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BROWNIAN LOCAL TIMES

AND

BRANCHING PROCESSES

by

L.C.G. Rogers*

1. Introduction

a) For each k Em, let (Zk) n n>_0 be a critical discrete-time branching process,
with Zk - k. The offspring distribution is the same for each k, and has

finite variance o2, with mean 1.

Define the random elements zk(.) of by

zk(t) = k’~ 1 Zk([kt]),

where [x] denotes the integer part of x. Let zt denote the solution of

the stochastic differential equation

(1) zt 
= 1 d Bs.

The solution exists, is pathwise unique (Yamada-Watanabe [16]) and is the

square of a zero-dimensional Bessel process (see Pitman-Yor [11], [12]

for more information on these diffusions. All the facts we shall need about

Bessel processes can be found in these two papers.)

In [9], Lamperti established the convergence of the finite dimensional

distributions of the zk, and in [10], Lindvall also proved the tightness
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of the laws of the zk, from which one obtains the following result.

Theorem A (Lamperti, Lindvall).

As random elements of 

k
z =~ z .

Remark. The intuitive interpretation of Theorem A is very appealing; if

one defines kt = then, since the branching processes are

critical,

and (z k t )2 - ds are Fk-martingales.

Thus one expects that if a limit process z exists, it should have the

property

zt and Q2 ~t 0 z ~ ds are martingales.

Together with continuity of paths, these requirements uniquely characterise

the law of the solution of (1). Much recent work has gone into making this

intuitive notion precise (see, for example, Durrett-Resnick [4], Jacod-

Memin-Metivier [7]).

Now equation (1) will not have escaped the notice of Brownian motion

enthusiasts; it has the following striking interpretation.

Theorem B (Ray[13], Knight[8])

Let Bt be Brownian motion on H1, BO=0, and let be (a jointly

continuous version of) its local time. If T = then

= 

where z is defined by (1) with 0=2.

The fact that the same process is appearing as a limit of branching

processes and as the local time process of Brownian motion is largely
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explained by the next result, which says that there is a branching process

hidden in random walk I

Let be symmetric simple random walk on ?l, with So=0. Define

the "local time" of ~S~ as follows:

n

= E I{IS I=j} (j, 
r=~ 

Theorem 1

If

T = inf{n;L(O,n)>_1},

then

(2) = 

where is a critical branching process whose offspring distribution

has the probability generating function

. 

()(t) E (2_t)_y

and 

The proof of Theorem 1 is given in the next section. The idea of

the proof is essentially that of Dwass the method of proof is only a

little different.

To make the connection between Theorems A and B more explicit, define

s(’) and ~(-) to be the piecewise linear interpolations of and L(O,n)

respectively;

s(t) _ (t-n) ISn+1) ! + (n+1-t) 

~ (t) _ (t-n) L(o,n+1) +(n+1-t) L(O,n) 

Def ine f or each N ~ IN

TN = inf{n;L(O,n)?N},

= N 1 

~N(t) = N~ 
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and finally define

~,N(x) = N 1 L([Nx], TN). 
=2 (0_Nx1).

We shall prove the following:

Theorem 2.

As random elements of C ( 7R , + ~R ) + 2 x DCO , °°) ,

(sN(.)’ ~N(’), ~N(.)) =~ ~ ~(O,Tn.), ~,*(.,T)~ ~

where ~,* (x, t ) _ ~ (x, t ) + ~, (-x, t ) f or x, 

Remarks (i) While it is easy to believe that the first components of

these triples (and even the first two components) should converge weakly

to the stated limit, this provides little help with the weak convergence of

the third; one cannot use the continuous function theorem since local time

is not a continuous function of the Brownian path, and we are forced to

use Theorem 1 in an essential way.

