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Riesz Representation and Duality of Markov Processes

by Ming Liao

Summary The Riesz representation of Markov processes was first studied by

Hunt under a set of duality assumptions. In a different direction, Chung and Rao

discussed the Riesz representation and other related topics under a set of analytic

conditions on the potential density with no duality hypotheses. In this paper, we

first extend Chung and Rao’s results under weaker assumptions, then we construct

a right continuous strong dual process by using the Riesz representation. The dual

process may have branching points and the set of branching points is just the set

on which the uniqueness of the Riesz representation fails.

§1. Introduction

The Riesz representation is one of the important results in classical potential

theory. Let E be an open subset of R" and let u(x, y) be thc Green function of

E. If f is a non-negative supcrharmonic function in E, then there exist a harmonic

function h and a measure ~ on E such that

(1) f (x) = h(x) + y) p.(dy) for x E E.

Moreover, the above representation of f is unique.

(1) is called the Riesz representation of f . The second term on the right

hand side of (1), which is usually denoted lyy is called the

potential part of I. For a comprehensive treatment of classical potential theory, see

. the book by Landkof [10].
Hunt studied the Riesz representation under the general setting of Markov

process theory. He assumed a set of duality conditions (namely, the given process

is a transient Hunt process with E as its state space and it is in strong duality with

a strong Feller process) and proved (1) for any excessive function f. See [1, Ch 6].
In a recent paper by Getoor and Glover [9], Hunt’s result above has been extended

to Borel right processes under weak duality.
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In a different direction, Chung and Rao in [2] discussed the Riesz representation
and other related topics without assuming duality. Their conditions are analytic

ones imposed on the potential density u(x, y). To be precise, they assume that

u( x, y) is the potential density of a transient Hunt process and satisfies:

(2) u(x, y) is extended continuous in y for any fixed x, u(x, y) > 0 for any (x, y)
and u(x, y) = oo if and only if x = y.

It is proved in [2] that (1) holds for any excessive function f and this repre-
sentation of f is unique if we require that the measure ~ does not charge a certain

subset of the state space. This subset, denoted by Z, is called the exceptional set.

In this paper, we first extend Chung and Rao’s results under weaker assump-
tions (§2 and §3), then we construct a strong dual process with the exceptional set
as its set of branching points (§4, §5 and §6). The existence of such a dual process
shows a connection between Hunt’s theory and that of Chung and Rao.

The results in this paper form the major part of the author’s Ph.D. dissertation

[11]. The reader is rcfcrcd to [11] for additional information and for the application
of the Riesz representation to the study of harmonic functions.

§2. Representation by Potentials of Measures

We will use the notations adopted in [1], [2] or [5] except when cxplicitly stated
otherwise. Throughout this paper, let X be a Ilunt process and E be its state

space which is a locally compact Hausdorff space with a countable base. We use

f to denote the iisual Borel field on E. Let rn, a Radon measure on (E, ~’), be a
reference measure of X and let u( x, y), a non-negative ~ X ~-measurable function
defined on E x E, be the potential density of X with respect to m, i.e.

(3) V f E F+ and x E E,

U f (x) = ~0 Ptf(x)dt = E u(x,y) f(y) m(dy),
where ~+ denotes the family of all non-negative ~-measurable functions on E and

{Pt} is the transition semigroup of {Xt}.
We will use the following notations:

Ea: The usual one point compactification of E with 8 being the "point at infinity".
The space of all bounded, ~-measurable functions on E.
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The space of all non-negative functions in M.

Cc(E): The space of all continuous functions on E with compact supports.

bC(E): The space of all bounded, continuous functions on E.

We will use the convention that any function f defined on E is understood to

be £-measurable and is extended to be a function on Ea with f (a) = 0.

Now we assume:

(i) m is a diffuse measure, i.e. Vx E E, m({a:}) = 0.

(ii) X is "transient" in the following sense:

V compact K C E and x E E, lim Px(TK o 0t  oo) = 0,

where TK is the hitting time of K and 03B8t is the usual shift operator.

(iii) Vx E E, u(x, ~) is finite continuous in E - {x} and

lim infu(x,y) = u(x,x) which may be finite or + oo.

(iv) ~y0 E E, there exists a neighborhood U of yo and V E E with rn(V) > 0 such

that Vx E V, u(x,.) > -0 on U.

Remarks:

1. By a theorem in [5, Ch 3, Sec 7], (ii) is implied by the following condition:

Vy E E, tt(’,T/) is lower semi-continuous and

Vcompact K C  oo.

2. The requirement lim infx~y~x u(x, y) = u( x, x) in (iii) implies that u(x,) is

lower semi-continuous in E. This requirement, in fact, is not essential. Since m

does not charge single points, we can modify u(x, .) on a set of zero m-measure, so

we may simply define

x) = lim inf u(x, y) for x E E.

This modification of u(x, y) will not affect the continuity of u(x, ~) off {x} and (iv).

3. If we assume that (x, y) ’-~ u(x, y) is lower semi-continuous on E x E, then (iv)
is implied by

VyEE, ~(’,!/)~0.
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The following proposition is proved in [2]. .

Proposition 1. There exists h E f+ such that 0  h  1 and 0  Uh  1.

We have the following general result. See Proposition 10 in [5, Ch 3, Sec 3]. .

Proposition 2. assume the conclusion of Proposition 1. Then for any excessive

function f, ~gn E ~+ such that gn  n2, Ugn  n and Ugn if. , This result holds

for any right continuous, normal Markov process X.

Our hypotheses (i), (ii), (iii) and (iv) arc weaker than those assumed in [2].
There are many processes, for example, the uniform lnotion and the one sided stable

processes which satisfy our hypotheses but not those of [2]. However, the major
results proved in [2] continue to hold under the present weaker conditions. Some
of these results, such as [2, Theorem 2] with its extensions and the existence of a
"round" version of u(x, y), need revised proofs under the present weaker conditions.
We will state all these results and provide proofs when they are different from the
old ones.

