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BROWNIAN MOTION ON A SURFACE OF NEGATIVE CURVATURE

Wilfrid S. Kendall

19 Introduction

Dynkin (1965; introduction, section 9) asked whether something
could be said about the nonnegative harmonic functions on a simply-
connected manifold of negative curvature bounded away from zero, and

the relationship of this to the asymptotic behaviour of the angular
component of Brownian motion on the manifold. Answers were found by
Prat in the two-dimensional case (Prat (1971)) and in the general case
(Prat (1975)). Kifer (1976) further elucidated the asymptotic behaviour
of the angular component. However, in all these treatments extra

conditions are required on the metric or on the curvature, beyond the

simple condition that the sectional curvatures are bounded above by a

negative constant. 0 These extra conditions either bound the curvature

below as well as above, or require the curvature to vary slowly at

infinity, or place a bound on the angular variation of the metric.
In the two-dimensional case a geometric approach yields results on

the behaviou:r of the angular component simply and without requiring
additional conditions on the curvature or metric, The approach grows
out of the work of Greene and Wu (1979), especially chapter 7 of that
reference. The present paper provides an exposition, developing a note
at the end of Kendall (1983). There it was noted that general Riemannian

manifolds of negative curvature could be treated in a simple fashion if

they contained totally geodesic sub-manifolds of codimension one.

Generally this is a very restrictive condition. However in the special
case of manifolds of dimension two it is always generously satisfied by
the geodesics themselves 0 So Brownian motion on two-dimensional mani-

folds of negative curvature becomes particularly amenable to study.
Thus one has the theorem proved in this paper;

Theorem:

Let X be a Brownian motion on a simply-connected, complete Riemannian

manifold, of dimension two, of negative curvature everywhere bounded

above by a negative constant. 0 The the limiting direction of X exists

and has probability law of dense support on the whole absolute circle

of directions.

The reader will wish to know whether these methods can be extended

to higher dimensions. At present this seems a difficult problemo A

closely related question in geometric function theory is reported as a

conjecture by Greene and Wu (1979; page 3).
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2. Preliminaries

A familiarity on the part of the reader with the basics of

Riemannian manifolds will be assumed. A rapid introduction to that

theory can be found in Cheeger and Ebin (1975).
For the purposes of this paper, Brownian motion X on a complete

Riemannian manifold M is most conveniently defined by means of a

martingale characterisation (see Stroock and Varadhan (1979 ch 6)
and Williams (1981) for the martingale,characterisation approach to

diffusion theory). Thus a M-valued random process X, continuous up to

a (possibly infinite) explosion time ~, is said to be a Brownian motion

on M if the following holds:

d f(X) = d Cf + (1/2) df (X) dt (2.1)

(Ito differentials)
implicitly defines a martingale Cf whenever f is a smooth function of

compact support 0

In symbols X is written as BM(M).
Here A is the Laplace-Beltrami operator of the Riemannian manifold M.

A definition of a convenient for our purposes is given below.
In the sequel M is to be two-dimensional, of curvature bounded below

by a negative constant -H2  0. Thus by the Cartan-Hadamard theorem,
Cheeger and Ebin (1975), it is possible to lay down normal polar co-

ordinates (r,a) in M about any specified point. If the curvature of M

is not bounded below then it is possible for the explostion time ç
to be finite. This occurs for example if the metric is given by

ds2 = dr2 + r2 exp (2r3/3) d A2
working in polar co-ordinates (r, e) about some specified point.
For then the curvature K is given by

K = -4r -4r4
and Azencott’s condition (Azencott (1974 Prop. 7.9) applies. Following
an analogy between Brownian motion and geodesies, if explosion cannot

occur then M is said to be stochastically comple t e. The stochastic

completeness of M is not assumed here; the case of explosion will

require separate attention. Whether M is stochastically complete or

not, the upper bound on the negative curvature forces the Brownian
motion X to be transient (Prat (1971 Thm. 1)).

If f in (2.1) is merely C then Cf is a local martingale defined up
to the explosion time ~. In this paper a particular f = T is considered

for which C = CT is actually a real-valued Brownian motion up to time ~.

The Laplace-Beltrami operator can be defined by

+ d2 dt2 f.03B32(t)|t=0 (2.2)
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where y 1 and yare an orthonormal pair of geodesics emanating from m.
See Greene and Wu (1979) for a discussion of (202) and related formulae 0

This definition can be shown to be independent of the choice of the
orthonormal pair ~rl ~ ,~2 Q
3. Results

Let M be a simply-connected two-dimensional manifold of negative
curvature bounded away from zeroo Consider a geodesic hin M. The

Cartan-Hadamard theorem, Cheeger and Ebin (1975), asserts that the

exponential map at À (0) is a diffeomorphism
exp : I TÀ(o) M .-~ M.

Thus M -Im ~ forms two components M1 and M~, since its preimage under

exp is a plane with a line deleted.

LEMMA 1

If M is stochastically complete then with probability one the

Brownian motion X will eventually select one of the components of

M - and stay in it for evero That is,
P (3T : X(t) misses 1m À for all t > T) = 1 (301)

Proof

The proof depends heavily on the geometrical arguments of Greene

and Wu (1979: ch 7)0 As a consequence of the comparison arguments

underlying the proof of the Cartan-Hadamard theorem (see for example
the discussion of focal points following the Rauch and Berger theorems

in Cheeger and Ebin (1975; Thms 1028, 1.29)) it can be shown that

T : I M -.~ R

is smooth , where T is given by T ( x ) - (x, Im X) if x is in M1
or Im À, and T (x) = -dist(x, Im À) if x is in M2o This all follows

from the work in the proof of Greene and Wu (1979; ch 7 Prop 701)0

The gradient of T has length 1, since at x in M one can choose y
parallel and y perpendicular to the minimising geodesic from x to
im a, and check that the first derivatives of T8y1 and at x are

1 and 0 respectively. 0

A further application of comparison arguments following those of

Greene and Wu (1979; chapter 7) shows that

d2 T o y2 (t) - 

> H 1 tanh T(x)/2) (3.2)

dt2 t - 0 on M 1

 -H-1 tanh (H 1 T (x)/2)
on M2

Moreover since the derivative of T o y1 is always 1 it follows that



73

the corresponding second derivative of T o ~1 is zero. Thus bounds can

be obtained for the Laplacian of T, via formula (2.2).