(ii) For those whose courage fails them when a lengthy technical proof of

tightness drifts into view, it is worth emphasising that all the tightness

we need follows from Donsker’s theorem and theLamperti-Lindvall result,

so the proof of Theorem 2 is not as grim as might be feared: I

b) In this second half of the Introduction, we shall begin by explaining

why two halves were needed.

In the first half, we took a macroscopic view of the convergence of’

the local time processes lN(.) to the BESQ° limit, l(.,T). But we can

also take a microscopic view. Indeed, the local time process

N
= E {L(..03C4r) - L(.,Tr-1)}

can be written as a sum of n i.i.d. processes, each with the law of

L(.,T1)’ by the strong Markov property of S at the times Tr. . Theorem 1



46

tells us that each of these processes is closely related to a branching

process, and the decomposition of L(.,TN) just described is exactly analogous
to the decomposition

Z(r).
r==l

of Zk into k i.i.d. branching processes with Z(r) = 1; has the
20142014201420142014201420142014201420142014s2014201420142014201420142014 o n

interpretation of the number of offspring of the rth individual at time 0

which survive at time n.

Now the BESQ° limit can also be decomposed; the local time i(x,T) is

the sum of the local times at level x of every excursion of B before T.

There are, of course, infinitely many such excursions but they are "i.i.d."

in the sense that they make up a Poisson point process in excursion space

with a o-finite law. The (excursion) law of the local time process 1(.,Ç),

where § is the lifetime of a Brownian excursion, has been characterised

by Pitman and Yor (see Theorems 4.1 and 4.2 of [12]). This suggests the

conjecture that the law of L(.,T~), when suitably scaled and normalised,

converges to the excursion law of 1(.,Ç). Of course, we have to be very

careful about the meaning of convergence in such a setting, since the limit

measure is a-finite, but in section 3 we shall show that, suitably

interpreted, the conjecture is true, which gives a lovely way of thinking

of the macroscopic results; the local time processes 1N(x) are converging to

BESQ° because each of the i.i.d. constituents 

is converging to the local time process of a Brownian excursion.

Acknowledgements. I am very grateful to K.A. Borovkov, who told me about

Theorem A, and to N.H. Bingham, who told me about Dwass[5].

2. Branching processes in random walk.

The first task is to prove Theorem 1. To see why it must be true, define

for each j20
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the number of steps up from the level j made by the random walk before the first

return to zero, T. Each step up from level j must eventually be followed by a

step down from level j+1, but before this happens, the random walk will make a

random number of steps up from level j+1; the distribution of this random

number of upward steps is geometric with parameter ~, since each time the

random walk is at j+1, it decides with equal probability to step up or down.

Thus each upward step from level j gives rise to a random number of upward

steps from level j+1, the number having generating function 03C6. Hence 

is a branching process, and L(j,T) = Z.+Z, is evident.
J ~-1

Though it is very plausible, it is not entirely obvious from this argument

that the numbers of offspring of different individuals in the branching process

should be independent. To deal with this point, we present an entirely

computational proof of Theorem 1.