Proposition 3. For any y E E, u(., y) is superaveraging, i.e.

~t > 0 and x ~ E : Ptu(x,y) =  u(x, y)

Proof: By the proof of [2, Proposition 3], ,

Ptu(x, y) _ u(x, y) except for y = x,

By (iii), z such that yn --~ x and

u(x, x) = lim u(x, yn).

Letting y = yn and taking the limit, we obtain Ptu(x, x)  u(x, x), ~
We will use u(~, y) to denote the excessive regularization of u(., y).
By a measure ~u on E, we mean a measure defined on (l:, ~’). Let ~c be a

measure on E, define

(4) = u(~, for all x E E,

Up is called the potential of the measure p.
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Remark: If U~c  oo m - a.e. then ~ is a Radon measure. To see this, let K be
a compact set, we want to show  oo. By (iv), for any Yo C K, there exists
a compact ncighborhood F of ?/o and x E E such that U~,(x)  oo and u(x, .) > 0
on F. Since ~(x, .) is lower semi-continuous, ~b > 0 satisfying ~~(x, .) > b on F. We
have

/~(F)  1   oo.

Since K can be covered by a finite number of such F’s, ~u(.K)  oo.

An excessive function f is said to be harmonic if

(5) V compact K, f = f , 
’

and it is said to be a potential if for any sequence of compact sets Kn T E,

(6) lim PKC f = 0 m - a.e.
"

The following proposition follows directly from the proof of [2, Theorem 6]. .

Proposition 4. If f is excessive and f  oo m - a.e. then there exist a harmonic

function h and a potential p such that f = h + p. Moreover, this decomposition of

f is unique.

The following technical result will play an important role in our theory. It .is a

generalization of Theorem 2 in [2] under our weaker hypotheses.

Theorem 1. Let {~~,} be a sequence of measures on E and f , g be non-negative
functions which arc finite m.- a.e. Assume (a), (b) and either (Cl) or (c2) below:

(a) Vn,  .g and g is excessive.

(b) lim = f .
n

(Cl) ) Vn, is contained in a fixed conlpact set.

(c2) Vn, = m(dz) for some r~n E ~+ and g is a potential.

Then there exists a subsequence of ~~n} which converges vaguely to some Radon

measure ~ and

f (x) = U~(x) for ~({z~) _ ~}, ,

where f is the excessive regularization of f . Moreover, if f is excessive then f = U~u.
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Proof: By an argument similar to that used in Remark following (4), we can prove
that is bounded for. any compact set K. From this we conclude that there

exists a subsequence of which converges vaguely to some Radon measure ~c.

For simplicity, we may assume:

(7) vaguely.

Let A = [g = oo]. Since g  oo m - a.e. it is well known that A is polar. See

[5, Ch 3, Sec 7]. Fix x E ~1~ . Let

Ln(x, dz) = u(x, z) 

By the proof of [2, Theorem 2], there exists a subsequence of Ln(x, .), say Ln~ (x, ~),
which may depend on x, converges to some Radon measure L(x, ~) weakerly and

(8) f (x) = L(x,1 ).

For any § E Cc(E), if § vanishes in a neighborhood of x, by (7) and the fact

that is continuous off x, we have

L(x, ~) = lim Ln~ (x, ~) = lim u(x, z) ~(~) ~n? (dz) = f z) ~(z) °

This implies: If z E then

(9) L(x, A) = Au(x, y) (dy).

Suppose that L(x,.) and L’(x,.) are two weak limits of corresponding
to different subsequences, then by (9), they agree on E - {x}. On the other hand,
by (8),

I,(x,1) = f (x) = L’(x,1).

Hence L(x,.) = L’(x, .). Therefore,

(10) dx E AC, the whole sequence - L(x, ~) weakly.

Let

i 

Then = 0 because m is diffuse, {x : : /~({a:}) 7~ 0} is countable and f = f
m - a.e.

Now fix x E H. The proof of [2, Theorem 2] shows:
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(11) L(x, {x })  PtL(x, + E.

Under the present assumptions, {x} is not necessarily a polar set (for example,
consider the uniform motion), so the subsequent argument in [2] does not apply.
However, we can use the following argument.

Since m does not charge ~x~,

~0 Pt(x, {x} )dt = U(x, {x}) = 0.

So 3t; ~ 0 such that Pt, (x, {x?) = 0. Since A is polar,

=0.

By (9),

Pt; L(x, {x~) = 0.

It follows from (11), ,

~x}) _ E.

Therefore L(x, {x}) = 0.. By (9), we have.

(12) dx E H, L(x, dz) = u(x, z) .

If f is excessive, then

dx E D, f (x) = u(x, z) 
On the other hand, since u(x, z) is lower semi-continuous in z,

f(x) = lim U n(x) ~  u(x,z) (dz),
which implies f(x) = The theorem is proved. 0

Corollary 1. Let f  oo m - a.e. , be an excessive function and D be a relatively

compact open set. Then there exists a Radon measure  such that

PD f = and supp(p) C D.

As shown in [2], the above corollary follows immediately from a technical result

due to Hunt (~gn E G+ with supp(gn) C D such that Ugn ~ PD f ). See (1, Ch 2,

(4.15)].
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The following result is a direct consequence of Proposition 2 and Theorem 1.

Corollary 2. If f is a potential, then there exists a Radom measure ~ on E such

that f = 

§3. The Exceptional Set and Uniqueness of Representation

In this section, we introduce the exceptional set Z and prove an important

complement to Theorem 1.

Recall that Y(" y) is the excessive regularization of ~c(~, y). Let

(13) Z = E - {y E L’; Vopen set D 3 y, PDu(v y) = u(v y)}.

Theorem 2. Z is a ~-measurable set with m(Z) = 0 and it can be characterized

by the followin g relation For any y E E,

y ~ Z ~ 1.1,(" y) is excessive and d open D ~ y, y) = 1.1,(" y).