It is reasonable that the second derivative of T o y2 should be
bounded as in (302)0 By the properties of negative curvature, since

y2 is parallel to ~ at x it should bend away from À as it leaves x.

This forces the second derivative of T o y to have the sign of T o y
itself. o The of (3.2) quantify this intuitive argument. o

These calculations on derivatives allow conclusions as follows. 0

Because the gradient of T is of unit length, the local martingale C~

has brackets-process

o 
I’~ ~ 

I grad T 2 = t It ~

Therefore CT is real-valued Brownian motion stopped at ~. (This

identification of the brackets-process follows from a comparison of the

Ito formula with the martingale characterisation of (201), both applied
to {T (X)} ~ ). On the other hand the bounds on the Laplacian show that

L = T (X) - CT has derivative bounded away from zero whenever T is greater

than 1 in absolute value. In fact for some constant c

dL/dt > c on {T > 1}

dL/dt -c on {T -1}

Hence a comparison with Brownian motion of constant non-zero drift allows

the conclusion that T (Xt) must diverge to plus infinity or minus infinity
as t increases to infinity. See for example Ikeda and Watanabe (1971;
ch VI Thm 1.1)0

If M is not stochastically complete then more sophisticated argu-
ments are required.
LEMMA 2

If M is not necessarily stochastically complete then P{either T (X)

diverges to plus infinity, or to minus infinity, or it converges to

zero} = 1.

Proof

In the decomposition
T (X) = CT+ L

the process CT is now only a real Brownian motion up to the Markov time
ç of explosiono If explosion time is finite then the limit -)

existso All depends on the behaviour of the drift process L.
If X is eventually bounded away from zero then so is dL/dt and

therefore L and so X must diverge to plus or minus infinity.

Suppose X were not bounded away from zero. Then a proof by
contradiction shows it must converge to zeroo For otherwise for some

b > 0 it would have to make an infinite number of upcrossings of (-b,0)
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or downcrossings of (O,b)o The quantity T (x) dL/dt being always of
one sign, this would force the existence of an infinite bounded sequence

to  0 0 0  tn  
o0o 0 t, with tn -~ t,

such that

(CT (t2n+l) - CT (t2n) f> b
with positive probability. Hence

E E E{CT {t 2n+1 ) - CT,{t 2n )}2 _ ~
But CT is a real-valued Brownian motion (possibly stopped at a finite

time ~), so E {CT (t) }2  oo. This contradiction shows that if T(X)
does not diverge to infinity then it must converge to zeroo

In fact a more sophisticated argument using ’horocycles’ can exclude

the possibility of convergence to zero for T(X)o But this is not nece-

for the purposes of this paper. All that is needed is the follow-

ing corollaryo
COROLLARY

P {~T : X( t ) is in M1 for all t > T } > 0. v

and similarly for M2o
Proof

That X has a positive chance of hitting M1 follows from observing
that the stochastic differential equation for T (X) before explosion has
smooth coefficients with a martingale term of diffusion coefficient
one (Stroock and Varadhan (1972)).

If X(t) is in M1 then there is a positive chance that
+ s) - T (X(t))/2

for all s with s  ~ -t. For the increment in CT is a stopped Brownian

motiono Since the drift term-is positive on M1 this establishes that
X has a positive chance of ending up permanently in The case of

M2 is similar.
The lemmas and corollary above enable the proof of the main theoremo

THEOREM

Let X be a Brownian motion on a simply-connected, complete Riemannian

manifold, of dimension two, of negative curvature everywhere bounded

above by a negative constant 0 Then the limiting direction of X exists

and has probability law of dense support on the whole absolute circle

of directions.

Proof

If M is not stochastically complete then the possibility that X

converges towards some geodesic has not been excludedo But comparison

arguments and the negative curvature of M show that geodesics inter-

secting at the origin diverge apart at a super-exponential rateo This,
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together with the transience of X (Prat (1971; Thm 1)), means that if

dist (X, ~) -~ 0 for a geodesic a then X must converge to one of the

limiting directions of À. 
,

Thus it suffices to consider the case when X does not converge to

any geodesic of a countable family under considerationo Given normal

(polar) coordinates for M, (r, 8), and a real number ~, let ~ be the

geodesic defined by 0 = a mod Tr. An application of the lemmas above

to each of the dissections

M-Im for k = 

shows that eventually X must have direction lying permanently in one of

the sectors

( (k-1) k i k = 

The convergence of the direction of X follows by letting n tend to

inf inityo
The law of the limiting direction must charge every open are of

the absolute circle of directionso For suppose that (e, ~) is an

open sub-arc of a specified arc, with closure contained in the super-

arco Then there is a geodesic À with the two directions 03B8,03C8 as its

limiting directionso By the corollary there is a positive chance that

X eventually remains permanently in the component of M-Im À bounded by
the arc (e, ~), and this forces the limiting direction of X to lie in

(e,~), a closed sub-arc of the original arc specifiedo 
_
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