(Xs)ds) .

For a domain D with m(D) (where m denotes the

Lebesgue measure), without any regularity hypothesis on 3D,

and a bounded q, we proved the following theorem in [3].

The Gauge Theorem. If u(.) ~ ~ in D, then u is

bounded in D .

*
Research supported in part by NSF grant MCS 83-01072 at
Stanford University.
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Actually, if aD is regular in the sense of the Dirichlet

problem, then u is continuous and strictly positive in D.

However, in this note we shall concentrate on the main thing,

as stated above. Zhao [6] extended the theorem to q E Kd for

a bounded domain in Rd, d > 3; he also did the case d = 2 in

yet unpublished notes. For d-= 1 and D a half-line, see [2].

Prior to Zhao’s work, Falkner extended the theorem in another

direction by considering the conditional gauge for (D,q) as

follows:

(4) , (x,z) 6Dx3D;

where El is the expectation associated with the Brownian motion

killed outside D, starting from x and conditioned to converge

to z (at its life-time TD). For a class of bounded domains

including those with C boundary, and bounded q, he proved

the following theorem in [5].

Conditional Gauge Theorem. If u’( . , .) ~ ~ in D x aD, then

it is bounded there. This is the case if and only if u(.) aO

in D, as in the gauge theorem.

I gave a simpler proof of Falkner’s theorem in [4]. Subse-

quently Zhao [7] proved that if then u(-,’) ~ 00 , for

bounded C2 domains . He has since proved the conditional

gauge theorem as stated above for bounded domains. In this

note I shall show that the conditional gauge theorem actually

follows in a general way and rather quickly from the gauge theorem.
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The basic probabilistic argument turns out to be an old one in

[2] (see the proof of Theorem 1 there), easily adapted to the

multi-dimensional case. The sole difficulty encountered in

extending the class of bounded q to the class Kd is contained

in Lemma 1 below.

We begin by setting up the framework of the probabilistic

argument involving a sequence of hitting times. Let Dl and

D2 be subdomains of D such that Dl C D2, D2 C D, 
is connected and m(C)  e for an arbitrary e > 0. This is pos-

sible if aD is Lipschitzian for instance. For then each connected

component of Rd - D must contain a ball of fixed size, hence there

are at most a finite number of

"holes" inside the outer boundary

of D. Since D is connected,

it is easy to see how to construct

Dl and D2 as desired. A picture

illustrates the result. I am in-

debted to Falkner for alerting me

to the necessity of making C

connected.

Lemma 1. If aD is sufficiently smooth, then for any given

~ > 0, there exists d(E) such that if the C described above

. has m (C)  a (~ ) , then
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(5) sup 
C 

03C4C|q|(xt)dt}  
~ ;

(6) 
sup (03C4C)}  1 1-~.
z ~ ~D

In [7], Zhao proved that C2 boundary is sufficient for

the lemma to hold; more recently he has improved this result to

require only boundary. In this connection it should be

mentioned that the gauge theorem for an arbitrary bounded domain

D, and q E Kd, follows quickly from an easier analogue of (5)

for a small ball B, as follows:

TB
(7) 

x ~ B |q|(xt)dt}  e . .

z E aB

This was proved in Zhao [6]. The deduction of (6) from (5) is

standard Markovian calculation.

Lemma 2 is a strengthened form of an argument I have indicated

elsewhere (see [5], Remark 2.13). The constants below

are strictly positive, depending only on Dl,D2 and D. We assume

aD to be Lipschitzian below.

Lenuna 2. I’on all y E aD2 artd z E aD, have

(8) 
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Proof: Recall that

(9) Pyz{03C4C  tD} = f(y,z) K(y,z)
where K is the Poisson kernel for D, and

f(y,z) =E~{T~T~? K(X(r~),z)} .

For each y e f(y,.) is continuous on 3D, because on

{r  T } we have e 3D. almost surely, and K is bounded

continuous in 3D~ x 3D. For each z C 3D, f (.,z) is harmonic

in C. Hence f is continuous on 3D~ x 3D since 3D~ and 3D

~ 

are disjoint closed sets. It follows that the function of (y,z)

in (9) is continuous and positive on 3D~ x 3D. The function

K(.,z) - f(.,z) is harmonic in C and unbounded in the neigh-

borhood of z, because K is unbounded while f is bounded.