Proof: Let be a countable base of open sets of D. By Proposition 1, ~h E b~+
such that h > 0 and Uh  1. Since Uh is excessive, we have

u(x,y)h(y)m(dy) = lim Ptu(x, y) h(y) m(dy)
= lim PtUh(x) = Uh(x)

=  u(x,y)h(y)m(dy).

Jlcnce

(14) Vz E E, ~(x, ~) = u(x, .) m - a.e.

Now for any open set D,

D y) h(y)’n(dy) = PD ~ D ’~(’s y) h(y) (x)
= - 

= Du(x,y)h(y)m(dy)

so Va: E E, = u(x, .) m - a.e. in D. By Fubini’s thcorem and the fact
that u(~, y) is excessive, we have: for any open set D,

(15) PDu(., y) = Y(" y) for m - a.e. y in D.

Let

(16) § y) ~ u(’~ y)}.
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It is easy to see that y E In if and only if y E D,~ and

y) - y)) > 0.

Hence In E ~ and by (15), m(In) = 0.
Let I = It is clear that

y, -- pDnu(.) y).

Since for any open D 3 y, 3Dn with D D Dn 3 y. We have

By (13), the definition of Z, we see that Z = I, hence Z and m(Z) = 0. This
is the first conclusion of the theorem.

To prove the second conclusion, it is enough to show that u(~, y) is excessive

for any y ~ Z. Now fix y ~ Z. Let D be an open set containing y. By (13) and

Corollary 1 to Theorem 1, we have

’~(vy) = = UN~

for some Radon measure  with C D. Let D J, {y} and apply Theorem 1,

we obtain

~c(. ~ y) _ ~ u(. ~ y)

for some constant A > 0. Since u(~, y) ~ 0, A > 0, so u(~, y) _ ~(~, y)~a is excessive.

0

Remarks:

1. The exceptional set Z defined in this section seems to depend on the choice of

the potential density u(x, y) and the reference measure m. In fact, it is not so. Let

m’ be another reference measure of X and let u’(x,y) be the potential density with

respect to m’. Assume u’(x, y) satisfies (iii) and (iv). Since

= u(x,y)m(dy), >

we see that m and m’ arc equivalent. Therefore there exists f E f+ such that

f(z) m(dz) == m’(dz). We have

’dx E E, u’(x, ~) f = u(x, ~) for m - a.e. y.
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Dy (iii) and (iv), f can be chosen so that the above holds for all y. It is clear that

f > 0. As a consequence of Theorem 2, the exceptional set defined from m’ and

u’(x, y) is Z.

2. Define

w(,~ y) - u(’~y)~ ~ y ~ Z~
It is clear that

(19) Vy E E and open set D ~ y y) = w(~, y).

w(x, y) is called the "round" version of u(x, y). The present existence proof for

w(x, y) is different from that of [2, Theorem 1~. In (2~, w(x, y) is constructed directly
from In fact, it is taken to be the excessive regularization of limn y),
where is a sequence of open sets containing y and Dn J, {y}. This constructive
argument needs the assumption that singletons are polar, see [2, Theorem 1].

The following result is an important complement to Theorem 1. See Theorem
2 (continued) in [2].

Theorem 3. Assume the conditions of Theorem 1 and Vn, = 0. Then the

conclusion of Theorem 1 holds without the condition _ m(dz) in (e2)
and if f in (b) is excessive, the limiting measure ~u satisfies: = 0.

Proof: We use the notations in the proof of Theorem 1. By the proof of [2, Theorem
2 (continued)], the first assertion is true and to prove the second assertion, it is

enough to show:

(20) PDU D = U D,

where D is any relatively compact open set satisfying: = 0 and is the

restriction of ,u on D, i.e.

_ 

Recall L" (x, dz) = u(x,z) Since = 0,

dz) - u(x? z) 

We know that L,.~(x, ~) converge weakly to L(x, ~) and

L(x,1.) = _ for x ~ ~.
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Let 03C6 E C(E) and 0 ~ 03C6  1. Observe that u(x, z) is lower semi-continuous in

z since it is the increasing limit of Ptu(x, z) as t - 0 and each Ptu(x, z) is lower

semi-continuous in z. Since pn converge to  vaguely, we have:

lim n inf Ln(x, ~) > ~(z) .

The above holds also with ~ replaced by 1- ~. Since Ln(x, 1) -> for A,

we can conclude that

(21) lim Ln (x, 03C6) = u(x, z) 03C6(z) (dz) for x ~ .

Therefore Ln(x, dz) converge to u(x, z) weakly. Now for open D with p(aD) =

0, we have

U(1D )(x) = lim Ln(x,D) for x ~ .

Since = 0, PDLn(x,D) = Ln(x,D). Taking limit as n - oo and using the

fact that A is polar, we obtain

for A. Since both sides of the above are excessive, it holds everywhere. This

proves (21) hence the theorem. ~

Corollary. If  is the measure appeariug in either Corollary I or Corollary 2 to

Theorem 1, then p,(Z) = 0.

Now wc show that the representation by potentials of measures is unique if we

require: /i(Z) = 0. We assume:

(v) For any y, z E E, if u(~, y) _ .1 u(~, z) for some constant a > 0, then y = z.

The above condition is sometimes refered to as u(x, y) is linearly separating

(see [4]). .

Remark: In almost all examples, the diagonal of E x E is the set of singular points

of u(x, y), so (v) holds trivially.

The uniqueness of the Riesz representation is proved in [2] under the condition

u(x, x = oo for all x E E (see the proof of [2, Lemma 4j). 
. By an argument in a

un-published paper by Chung and Rao (see [4]), this condition can be replaced by

(v). We will present this argument below.
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Theorem 4. Let p. and v be two measures on E. If p.(Z) = v(Z) = 0,  o0

m - a.e. and = Uv, then ~ = v.