Proof of Theorem 1. Pick non-negative reals a~,al,... such that a r =0 for

r>N, ap=0 and set xr = exp(-ar). Suppose solves

f~=1

~~~ f k = ~ {~+1 + } (k>-1) ~

f k = (k>N).

Then defining

n _ exp{- E a L(r,nnT)},~ ~ 

is a bounded martingale relative to the filtration of 

and

M1 ° fl xl = 

(4) = 
.

We can solve (3) by setting Pk = so that for ’ and

2 = Pk + 
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or equivalently

= 

~_1 (k>_1).

Thus if ek = xk x. , we obtain for k~O

Ak = ~ ~ ~ek+1 ~ (ek+2 (... (8N_, ~ (8N) ) ... ) )) . °

Hence

(5) ~(el~(e2(....(eN-1~(eN))...))), ’

and, by (4),

(6) N f,.(6) E[03A0t=1 xr J 
- 

xl f 
1.

On the other hand, if is a branching process with and offspring

generating function 03C6, then

(7) E 03B8rZr = eo 03C6(03B8103C6(03B82(...(03B8N-103C6(03B8N))...))).
r=o

A simple calculation based on (5), (6) and (7) yields (2), completing the

proof of Theorem 1.

Proof of Theorem 2.

(i) We shall firstly prove that .

~ .

For this, it is enough to prove

(8) ~SN(’) - ~‘N(’)~ ’ ~‘N(~)) ~ ~~~~Tn’)~. °

Just as we defined À(t) to be the piecewise linear interpolation of L(0,n), we

define À(t) to be the piecewise linear interpolation of the sequence

n-1 ~

E T S =~ , and we notice that for all t (see the picture).
r=0 

{ 
r 

}

N 1 is uniformly within N 1 of ÀN(t) so to prove (8) it

is sufficient to prove

~SN(.)-~N(.) ~~,N(.)~ ~ ~(0,TA’)). ~ .

But notice that X(t) = min{s(u)-a(u); u_t}, so it is sufficient to prove
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sN(.) _ ~N(.) ~ 

Thus by Lévy’s identification of the laws of IBtI-k(O,t) and B, we must
equivalently prove

(9) sN(’)-~N(’) ‘~ B(T’n.)~ ’

where T’ _ inf { t; Bt = -1 } .

But s-a is the piecewise linear interpolation of a symmetric simple ranodm

walk which is held still for one unit of time immediately after each strict

descending ladder epoch (look at the picture:). More explicitly,

defines the piecewise linear interpolation 03BE of a symmetric simple random walk.

By Donsker’s theorem, ~N(.) - N 
1 

~(N2) _> B, and

= N_1 ~ yN2~N(t)~ _ 
where ~N(t) _ 2TN) - N 2 

Now clearly

~N(t)~N 1
since Hence one shows easily

(~N~~N) ~’ 

’ 

and from this one deduces, following Billingsley C2], p. 145, that

= ~ B(t’n.)~ ’

which is (9) as required.

(ii) Now we consider the full statement of Theorem 2. If Zn denotes the
number of steps up from level j made by the random walk before TN,

ZNj = r_q E (j?4)
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then it follows from Theorem 1 that ZN is a branching process with Z~ = N,
and offspring generating function ~.

Define

zN(x) - N 
1 Z N ([Nx]) (x>-0).

If we set Z-1 i = N, then ~(x) = z N (x} + z N (x-N } , ’ so Theorem 2 will follow

if we can prove

(s~(’)~(’),2z~(.))-. (~BT~.I,Q(O,Tn.),~*(..,T)~,
Now, as we have seen, the laws of are tight, and so are the laws

of zN, since these are transformed branching processes converging weakly,
by Theorem A. Hence the laws of are tight, ’ and it is enough to

prove that only one limit law is possible.

Now take any smooth h: R+ -~ [0,1] of compact support in (0,~} and notice
that if we define for R+), 

= j~ h~s(t}~dt

~2(z} = jo h(x)z(x)dx,
then

~1 (sN) _ ~2 (2zN) . °
I claim this also holds in the limit. In more detail, if p N is the law on
C(R , R )2 x of and p is the weak limit of (some subsequence
of) the ~ N ~ then

P(F) = = 1,

where F = {(s,À,z); Indeed, given e>0 there exists M so
large that for every N

where ~ = {(s,À,z); z(t»M for some t, ’ or s(t}>0 for some . Now  is
open, and on the closed set AM, c ~1 and  2 are continuous. °
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Thus FnAM is a closed set, and for each N

uN (-_M) > 1-~.
Thus lim sup 1-e, and letting ~~0 we deduce as claimed.

, 

Thus if p is a possible limit of the p , by passing to a subsequence if

necessary, we may take on some random elements with laws

p converging a.s. to (s,X,z) with law p. By part (i) of the proof,