Hence it is strictly positive in C by harmonicity, because C

is connected and z C 3C. Therefore we have by continuity

(10) b ~ inf = T~} >0 .
y ~ ~D2
z ~3D

Now it follows by Jensen’s inequality and (15) that for

(y,z) ~ 3D~ x 3D:

(11) 

~ 
o

>e-’~ . .
o
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Combining (10), (11) and (16), we have proved (8) with a - b 

_ 
1

a2 - 1-s .

We are ready to prove the conditional gauge theorem for a

bounded Lipschitzian domain for which the conclusions of Lemma 1 
,

hold true, thus at least when aD belongs to ~1’1, Put T - 0,

and for n ~ 1: 

2n 1 T2n 2 + TD~ ’ 

= T2n-1 + 8T2n_1 .

For any (x,z) E D x aD, we have  ~} - 1. This nontrivial

result has recently been proved by M. Cranston for a bounded Lip-

schitzian domain; for a bounded C1-domain D it follows from the

fact that K(.,z) is integrable over D, by a remark communicated

to me by Kenig. It follows that for some n > 1, X(T2n) E aD.

Therefore we have by the strong Markov property of the conditioned

process:

(12) Exz{eq(03C4D)} = Exz{T2n = 03C4D; eq(03C4D)}

= Exz{T2n-2  03C4D; eq(T2n-1)Ez
X(T2n-1)[03C4C=03C4D;eq(03C4D)]}.

Observe that ~D1 U aD. On the set lT2n-2  X(T2n-1) 
Hence by Lemma 2

(13) a1 Exz{T2n-2  03C4D;eq (T2n-1)}  Ex2{eq (03C4D)}

 a2  Exz{T2n-2  03C4D;eq(T2n-1)} .
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The general term in the series above is explicitly:

(14) K(x,z) TO; 

Since K is continuous and strictly positive on D2 x aD, we have

for (x,z) and (x’,z’) in D2 x aD, almost surely

(15) a3 K(~x~,z’) ~ K(x,z) ~ a4 K(x’,z’)

where a3 and a4 depend only on D2 and D. It follows from

( 13 ) , ( 14 ) and ( 15 ) that

(16) sup sup u(x,z)  inf inf u(x,z) .
x E D2 z E aD 1 3 x E D2 z E aD

Since u(x) is a probability average of u(x,z) over z E 3D,

we have

(17) inf u(x,z)  u(x) ~ sup u(x,z) .
z E aD zEaD

Now by hypothesis of the theorem, there exists (xo,zo) E D x 3D

such that u(xo,zo)  ~°. Without loss of generality we may suppose

xo E D 2 . Hence by (16)

(18) sup  u(xo,z)  a2a4 a1a3 u(xo,zo)  ~.

Next by (17), u(x )  ~. Hence by the gauge theorem, sup u(x)  ~.

It follows then by (16) and (17) that

(19) sup sup u(x,z)  ~.
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For we use the old argument in [3] adapted to the

conditioned process, as follows:

TD~ ~z) ~

~ 1_1 + sup sup u(x,z)  oo .
E 

x E D1 z E aD

This establishes the first assertion of the conditional gauge

theorem. The second assertion has also been proved between the

lines above.

Remark : Conditional gauge theorem is also true for a bounded C~ domain, and
bounded q, using a hard inequality of Kenig’s to prove lemma 1.

References

[1] Aizenman, N., Simon, B.: Brownian motion and Harnack inequality
for Schrödinger operators, Comm. Pure Appl. Math. 35
(1982), 209-273.

[2] Chung, K.L.: On stopped Feynman-Kac functionals, Séminaire de
Probabilités XIV, 1978/79, Lecture Notes in Mathe-
matics No. 784, Springer-Verlag.

[3] Chung, K.L., Rao, K.M.: Feynman-Kac functional and Schrödinger
equation, Seminar on Stochastic Processes 1, 1-29,
Birkhäuser 1981.

[4] Chung, K.L.: Conditional gauges, Seminar on Stochastic Processes
3, 1983.

[5] Falkner, N.: Feynman-Kac functionals and positive solutions
of ½0394u+qu = 0, Z. Wahrsch. Verw. Gebiete 65
(1983) , 19-33.

[6] Zhao, Z.: Conditional gauge with unbounded potential, Z. Wahrsch.
Verw. Gebiete 65 (1983), 13-18.

[7] Zhao, Z.: Uniform boundedness of conditional gauge and
Schrödinger equations, Comm. Math. Phys 93 (1984),
19-31.