Proof: By the proof of [2, Theorem 5], it is enough to prove the following statement:

(22) If supp(p) is compact, then supp(p) = supp(v).

By Remark following (4), both /~ and v are Radon measures. Let K = 

It suffices to show that supp(v) c K.

Let D be an relatively compact set containing K. Since = 0, = 

hence PDU03BD = Uv. This implies:

dx E E, = w(x, ~) v - a.e. 
’

By Fubini’s theorem, 3N E ~’ such that v(N) == 0 and if y ~ N, PDW(.,y) = w(., y)
m - a.e. hence

dy ~ N, PDW(.,y) = w(’~ y). .

Since v(Z) = 0, we may assume Z C N. If supp(v) is not contained in K, we may
choose D so that 3y E (D)C - N and

(23) y) = w(~~, y).

Fix such a y. By (23), Corollary 1 to Theorem 1 and Corollary to Theorem 3,
there exists a Radon measure 0’ satisfying: supp(Q) C D, = 0 and

’ w(’~ y) = P D W ( ., y) = z) = z) o’(dz).

Let {Gn} be a sequence of relatively compact open sets such that {y~. We

have

w(~, z) ~(dz) = w(~, y) = PG"w(~, y) = z) .

so

dx E E, w(x, ~) = ~ - a.e.

From this, we can conclude that 3z E D - Z such that

Vn, w(., z) = z) m - a.e. hence everywhere.

By Theorem 1, letting n --~ oo, we see that

z) --~ a w(x, y)

for some constant A > 0, hence w(., z) = a w(., y). Recall that y, Z, so u(., z) =

a u(~, y). By (v), y = z. But this is impossible since y ~ D and z E D. The
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contradiction shows supp(v) C K. This proves (22) hence the theorem. ~

Remark: In the statement of Theorem 3, ~ is in fact the vague limit of the whole

sequence ~~u~~~. This is because any subsequence of converges vaguely to /~ by

the uniqueness.

It is easy to see that the uniform motion, Brownian motion, the symmetric

stable processes and the one sided stable processes satisfy our hypotheses (i) through

(v). In all these examples, the exceptional set Z is empty. This can be checked

directly by using Theorem 2.

Now wc present an example for which the exceptional set Z is not empty.

Example: Let E = (0, 1) U [2, oo) equipped with relative Euclidean topology
and m be the Lebesgue measure on the real line. We construct a process X on E

according to the following description: if the process X starts at x with 2  x  oo,

then it moves to the right at unit speed; if X starts at x with 0  x  1, then

it moves to the right with unit speed until a random time T which is  1- x. If

T = 1 - x, X dies at time T, otherwise it jumps to 2. We assume that the random

time T is distributed exponentially before X "hits" 1, i.e.

Vt  1- x, Px{T  t} = du.

It is not difficult to see that the transition semi-group {Pt} of X is determined

as follows:

(24) for x E E and Borel set A C E,

+e-t 1A(x + t), for 0  x  1 and t  1- x;
t0e-u1A(2 + t - u)du
+e-t1A(x + t), for 0  x  1 and t  1 - x;

Pt(x,A) = 1-x0 e-u 1A(2 + t - u) du, for 0  x  1 > 1- i;

1A(x + t), for 2 ~ x  ~.

It is easy to verify that {Pt} so defined is a Feller sub-markovian semigroupon E.

The potential density of X is given by

0, if y  x except x = y = 2;

, if x  y  1; .

(25) y) =
1-e~-1, 

1, 
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We have taken care to make sure that u(x, y) satisfies: lim tt(x, y) = u(x, y)
as is required by (iii).

It is clear that the process satisfy our basic assumptions (i) through (v). By
(25), if y ~ 2, u(.,y) is lower. semi-continuous and

1-ex-1, if 0  x  1;

u(x,2) = 1, if x = 2;0, if x > 2.
It follows from Proposition 2 that any excessive function is lower semi-continuous.

Since ~(~, 2~ is not so, it is not excessive. By Theorem 2, 2 E Z. It is easy to show:

(26) Z = {2}.

§4. Existence of a Dual Semigroup

It was established in [7] that under conditions stronger than those assumed in
[2], there exists a Hunt process which is in duality with X. In this paper, we will
show the existence of a dual process under the present weaker conditions. We will
see that there exists a right continuous strong dual process Y which "lives" on Eo
consisting of y E E such that u(., y~ is a pure potential and Eo n Z is the set of

branching points of Y.

For /, g E f+, let

(f ~ 9} = f (x) 9(x) m(dx).
Suppose E’ ~ f and m(E - E’) = 0. We equip E’ with the topology induced from
E. Let Y be a Markov process on E’ with the transition semigroup Pt and the
same reference measure m. We say that Y is in duality with X with respect to m if

(27) df ~ 9 E ~+, 

Our definition of duality is a little different from the one given in ~1~. But it is easy
to see that they are equivalent if E’ = E and Y is a Hunt process.

Our hypotheses in this section are (i), (ii), (iii), (iv), (v) introduced in §2 and
§3 and the following condition

(vi) m is excessive.

Remark: The excessiveness of m is a necessary condition for the existence of a
dual process, see [1, Ch VI, Sec 1]. If m is not excessive, then we can choose an
excessive reference measure and under additional conditions, we can show that the
corresponding potential density satisfy our basic hypotheses. We will not discuss
this in details.
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Recall a pure potential p is a potential such that

lim Pt p = 0 m - a.e.

u(., y) is the excessive regularization of u(., y). Let

(28) Eo = {y E E; u(~, y) is a pure potential ~.

By [2, Proposition 13],

(29) Eo = E - Eo is a polar set.

’ For y E Eo, u(~, y) is a potential. By Corollary to Theorem 3 and Theorem

4 in Chapter I, any potential f can be expressed uniquely as U~ with ~c(Z) = 0.

Hence the following formula uniquely defines a measure Pt (y, dz) on Z~ = E - Z
for t > 0.