(s~~) ~ 

By Theorem A, 2z has the law of a BESQ process started at 2 and by what we have

just proved, for any smooth h with compact support in (0,o°)

~~ h~s(t)~dt = 

That 2z(x) = follows from the definition of local time as an occupation

density, completing the proof of Theorem 2.

3. Convergence of the local time process for individual excursions.

For the present purposes, an excursion is a map p: R+ +1R+ which is right

continuous with left limits and such that for some called the lifetime

of the excursion p, p 1~(0,~)~ _ (0,~). Let U denote the space of all excursions;

under the Skorokhod topology, U is a Polish space. Let Uc be the subspace of U

consisting of continuous excursions.

The Brownian excursion law n is a o-finite measure on U which can be

characterised in various ways (see, for example, Williams [15] 11.66-67,

Ikeda-Watanabe [6] III.4.3, Rogers [14]). An important property is that

n-a.e. excursion p has a local time process, a continuous map 

such that for bounded Borel f,

= ~0 R,(,a,t)f (a)da.
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Abbreviating l(a,03B6) to la, the process (Qa)a>p takes values in Uc, and its
distribution under n is known (see, for example Pitman-Yor [12] Theorems 4.1 and

4.2); explicitly, for with sk = tk+1-tk,
n-1

(10) 

where qt(x) is the density of the entrance law ’

qt (x) _ (2t) 2 exp(-x/Zt), ’

and p(.;.,.) is the transition density of a BESQ° process, characterised by

p(t;x,y) e -ay dy = exp{-xa/(1+2at)}.

Let u denote the law of under n; that is,

= 

i 
. ~ 

i 
. 

Now suppose that is a branching process with offspring generating function

~(t) _ (2-t) 1 and Define the random elements  k of U by

2k 1 
,

and let Pk be the law of a probability measure on U. Defining

,

we have the following result.

Theorem 3.

As measures on U, uk ~ u,

Remarks (i) This statement must be understood in the following sense.
If Un - S> 1/n }, then |U 

n 

is a f inite measure; by u k => u we mean

k|U => |U as for each n.
n n

(ii) This is a crude definition of weak convergence to a ~-finite limit
which it would obviously be difficult to generalise to an arbitrary Polish
space U. One can very quickly write down at least five different possible



54

definitions of which agree with the usual definition if  is finite, and

one can almost as quickly find examples to show that the concepts are all

different if p is allowed to be o-finite. Finding the correct definition (if

there is one) is a problem well worth study; in some sense, the law of symmetric

simple random walk started at 1 and killed on first reaching 0 must, when

suitably transformed, converge to the Brownian excursion law, and one even

expects the analogue of Theorem 2 to hold. However, we restrict ourselves

for the time being to more modest objectives.

Proof. If Zn is a critical branching process with the variance of the offspring

distribution equal to Q2, and such that Zo=l, then it is well known (see,

for example, Athreya-Ney [1] p.19) that as n.

P(Zn>0) ~ 2/na2.

Thus if we fix n, set e = 1/n and consider some bounded continuous f: U -)-TR,
then as k,

(U) fUn ,

bearing in mind that oz=2 in this example. Now Durrett [3], p. 813-815, has

obtained the limit law of k 1 Z.-, -, given Zk>0, at least on the interval

[0,1]. Modifying his results to the present context, we find, combining with

the Lamperti-Lindvall result, that as k-~, the law of Z[k.] given 

converges weakly to the law of a continuous inhomogeneous Markov process

Xt, , governed by the entrance law

(12) P(Xt~dx) = ~ wt2 e-x/2t h(x,t) dx (0t~~),

where 
’

h(x,t) = 1-exp{-x/2(E-t)},

and by the transition densities

(13) = p (t-s;x,y) h(y,t)/h(x,s) (0st_s);

(14) = p(t-s;x,y) (e_st). 
,
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We leave it to the reader to check these calculations. The theorem follows

immediately on inspection of (10), (11), (12), (13) and (14).
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