(30) Ptu(x, y) = u Pt(x, y) where u Pt(x, y) = z) Pt(y, dz). .

Since ~c(~, y) is a pure potential, so is y), this implies that Pt(y, dz) does
not charge E~.

(31) Vy E Eo, Ec0 ~ Z) = o.

Hence Pi (y, dz) is a measure on E«.

Remark: Eo is ~-measurable since,

Eo = {y; m(dx)limPKcnu(x,y) = 0 lim 

We equip Eo with the topology induced by that of E, then the natural Borcl field

of Eo is the restriction of e to dcnoted . We can prove: if A ,

then

(32) (t, y) H Pt (y, A) is B  ~|E0-measurable,

where B is the natural Borel field of R+ = [0, oo).

To see this, observe Ptu(x, y) = uPt(x, y) is the increasing limit of

1 ht+ht Psu(x,y)ds
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as h 1 0. Since ~(’,~/) is a pure potential, we have

1 h t t+h ds = y) - ’

so Pt(y, dz) is the vague limit of

y))m(dx)

as h .~ 0. This proves (32).
By (30), The uniqueness of the Riesz representation (Theorem 4) and the fact

that Pt is a semigroup, it is easy to show that {Pt} forms a semigroup. See [2]. By
(32), it is a Borel semigroup. The argument used in [2, Theorem 8] proves that Pt
is a submarkovian semi-group on Eo, i.e.

(33) Vy E Eo, Ptl(y) = Pt(y, Eo)  1.

For the proof of the following formula, see [2, Theorem 7]. .

(34) V f E ~+, U f (y) = ~0 Pt f (y) dt = for y E Eo.

The following lemma which shows that the semigroups Pt and Pt are in duality
with respect to m was proved in an un-published paper by Chung and Rao, see [3]. .
Wc reproduce its proof hcre for the reader’s convenience.

Lemma 1. Vf, g E ~’ +~ , = (f~ P t9).
Proof: By I Proposition 1, 3h E ~+ such that

h>O on E and 0  C/7t : 1.

For any A E ~’, let f = h 1A. We have

= UPt f = PtUf

- f(y) 

- f (y) m(dy)

- f(y) 

. - dx) f (y) .
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Since the above expressions are finite, we can apply I Theorem 4 to conclude

Pd(y) m(dy) = Pt(z, dy) f (z) 
For any g E ~-}-, multiplying both sides by g(y) and integrating, we obtain (Pt f g) _

( f,Ptg). Since A E ~ is arbitrary and h > 0, the lemma is proved. Q

By Remark following Theorem 4, if t > 0 and s t (i.e. s > t and s ~, t), then

for y ~ Eo,

F’y ( y, ~) --> vaguely.

Since t is a submarkovian semigroup, Pyl(y)  we have

(35) Vy E Eo, s J, J, t > 0, Py (y, ’) - weakly, i.e.

V f e 6C(E), lint = Pt f (y).

Let us record what we have proved so far.

Theorem 5. E0 dcfincd by (28) is a ~-measurable set and its complement Eo is

polar. {t} defined by (30 ) is a Borel, submarkovian semigroup on E0 which does
not charge Z and satisfies (34) and (35~. Moreover, for y E Eo, _ ~~ if and

only if y ~ Z, where 03B4y is the unit .mass at y.

. A function f > 0 defined on Eo is said to be co-superavcraging if Ptf  f on

Eo for any t > 0. Let S’ be the collection of all bounded continuous functions on E

whose restrictions to Eo are co-superaveraging. It is clear that S’ is a convex cone

and if f, g E S’ then f A g E Sf.

For x ~ E and y ~ Eo,

’)~ (y) = = ~ ~ 

so u(x, .), restricted on Eo, is co-superaveraging. So is u(x, .) A c for any constant

c > 0.

Let F be a compact set and c > 0. Consider the following function,

J(y) = y) 11 c].

It is clear that the restriction of f to Eo is co-superaveraging. Fix T/o E E. Since

for x i=- yo, ~(x, ~) is continuous at yo and m does not charge {yo}, f is continuous

at yo. So f E S’.
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By (iv), we can choose countably many compact sets Kn with UnKn = E and

for each n, a compact set Fn with m(Fn) > 0 such that if x E Fn, then u(x, ~) > 0

on Kn. Let

fn(Y) = n CnJ

for some constant cn > 0. Then fn > 0 on Kn. cn can be chosen properly so that

0  f n  1. Let

f = 03A3
1 2nfn.

Then f and f .> 0 in E. Therefore S’ contains a function which is strictly

positive.

Now we show that S’ separates points on E, i.e. for any yi, y2 E E with

yl 7~ !/2) S’ such that f (yl) 7~ f(y2). Otherwise, for any compact set F and
constant c > 0,

Fm(dx)[u(x,y1)c] = Fm(dx)[u(x,y2)c].

This implies: u(., y1) = u(., y2) m - a.e. which contradicts (v). Hence S’ must

separate points on E.

Let

L’=s’-s~={,~-9~ 

For f , g E S’, we have

and for h, k G L’, we have

and 

Hence L’ is a vector lattice, i.e. L’ is a vector space satisfying:

/ V ~ and / L’.

For any compact set ~f, let C(K) be the space of continuous functions on K.
Let L’(K~ be the restriction of L’ to K. Since L’(K) separates points on K, by the
lattice form of the Stone-Weierstrass theorem, L’(K) is dense in C(K) under sup
norm. Let Kn be a sequence of compact sets and Kn T E. For each n, C(K.,.,.) is

a separable metric space, so is L’(Kn). By the fact that L’ is a lattice, there is a
countable subset Ln of L’ such that the restriction of Ln to Kn is dense in C()
and

sup , f ~x) I - sup I f (x) I. .
x~E x~Kn
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Since UnLn is countable, we can choose a countable subset S of S’ such that

UnLn C S - S. We have

Lemma 2. 1’here is a countable faxnily S consisting of bounded, continuous func-

tions on E whose restrictions to Eo arc co-superaveraging. S scparates points on E

and contains a strictly positive function f Let L = S - S . Then for any g E bC(E), ,
there is a uniformly bounded sequence L such that gn -~ g pointwise in E.

Proof: Let Kn be as above. For each n, choose gn E Ln such that

sup g(x)~  1..
n

Then {gn} is the required sequence. 0

Now let n’ be the set of all maps from R+ = [0, oo) into Ea = E U {a}. For

w E iI’, w (t) is a function defined on R+ and it takes values in Ea . Let

y’ (tr w) = Yt (w) _ ,

Then Y’ is a process on ~’.

Let  be the 03C3-field on 03A9’ induced by the process Y’, i.e.

(36) ~ = ~{~. 0  t  oo}.

By Kolmogorov’s theorem, for example see [1, Ch I, Sec 2], for y E Eo, there

is a probability measure P~ on (fZ’, ~) such that

(37) ~i,’ " An e f and 0  ti  t2  - "  oo

py {Y’0 E Ao, Yil E A1, ..., Y’tn E An} =

= A00(y,dy0) A1 t1 (y0, dy 1)A2 t2 -t1 (y1 , dy2 ) . . . Am tn -tn- 1 (yn- 1 ,dyn).

We will use Êy to denote the expectation with respect to PY.

From the above, Y’ is a "raw" Markov process on E with transition semigroup

Pt. By (31), for fixed t > 0,

Yt E Eo a.e.

Remark. Observe that the state space of y’ is taken to be E instead 
of Eo. This

is because in order to apply the Kolmogorov’s theorem, it requires that the space

in question is 03C3-compact. It is not clear to us that Eo is 
so. IIowever, in the next
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section, we will show that there is a right continuous version Y of Y’ which "lives"

on Eo, i.e. for any y E Eo,

Pu - a.e. ~t ~ 0, Yt E E0 U {a}.
Therefore we can take Eo to be the state space of Y.

Let T be a countable dense subset of R+ satisfying:

(38) Vr, a 6 T, r+sET and r - s ~ T if r - s ~ 0.

Consider the discrete time process {Y’; r E T}. By Lemma 2, ~ f E S such

that f > 0 in E. For y E Eo,

{ f (Yr ); ; r E T, __ _

is a non-negative supermartingale (Recall f (a) = 0). f (Yr) = 0 if and only if

Y’r = ~. For r, s ~ T and r > s,

E~{f (Yr )? Y~ = a}  = a} = 0.

This implies: For any y E Eo,

(39) a.e. da E T, Y9 = a implies Y,,’ = a for all r > s and r E T.

We can take T to be Q+, the collection of all non-negative rationals. Define

(40) S = inf {r E Q+ ; Yr = a}.

It is clear that for any y E Eo,

(41) 1’~ - a.e. Vr E Q+ , Yr E E for r  ~ and Yr = a for r > ~.

Remark: If we replace Q+ by any bigger countable subset T of R+ satisfying (38)
in the definition (40), then f will not be changed except on a set of y-measure
zero for any .y E Eo,. .

§5. The Dual Process

In this section we construct a right continuous version of Yt .
Fix y E Eo. Let f E S. Then f (Yt ) is a non-negative supermartingale under

P~. By the general martingale theory, for example see [5, Ch 1~, P~ - a.e.

0, lim{ f (Yf ); r E Q+ , r ,~,~ t} and lim{ f (Y,.’); r E Q+ , r TT t} exist.

Since S is countable and separates points on E, we have the following result.
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Lemma 3. PY-a.e. Vt > 0, each of {Yr; r E Q+ r t} and {Y’; r E Q+ r TT t}

has at most two limiting points in Ea = E U {a} and if there are two, then one of

them is a . 
’

Define

lim{Y’r; r ~ Q+, r ~~ t}, , if it exists;

(42) Yt = the finite limiting point of {Y’r; r ~ Q+ , r ~~ t}, otherwise.

Remark: The above definition is motivated be the regularization of sample paths

for general Markov chains. See the discussion about x+(t) = lim infr~~t xr in Chung

[6, Part II, Sec 7]. It is proved there that x+(t) is a right lower semi-continuous

version of xt. .

The following lemma shows that Yt is a version of .

Lemma 4. For y E Eo and t > 0, Yt = Yt P~ - a.e.

Proof: Let H = [Yt = a]. First we show

(43) 1’~ (H, t  ~} = 0.

Fix E > 0. Choose a compact set K such that

EE-H} E

and h E bC(E) such that

h = 0 on K, 0  h  1 and h = 1 outside a compact set.

Let rn E Q+ and rn t, we have

E > E’’{h(Yt’)} = Pch(y)
= limrnh(y) = lim Êy{h(Y’rn)}

> liminf H, t  }

~ Êy{lim inf h(Y’rn); H, t  }

= E’’{H, t  }.

The last equality follows from the fact that -~ a on H.

Since E > 0 is arbitrary, we have proved (43). .

Next for w E HC, Yt(w) is the limit of a subsequence of Y ~ (w). Hence if f E S,

f (Yt (w)) = lim f (w)) .
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Let A E o~{Yt }, we have

= f (I’r")~

=lim Ey{A, = 

n

Since Z) = 0 and 0f = f on Eo - Z,

,f (Yt)f = 

for any A E o{Yt }.

By a well known result, see Lemma 1 in [5, Ch 1, Sec 4~, 
the above implies:

P~ - a.e. Yt = Yt .

The lemma is proved. 0

By Lemma 4, we may assurne

(44) . 

Vr E Q+, Yr = I’r .

Hence Lemma 3 holds with Yr replaced by Yr.

Fix a sequence of compact sets jCn T E from now on. For 
t > 0, define

(~5) Ht = Un tl ~Xr E Hn~,

(46) It - Un tl ~Yr E .Kn~.

Ht is the set of w such that Xr(w) is bounded for r E Q+ n [0, t~. It is the

same set for Y.

Given a measure ~u on E, P~‘ is the measure on (~’, ~) defined by

~lA E ,~, P’‘{A} = 

is defined in the same way with Px replaced by 

Use the duality relation given by Lemma 1, we can derive the following well

known identity. Let AQ, A1, ... , An be relatively compact sets in ~’ and 0  tl 

t2...tnoo,then

E Ao, Xt, E A1, ... ~ Xtn E An}
(47) =m

{Y0 ~ An, Yt"_tn_1 E An,i, ... ! E A1, Ytn E Ao}.
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Note that the above expression is finite since E Ao} = m(Ao)  oo.

Let K be a compact set and t E Q+. By (49), we have

~ K, Xt ~ J~} = ~ ~} and

Xo Xt e J~} = Yo Yt e J~}.

Since X is a Hunt process,

e K, Xt ~ ~f} = Xo Xt e ~}.

We obtain

(48) ~ K, Yt e ~} = Yb ~ ~f}.

From the above, there exists N E Eo such that m(N) = 0 and

Vy e Eo - N, Yo e e ~} = e J~}.

N can be chosen independently of K and t E Q+. Letting K i E, we obtain,

(49) Vy E Eo - N, E E} = E E}.

Let

(50) I = nrEQ+ {h’ U ~Yr - 

Then

(51) I is the set of w such that

Vt  is bounded for r E Q+ fl (0, t~. .

As a direct consequence of Lemma 3 and (42), we have

Lemma 5. Let y E Eo. Then on I, p!I - a.e. we have

(a). t --~ Yt is right continuous.

(b). 

(c). If t  S, then Yt- exists and Yt- E E.

By (51), if y E Eo - N, y{Ir U = al } _ 1..Hence = 1 and

= 0. We want to show:

(52) by E Eo, P~ = 0.
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Let

(53) f(y) = y{Ic} for y ~ E0.

Then f = 0 m - a.e. on Eo. Suppose we can show that f is co-excessive, i.e.

/ is co-superaveraging and tf = f on Eo. Then f is excessive with respect

to Pt. The corresponding resolvent is given by

Ua f = ~0 e-03B1ttf dt for f E ~+ and a > 0.

By (34), U = U° is absolutely continuous with respect to m, so is C/" for any a > 0.

The excessiveness of f implies:

f = lim 03B1Û03B1 f .
atoo

Since f == 0 m - a.c. so 0, llcnce f = 0 everywhere on E’u. Therefore in

order to show (52), it is enough to prove that f is co-cxccssivc. This will proved

in the next section (Lemma 9).

By Lemma 4 and Lemma 5, wc see that Yt is a right continuous version of Yt’
and for y E Eo, a.e.

(54) 
{~t  , Yt ~ E, Yt- exists and Yt- ~ E;~t ~ , Yt = ~.

Since Yt = Y/ a.e. we also know that for each fixed t > 0,

py -- a.e. Yt C E~a U {a}.

In fact, we can prove: for any y E Eo,

(55) P~ - a.e. ’dt > 0, Yt E Eo U ~a}.

This will be proved in the next section (Lemma 10).

The following theorem sunmarizes the above results.

Theorem 6. Yi defined by (42) is a right continuous Markov process with transition

semigroup Pt and statc space E«. Moreover, it satisfies (54).

Now wc assume, in addition to (i) through (vi), the following condition:

(vii) For any y E E and compact set K C E,

Km(dx)u(x,y)  ~.
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Under (vii), we can apply Proposition 2 to Y to conclude: if f is co-cxccssivc,

then .

(56) 3gn E b~+ such that Ûgn ~ f. .

This implies:

Lemma 7. Any co-excessive function is lower semi-continuous.

For the proof of the following lemma, see [7, Sec 4, (D)]. .

Lemma 8. If f is co-excessive, then for any y E Eo,

’ P~ - a.e. t H f (Yt) is right continuous.

For t > 0, let

(57) ~t = 0  s  t} and _ 

The arguments in [7, Section 4, (E)] show: for any f E E+, t >- 0 and y E Eo,

and any optional time T with respect to the filtration {3~t+}, we have

(58) Ey {f ~Y(T + t)) ~~T+~ - 

Observe that (vii) implies

(59) V f E E’’ f (Yt) dt} = rra(dx) f(x) u(x, y)  ao.

This is used in the proof of (58), see [7].

Now we know that Y is a right continuous, strong Markov process with state

space Eo.

By Theorem 1, we have

(60) Po(y, .) _ ~~ if and only if y E Eo n Z~.

By (31), 1’«(y, .) docs not charge Z for any y E E~, this ilnplies that Eo n Z is

the set of branching points of Y. Here we are using the usual definition: y is a

branching point if Po(y, E - {!/}) > 0.
It is a well known fact that for a right continuous, strong Markov process, the

set of branching points is polar, i.e.
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(61). Eo n Z is co-polar, i.e.

In fact, (Gl.~ follows directly from the strong Markov propcrty (58). To scc this,
let K be an arbitrary compact subset of Eo n Z, T be the hitting time of K and

f = lK, then by (58),

 o~} = _ ~~!{I ~,(Yz., r~~} _. 0

since P0(y, E0 ~ Z) = 0 for any y ~ Eo. Now by thc sta.ndard argument using thc

Section Theorem, wc sce that ~~, n Z is co-polar.

The following theorem is the main result of this paper.

Theorem 7. Y is a right continuous Markov process on E0 which has the strong’

Markov propcrty expressed by (58). The sct of branching points of Y is Z

which is a co-polar set.

Example: Consider the example in §3. Recall: L.== (0, 1) U [2, oo) and Z = {2}.
It is tedious but not difficult to show that == E and the clual semigroup I’~ is

given by

, if 0  y  1;
(62) pt(y~ ,~ = ~ if Y ._ t > 2;

~{x_t.~.,,_21, > if 2  y and y - t  2.

Here 6z denotes the unit mass at z.

Remark: It is proved in [11] that Y is a Hunt process if = E and Z = Ø and Y

is continuous if X is.

§6. Two Lemmas

It remains to prove that f defined by (53) is co-cxccssivc and E« is co-polar.

Lemma 9. f defined by (53) is co-cxccssive.

Proof: Fix y E Eo and t > 0. By (53), we have

(63) - o Dt}.
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Let T be a countable subset of R+ such that Q+.U {t} C T and 7’ satisfies (38). .
We could have used T instead of Q+ in the above discussion and all the formulas

remain valid except on a fixed set of zero y-measure. (see Remark at the end of
the last section). .

If we ignore that fixed null set, by (51), we have

(64) I~ is the set of w such that

3s  ~((~), Y,.(w) is unbounded for r E T n ~0, s~.

(65) Ic o 03B8t is the set of w such that

38  ~ 0 9t(w), is unbounded for r E Tn ~0, s~.

Since t E T, we have S o 0~ == ~ 2014 t if ~ o 0t > 0, hence

(66) I‘ o Ot is the set of w such that

3u with t  u  ~(w), YT(w) is unbounded for r E T n ~t, u~.

Compare (64) with (66), we have

(67) Ic o 03B8t ~ Ic.

It follows from (53) and (63) that  f (y). This proves that f is co-

superavcraging.

Now we show that f is co-excessive, i.e.

(68) lim tf(y) = f(y) for y ~ E0.

From (66), it is easy to show:

(69) limtf(y) = .

where

(70) A is the set of w satisfying: 38, u E Q+ with .g  v,  such that

is unbounded for r E Q+ fl (s, u~. .

Compare with the expression (64) for I~, we see that in order to prove (68), it

suffices to show:
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(71) Pv - a.e. lim Yr = Y0.
r110~ rEQ+

Fix x ~ E. Let

(7£) - y)~ ~ 1.

Since u(x’,.) is co-superaveraging for any x’ E E, so is .). Hence gn is
bounded and co-superaveraging on EU. {g"(Yt)? is a non-negative supermartingale
under VVe have

Py - a.e. lim{gn(Yr); r J"~ 0} exists.

If YU(w) E E, then 3rk E Q+ rk ,~~, 0 such that

lim Yrk (03C9) = Y0(03C9).

Since gn is lower semi-continuous,

lim{gn(Yr(03C9))} = hk gn (Yrk (03C9)) ~ gn(Y0(03C9)) .

This is trivially true if YU(w) = a.

Because gn is co-superaveraging, E~ {gn (YO) } > Ey (Yr) },

> lim ~ Êy{lim gn(Yr)}.

This implies:

(?3) a.e. gn(YO) = r ~.~. 0, r E 

If for some w, (71) fails, then YO (w) E E and 3rk E Q+ such that Yrk (w) -~ a.
See Lemma 3.

By (?3),

(74) a.e. gn (YU(w)) = lim gn (w)).k ~ °

It follows from (72) and the "round~ property of y), see Theorem 2 iri Chapter
I, that for sufficiently large k,

(75) gn(Yrk (w)) v Yrk(03C9)) l11.

Therefore the right hand side of (74) is independent of n.
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On the other hand, if.y E Eo n Z~, then u(.,y) = u(~, y) and by (28), the

definition of Eu, gn(y) -~ 0 as n - 0o provided x. Since except on a set of zero

y-measure, Y0(03C9) ~ E0 ~ Zc, we have, a.e,

lim gn (Y0(03C9)) = 0 for 03C9 ~ [Y0 ~ x].

We have seen that the right hand side of (74) is independent of n, we must have

9i (Yu(W)) = 0 for c~ E (Yu ~ x~.

We could have chosen Ki = 0, so

a.e. u(x, Yu) = 0 on ~Yo 7~ x].

Since z is arbitrary, the above contradicts (iv). Thus (71) is proved and f is co-

excessive. ~

Lemma 10. Eo is co-polar.

Proof: By a standard argument using the Section Theorem, see [9], is co-polar

if any compact subset K of Eg is co-polar. Choose a sequence of relatively compact

open sets Dn such that C Dn and K = nnDn. For r > 0 in Q+, let

(76) Br = Un ~Xs E Dn~

and

(77) B = U = a~~’

Then

(78) B is the set of w satisfying: 
’

Vr E Q+ with 0  r  ~(w), , ~r~ such that Xs(w) E D~ for s E Q+ n (0, r).

Similarly we define Br and J3 using Y’ instead of Xs. .

Let F be a compact set. Since K is polar (with respect to X) and X is quasi

left continuous, we have

Vx E Kc, Px{Br, Xo E F, Xr E F} = Px{X0 E F, Xr E F}.

Let

f(y) = P’’ for y E Eo.
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Exactly repeating the argument preceding Lemma 5 and the first part of 
the proof

of Lemma 9, we can show: f = 0 m - a.e. f is co-superaveraging and

(79) lim tf(y) =1’v {C} for y E Eo,

where

(80) C is the set of w satisfying: :Ju, r E Q+ with 0  u  r  ~(w~ such that

Vn, Y’ (w) E D,~ for some s E Q+ fl (’u, r). .

Compare with

(81) B~ is the set of w satisfying: 3r E Q+ with 0  r  ~(w) such that

Vn, Y9(w) E Dn for some s E Q+ n (0, r). .

It is clear that C C B~. Suppose w E BC - C. Then 3rn E Q+ with rn ,~~, 0 such

that Dn. By (71), P’Y - a.e. Y~ = limn Yr", so except on a set of zero

PY-measure,

Yp(w) E ~nDn = K C Ep.

Since = 0, such w only form a set of zero y-measure. Therefore

PY - a.e. C = B~.

This shows that f is co-excessive. The fact that f = 0 m - a.e. implies f = 0 on

Eo. This proves that K is co-polar. 0
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